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PRODUCT FINAL DIFFERENTIAL STRUCTURES
ON THE PLANE AND PRINCIPAL-DIRECTED CURVES

Product final differential structures S! and S% on R? were defined in
paper [2]. The differential spaces R x; R = (R?,S!) and R x; R = (R?,§?)
have many common properties and they can be considered together as the
differential space R xx R = (R%,S8*) where k = 1 or k¥ = 2. In the above-
mentioned paper it was proved that every regular curve in Rx xR is contained
in a principal line, i.e. a straight line which is vertical or horizontal. This
leads to a characterization of such curves as regular ones in R? which are
contained in principal lines. It is easily seen that every smooth curve in
R X R is smooth in R2, but not conversely in general. In this paper we
present a characterization of arbitrary smooth curves in R x; R as some
smooth ones in R? (Theorem 2.20). It turns out that the characterization
obtained does not depend on k (Corollary 2.21).

In Section 1 we first observe that every smooth curve in R x; R is
principal-directed in R?, however, there are smooth curves in R? which are
not smooth in R xR (Example 2.22). For this reason, we start with consid-
erations of principal-directed curves in R2. Next, we distinguish and study
certain classes of such curves, especially, the class of locally K-subordinate
curves which is exactly that of all smooth ones in R X4 R (Theorem 2.20).

In Section 2 we introduce in different ways the classes of locally K-
subordinate sets in R? and of C*® subsets of R x; R. We prove that these
classes are identical (Theorem 2.15) and show that they can be used for a
characterization of smooth curves in R x; R. Moreover, it turns out that
such curves are proper for a characterization of smooth maps from R x; R
to R x¢ R where k,£ € {1,2} (Propositions 2.24 and 2.25). By definitions,
the class of principal-directed curves (locally K- subordinate sets) in R? and
its subclasses considered here do not depend on R X, R. Since the major
part of this paper is devoted to the study of such classes, therefore this
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portion of our paper has respect to the classical differential geometry on the
plane.

Clearly, one may generalize considerations from this paper to those for
R™ where n > 2 (compare [2], Section 5). It seems that such generalizations
can, to a considerable extent, be obtained as the corresponding combinato-
rial n-variants with respect to our case n = 2. However, we must be careful
whether direct generalized properties can hold since the topological and dif-
ferential structures of R® (n > 2) are much more complicated than the
corresponding ones of the plane.

1. Locally K-subordinate curves

In what follows, £ = 1,2 is fixed but arbitrary. First, we recall the def-
inition of the differential structure S* on R? (see [2]). For any a,b € R
consider the maps i, : R — R? and j, : R — R? defined by i,(z) = (z,b)
and j,(y) = (a,y). Let us denote by F* the family of all real functions (real
continuous functions) on R? when k = 1 (k = 2). We set

St ={aeF¥:ao0i, € C®°R)Aaoj, € C°(R)Va,beR]}.

It is seen that S is a differential structure on R? and the differential space
R X R is defined to be the pair (R?,S*). We shall regard R x; R as a
topological space under the Sikorski topology defined to be the weakest one
on R? in which all functions from S* are continuous (see [3], §14).

By an interval of R we will mean a nonsingle (i.e. nonsingle-element)
connected subspace of R. Every curve in R? is assumed to be a continuous
map ¢ : I — R? where I = dom(c) is an interval of R. Amapc¢: I - Rx;R
is called a smooth curve in R X R if it is a smooth map of differential spaces
where I = dom(c) is an interval of R regarded as a differential space under
the natural structure induced from R. Since S* contains all real smooth
functions on R?, it follows that every smooth curve in R X R is smooth in
R? (in the usual sense).

Let ¢ = (a,8) : I — R? be a smooth curve, that is, a,8 € C®(I),
we define the k-th derivative of ¢ at s € I to be the vector (D*c)(s) =
[D¥(a)(s), D*(B)(s)]. By ¢ = [&,0]) = Dlc will be denoted the canonical
vector field tangent to c. We call ¢ regular (stationary) at s if ||é(s)|| >
0 (Jlé(s)l] = 0), where ||é(s)|| = (&(s)* + B(s)?*)'/%. Denote by dompg(c)
(domg(c)) the set of all regular (stationary) parameters of ¢. If dompg(c) =
dom(c) (doms(¢) = dom(c)), then ¢ is called regular (totally stationary).
We say that c is completely stationary at s or that s is a singular parameter
of ¢ if (D¥c)(s) = [0,0] for all £ > 1. The set of all such parameters of
¢ will be denoted by dom¢gs(c). Obviously, domg(c) is an open subset of
dom(c¢) but domg(c) and domc¢s(c) are closed subsets of dom(c). We call ¢
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V-directed ( H-directed) at s in case the vector é(s) is vertical (horizontal).
Moreover, c is called P-directed at s if it is V-directed or H-directed at s.
If X € {V,H, P}, we denote by domx(c) the set of all parameters s of ¢
such that c is X-directed at s. It is seen that domx(c) is a closed subset of
dom(c). We say that c is X-directed in case domx(c) = dom(c). Moreover,
a P-directed curve will also be called principal-directed. These definitions
immediately imply

1.1. LEMMA. If ¢ is a smooth curve in R2, then the following equalities
hold:

(a) domy (¢) U dompy(c) = domp(c);
(5) domy (€)1 domyr(e) = domefe). =

Clearly, this lemma implies

1.2. COROLLARY. Every regular P-directed curve in R? is V -directed or
H -directed. u

If X € {V, H}, then by an X-principal line we shall mean a straight line
in R? which is vertical if X = V and horizontal if X = H. In turn, by a
(P-)principal line we shall mean a straight line in R? which is vertical or
horizontal.

Let X € {V,H,P}. A curve c in R? is called locally X-subordinate at
a parameter s if there are a neighbourhood U of s in dom(¢) and an X-
principal line L such that ¢(U) € L. The set of all such parameters of ¢
will be denoted by locx(c). Obviously, locx(¢) is an open subset of dom(c).
Let the symbol int stand for the interior operation in dom(c). By an easy
verification we get

1.3. LEMMA. If ¢ is a smooth curve in R?, then the following conditions
hold: '

(a) locy(c) = int domy (c);

(b) locg(c) = int domg(c);

(¢) locp(c) C int domp(c);

(d) locy(c) Ulocy(c) = locp(c);

(e) locy(c) Nlocy(c) = int domg(c) = int domes(c). m

We say that c is locally X-subordinate in case locx(¢) = dom(c). From
Lemma 1.3 it follows immediately

1.4. CoroLLARY. If X € {V, H, P}, then every smooth locally X -sub-
ordinate curve in R? is X -directed. Conversely, if X € {V, H}, then every
X -directed curve in R? is locally X -subordinate. m
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Throughout this paper in several constructions we use the following real
smooth function 9 on R defined by
0 fort <0
(1) 90 = { oep(c/y fes
The following example shows that a P-directed curve need not be locally
P-subordinate, which means that the inclusion in condition (c) of Lemma
1.3 is essential.

1.5. EXAMPLE. Let ¢ : R — R? be a smooth curve defined by
(9(-t),0) fort<O
c(t) = ¢ (0,0) fort=0
(0,9(t)) fort>0.

Clearly, ¢ is P-directed but not locally P-subordinate at 0. m

Let X € {V,H,P}. A curve c: I — R? is called globally X-subordinate
if there is an X-principal line L such that ¢(I) C L. It is easy to verify

1.6. ProrosiTiON. If X € {V,H} and c is a smooth curve in R?, then
the following conditions are equivalent:

(a) ¢ is X -directed,;

(b) ¢ is locally X -subordinate;

(c) c is globally X -subordinate. m

Note that from Corollary 1.2 and Proposition 1.6 we get

1.7. COROLLARY. If c¢ is a P-directed curve in R?, then dompg(c) C
locp(c). More precisely, ¢ restricted to any connected component of domg(c)
is globally P-subordinate, so every reqular P-directed curve is globally P-
subordinate. m

Obviously, every globally P-subordinate curve is locally P-subordinate,
but conversely this need not be satisfied.

1.8. EXAMPLE. Let ¢ : R — R? be a smooth curve defined by
(9(-1-1),0) fort< -1
c(t) = ¢ (0,0) for -1 <t<0
(0,9(t)) for t > 0.
Clearly, c is locally P-subordinate. Moreover, observe that the image of ¢
is contained in (R x {0}) U ({0} x R) but it is not contained in R x {0} or
{0} x R, separately. m
Let ¢ be a smooth curve in R%. By a nonsingular parameter of ¢ we shall
mean any element of the set

domps(c) = dom(c)\ domes(c).
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We say that c is nonsingular (almost regular) if domcgs(c) = 0@ (int domes(c)
= (). Since int domgs(c) = int dom¢s(c) by Lemma 1.3, ¢ is almost regular
if and only if int domg(c) = 0, i.e. cldomg(c) = dom(c). Lemma 1.3 and
Proposition 1.6 imply

1.9. PrROPOSITION. Every nonsingular (almost regular) locally P-subor-
dinate curve in R? is globally P-subordinate. w

1.10. LEMMA. Every nonsingular P-directed curve in R? is locally P-
subordinate.

Proof. Let ¢ be a nonsingular P-directed curvein R? and let s € dom(c).
First, if s is regular, there is a neighbourhood U of s such that the curve
¢’ = ¢|U is regular and P-directed. Then, by Corollary 1.7, ¢’ is globally
P-subordinate, which means that ¢ is locally P-subordinate at s.

Suppose now that s is not regular, which means that s € domg(c) N
dompyg(c) because ¢ is nonsingular. Without loss of generality, we can as-
sume further that s = 0. Clearly, there is the least positive integer k£ > 1 such
that (D*¢)(0) # 0. Thus, if ¢ = (a, B), then (D*¢)(0) = [(D*a)(0), (D*B)(0)]
# 0. We can assume that (D*&)(0) # 0, so there is ¢ > 0 such that

(D*a)(t) £ 0 for t € U = (—¢,¢).
Since (D*&)(0) = 0 for i < k, by the Taylor formula we have

a(t)_(—wtkfrteU

where 6 = 6(t) € (0;1), whence &(t) # 0 for t € U\{0}. Therefore and
since ¢ is P-directed, we have §(t) = 0 for t € U. Thus, ¢|U is globally
V-subordinate, so 0 € locp(c). m

Clearly, this Lemma and Proposition 1.9 imply

1.11. PROPOSITION. Every nonsingular P-directed curve in R? is globally
P-subordinate. m

Note that this proposition implies the following corollary being a gener-
alization of Corollary 1.7.

1.12. CoROLLARY. If ¢ is a P-directed curve in R?, then domps(c)
C locp(c). More precisely, ¢ restricted to any connected component of
dompys(c) is globally P-subordinate. ®

Applying this Corollary and Proposition 1.6 one has

1.13. ProrosiTiON. If X € {V,H, P} and c is a smooth curve in R?,
then the following conditions are equivalent:
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(a) dom(c) = domx(c);
(b) domps(c) € domx(c);
(c) dompg(c) C domx(c);
(d) dompg(c) C locx(c);
(e) dompg(c) Clocx(c). m

Remark that since condition (a) of Proposition 1.13 means that ¢ is
X-directed, we can regard the other ones as characterizations of X-directed
curves among smooth curves in R2.

For any a,b € R, we put V, = {a} xR and H, = R x {b}. By a principal
cross we shall mean a subset K of R? of the form K, = Vo U H, where
p = (a,b) is called the origin of K. The principal cross K = K, with origin
o = (0,0) will also be called the central principal one. A curve ¢ in R? is
called locally K-subordinate at a parameter s if there are a neighbourhood
U of s in dom(c) and a principal cross K such that ¢(U) C K. The set
of all such parameters will be denoted by lock(c). We say that c is locally
K -subordinate provided that lock(c) = dom(c). Clearly, every locally P-
subordinate curve is locally K-subordinate, but not conversely in general.
However, every smooth locally K-subordinate curve is P-directed. By an
easy verification we get

1.14. ProrosiTioN. If X € {P,K} and if ¢ is a P-directed curve in
R2, then the following conditions are equivalent:

(a) dom(¢) = locx(c);
(b) domg(e) C locx(¢);
(c) domes(e) Clocx(c).

One can see that this proposition can be false in the case when X €
{V,H}. For example, the horizontal curve ¢ = (idg,0) : R — R? satisfies
domg(c) = domcs(c) = locy(c) = @ but dom(c) = R # locy(c) = 6.
However, we have :

1.15. ProposITiON. If X € {V, H} and if ¢ is a P-directed curve in R?,
then the following conditions are equivalent:

(a) dom(c) = locx(c);

(b) domg(e) Clocx(c) # 0;

(c) domes(e) C locx(c) # 0.

Proof. Since the cases X = V and X = H are completely analogous,

we can assume further that X = V. Obviously, it remains to prove the
implication (c) = (a), or equivalently, the statements (1) and (2) below.
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(1) If 8 = domes(c) C locy(c) # @, then dom(c) = locy(c).

Indeed, we have domcs(c) C locy(c) C locp(c) and from Proposition
1.14 for X = P it follows that dom(¢) = locp(c), and so, locy(c)Ulocy(c) =
dom(c) by Lemma 1.3(d). Furthermore, from condition (e) of this lemma we
get locy(c) Nlocy(c) = @. Therefore, since locy(c) and locy(c) are open in
the connected space dom(c) and locy(c) # @, we have dom(ec) = locy(c).

(2) If § # domes(c) Clocy(c), then dom(c) = locy(c).

Observe first that this statement is trivial in the case when dom¢g(c) =
dom(c). Therefore, we can assume further that domes(c) # dom(c), i.e.
dompyg(c) # 0. Let us take a parameter s € dompys(c). Consider the sets
F~ = {t € domcs(c) : t < s} and F* = {t € domcs(c) : t > s}. Note
that F~ and F'* are closed disjoint subsets of dom(c) such that F~ U Ft =
dom¢g(c). Without loss of generality we can assume that F'~ # §. Let us
set t7 = max F~ and t¥ = min Ft if F* # 0. Consider the interval I
defined to be (t~;t*) if F* # @ and (¢t~;+400) N dom(c) if F+ = §. Of
course, I N domcs(c) = @ and I is a neighbourhood of s in dom(c). Let
d = ¢|I and note that d is a P-directed curve such that domcs(d) = 0.
Moreover, observe that locy(d) # @ because locy(d) = locy(c) N I and
t~ € domes(c) C locy(c), which means that d satisfies the assumption
of statement (1). Therefore, by statement (1) we have dom(d) = locy(d),
whence s € locy(d) C locy(c) and since s can be an arbitrary point of
domps(c), we conclude that domys(c) C locy(c). Thus and since dom(c) =
dom¢s(c) U dompys(c) and domes(c) C locy(c), it follows that dom(c) =
locy(c).

To sum up we have proved the statements (1) and (2) which are equiv-
alent to the implication (c) = (a). =

Let ¢ be a P-directed curve in R2. Let us set
dompg(c) = dom(c)\ locp(c)

and note that dompg(c) is a closed subset of dom(c). Moreover, from Corol-
lary 1.12 it follows that domps(c) C domcg(c). Obviously, by Proposition
1.14 we get

1.16. COROLLARY. If c is a P-directed curve in R?, then the following
conditions are equivalent:

(a) dom(c) = lock(c);

(b) domg(¢) C lock(e);

(c) domcs(c) C lock(c);

(d) domps(c) Clock(c). »

It is easy to verify
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1.17. CorOLLARY. Under the same assumptions, if dompg(c) is discrete
in dom(c), then c is locally K -subordinate. m

2. A characterization of smooth curves in R x; R

We shall regard R? as a real normed vector space under the coordinate-
wise operations and the norm [|p|| = (2% +4?)'/2 for p = (z, y). In particular,
R? will be regarded as a topological space under the Euclidean topology. For
any p € R? denote by 7, the translation of R? via p, i.e. 7(z) =z + p. If
A CR? weset A+ p=r1,(A). Clearly, K, = K+ p for p € R%.

Let A be a subset of R2. We shall regard A as a differential space with
structure C°(A) of all real smooth functions on A. Clearly, A is a differ-
ential space of class Dy (see [4], Theorem (2.1)). For any z € A denote
by T;A the tangent vector space of A at . We associate with A the di-
mension function 64 : A — Z%t defined by §4(z) = dim TA. It is well
known that 84 is upper semicontinuous (see [1], Corollary 1). A point p
of A is called regular (singular) if 64 is continuous (discontinuous) at p,
or equivalently, constant (nonconstant) locally at p. Moreover, it is also
known that the set A* (sing A) of all regular (singular) points of A is an
open (closed) and dense (boundary) subset of A (see [1], Corollary 3). We
set

A'={pec A:64(p) =i} fori=0,1,2.

Clearly, A%, Al and A? are disjoint and A° U A! U A2 = A. Since §4 is
upper semicontinuous, it follows that A° and A® U A! are open subsets of
A and A? is a closed subset of A. Moreover, it is known that A% consists
of all isolated points of A (see [1], Proposition 2), so A° is a discrete subset
of A.

Let pe A CR2LIf X € {V, H, P}, we say that A is locally X -subordinate
at p in case there are a neighbourhood U of p in R? and an X-principal line
L such that ANU C L. Moreover, we say that A is locally K -subordinate
at p if there is a neighbourhood U of p in R? such that AN U C K,.
For X € {V,H,P,K} we denote by locx A the set of all points p of A
such that A is locally X-subordinate at p. Clearly, locx A is an open sub-
set of A. We call A locally X -subordinate in case locx A = A. If X €
{V,H,P} and A is contained in an X-principal line, we call A globally
X -subordinate. Similarly, if A is contained in a principal cross, we say
that it is globally K -subordinate. Obviously, we have the following lem-
mas.

2.1. LEMMA. For any subset A of R? the following conditions hold:
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(a) locy ANlocy A = A%
(b) locy AUlocyy A =locp A C A° U Al
(c) lock A\locp A C A%. =

2.2. LEMMA. If A is a locally K -subordinate subset of R?, then the
following conditions hold:

(a) A! =locp A\A;
(b) A% =lock A\locp A C singA and A? is a discrete subset of A. m

It is easy to verify

2.3. PROPOSITION. Let A be a connected subset of R2.

(1) If X € {V,H, P} and A is locally X -subordinate, then A is globally
X -subordinate;

(2) If A is locally K -subordinate, then locp A = A*. u

By applying Lemma 2.2 we get

2.4. PrROPOSITION. If A is a nonsingle connected locally K -subordinate
subset of R2?, then the following conditions hold:

(a) A° = 0;
(b) A =locp A = A*;
(c) A? = singA. n

From this Proposition and Lemma 2.2 we obviously get

2.5. COROLLARY. If A is a connected locally K -subordinate subset of
R2, then the following statements hold:

(1) singA is a discrete closed subset of A;
(2) If A is closed in R?, then singA is a discrete closed subset of RZ;
(3) If A is compact, then singA is finite. w

The following example shows that if A is a disconnected and compact
locally H-subordinate subset of R?, then the set singA can be dense in itself
and of the continuum power.

2.6. ExAMPLE. Consider the closed interval I = [0;1] C R. Let C be the
Cantor set regarded as a subset of I, that is, C consists of all z € I which
have the following representations

oo
s= >
i=1
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where §; = 0,2. It is known that C is dense in itself and compact boundary
subset of I of the continuum power. Clearly,

I\C = | J(an;bn)

where {(an;b,) : n € N} is a family of disjoint open intervals of R. For
any n € N let us take a discrete countable subset P, of (@n; by) such that
@y, b, € P,. Consider the set

A= PucC
n=1
We can regard that A C R? via the identification z — (z,0). Clearly, 4 is a
disconnected and compact globally H-subordinate subset of R?. Moreover,
note that

oo
A=4"=|J P, A'=singd=C and A’=0.w
n=1
Let X € {V,H,P,K}. Denote by Iso(X) the class of all locally X-
subordinate subsets of R2 It is easy to verify

2.7. ProPoSITION. Let X € {V,H,P,K}. The class lso(X) has the fol-
lowing properties:

(1) If A€lso(X) and B C A, then B € Iso(X);

(2) If A C R? and for each p € A there is a neighbourhood U of p in
R? such that ANU € 1so(X), then A € 1so(X);

(3) If in addition X € {V,H,K}, then A, B € lso(X) involves AU B €
Iso(X). =

The proposition above immediately implies

2.8. CorROLLARY. Let X € {V,H,K}. If § is a locally finite family of
sets from the class 1so(X), then |JF € Iso(X). =

The following example shows that the union of a countable family of sets
from the class 1so(K) as well as the closure of a set of this class need not
belong to lso(K). Analogous examples we can construct for X € {V, H, P}.

2.9. EXAMPLE. Let us set K, = K(3-» 3-») for n € N. Consider the
families §; = {K, : n € N} and o = {K} UF;. Clearly, §; is a locally finite
family of sets from lso(K), so |JF1 € 1so(K) by Corollary 2.8. On the other
hand, §F is not such a family and |J Fo & lso(K) because {JFp is not locally -
K-subordinate at o. Finally, note that | J F, is the closure of JF;. »



Principal-directed curves in the plane 65

If Ais a subset of R xx R (4 C R?), then by S¥(A) will be denoted
the differential structure on A induced from R x; R. We say that A is a
C subset of R X R in case $¥(A4) = C*®(A). Obviously, every vertical or
horizontal line in R x R is such a subset. Let us denote by sub®(R x R)
the class of all C* subsets of R X, R. We need the following lemmas.

2.10. LEMMA. (see [2], Lemma 2.1). For every p € R? the translation 1,
is a diffeomorphism of R xR, and so, the family sub® (R xR) is invariant
under any translation of R%. m

Let us set R2 = R?\{o} where o = (0,0).

2.11. LEMMA (see [2], Corollary 1.4). Assume that o € F*. Then a € S*
if and only if o|R? € S¥(R?) and o|K € C*(K). =

By an easy verification we get

2.12. LEMMA. The following properties hold:

(1) If A € sub®™(R xxR) and B C A, then B € sub®™(R x; R).
(2) If A CR? and for each p € A there is an open neighbourhood U of
p in R? such that ANU € sub®(R x R), then A € sub®(R x; R). m

2.13. LEMMA. For any p € R? we have K, € sub®(R x4 R).

Proof. By Lemma 2.10 and since K, = K + p for p € R?, it suffices to
show that the central principal cross K is a C'™ subset of R x; R. Since K
equipped with the structure S¥(K) is a differential subspace of R xx R, we
conclude that the differential structure S*(K) is generated by the restrictions
¢|K for ¢ € S*. From the definition of S it follows that for any ¢ € S* we
have poi € C®°(R) and poj € C*(R) where i(z) = (z,0) and j(y) = (0,y)
for z,y € R. It is seen that if ¢' = p o7 and ¢" = ¢ o j, then the function
@ : R? — R defined by

&(z,y) = ¢'(z) + ©"(y) — (o)
belongs to C®(R?). Note that $|K = ¢|K, which means that the differential

structure on K is generated by restrictions of smooth functions on R?, and
so, Kis a C® subset of R xx R. m

2.14. LEMMA. Let {p,} be an infinite sequence of distinct points of R?
such that limp, = o and p, € K for each n € N. If {t,} is an infinite
sequence of real numbers such that limt, = 0, then there is a function
@ € 8? such that ¢|K = 0 and ¢(p,) = t, for each n € N.

Proof. One can see that there is a discrete sequence {U,} of open
subsets of R2 such that p, € U, and U, N K = § for each n € N. Next,
we can choose a sequence {¢p,} of real smooth functions on R? such that



66 B. Przybylski

0 < pn(g) <1 for g € R?, p,(ps) = 1 and supp ¢, C U,. Define the
function ¢ : R? — R by

‘P(Q) = z tnﬁon(q)'
n=1

Clearly, ¢ is continuous such that ¢|K = 0 and ¢(p,) = t, for n € N.
Moreover, ¢|R2 € C*®(R2), so ¢ € S? by Lemma 2.11. u

2.15. THEOREM. sub®™(R X; R) = sub®(R x3 R) = Iso(K).

Proof. Clearly, the inclusion Iso(K') C sub®(R xxR) follows from Lem-
mas 2.12 and 2.13. To prove the converse inclusion, suppose to the contrary
that A € sub®(R X, R)\lso(K). This means that there is p € A such that
A is not locally K-subordinate at p. By Lemma 2.10 we can assume that
p = o. It follows that for every open neighbourhood U of o in R? we have
(ANU)\K # 0. This implies that there is a sequence {p,} of distinct points
of A such that lim p, = 0 and p, € K for n € N. Let us set ¢, = ||p,||*/? for
n € N. By Lemma 2.14 there is a function ¢ € S? C §* such that ¢(0) = 0
and ¢(pn) = [|pa||'/.

We set ¢' = ¢|A and note that ¢’ € S*(A). Since A is a C* subset of
Rx kR, it follows that ¢' € C®°(A). Then there are an open neighbourhood U
of o in R? and a function 9 € C*°(R?) such that $|ANU = ¢'|ANU. Clearly,
¥(0) = ¢(0) = 0 and since lim p, = o, we have (ps) = ¢(p») = ”pn||1/2 for
sufficiently large n. Hence we get

lim P(pr) — ¥(0)
[P~ |l

which means that the function % is not differentiable at o, a contradiction.
This completes the proof of our assertion. m

A family ¥ C lso(K) is called a C*® generator of lso(K) in case the
following condition holds:

Ifa € F! and a|A € C®(A) for each A € X, then a|B € C*®(B) for all
B € 1so(K).

It is seen that the families of all principal lines and of all principal crosses
are C® generators of Iso( K). Moreover, if X' is a C* generator of lso( X),
then so is the family X(B) = {ANU : A € X, U € B} where B is an
arbitrary topological base of R?. We obviously have

2.16. LEMMA. If X is a C*® generator of lso(K), then
St={aecF*:alAcC®(A)VAE L} u

,—1/2

= lim ||py| = 00,

It is easy to verify
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2.17. PROPOSITION. Let M be a differential space. Let X be a C™ gen-
erator of 1so(K). A map (continuous map) f : R? — M is smooth from
R x; R (R %2 R) to M if and only if flJA: A — M is smooth for each
AcX. =

We say that a curve ¢ : I — R? is locally C® subordinate to R x; R
if for each s € I there is an open neighbourhood U of s in I such that
c(U) € sub™(R xk R). From Theorem 2.15 we obviously get

2.18. COROLLARY. A curve ¢ in R? is locally K -subordinate if and only
if it is locally C*® subordinate to R X, R. =

Clearly, we have

2.19. LEMMA. Let ¢ be a smooth curve in R2, If c is locally C™ subor-
dinate to R X R, then it is smooth in R X, R. =

2.20. THEOREM. If ¢ is a smooth curve in R2, then the following condi-
tions are equivalent:

(a) c is smooth in R x R;
(b) ¢ is locally K -subordinate;
(c) ¢ is locally C™ subordinate to R x R.

Proof. From Corollary 2.18 and Lemma 2.19 it follows that the impli-
cations (b)=>(c) and (c)=>(a) are satisfied. Thus, it remains to prove the
implication (a)=>(b). Suppose to the contrary that there exists a smooth
curve ¢ : I — R x4 R which is not locally K-subordinate. This means that
there is a parameter s € I such that for each € > 0 we have

([s—es+eln )N (RAK,) #0

where p = ¢(s). By Lemma 2.10 and since the parameterization of ¢ may be
changed, one can assume that s = 0 and p = o. Then there is a sequence {t,,}
of parameters of ¢ converging to 0 such that the sequence {¢(t,)} consists
of distinct points of R?\K and lim¢(¢,,) = o. By Lemma 2.14 there is a
function ¢ € S* such that p(c(t,)) = (=1)" - ¢, and ¢(c(0)) = 0. Hence
we get (¢(c(tn)) — ¢(c(0)))/t, = (—1)™, which means that ¢ is not smooth
curve in R x; R at 0, a contradiction. m

Denote by cur(R X R) the class of all smooth curves in R X R. In turn,
by cur(K) (cur®(K)) we denote the class of all locally K-subordinate curves
(smooth curves) in R2. Clearly, Theorem 2.20 implies

2.21. CoroLLARY. cur(R x1 R) = cur(R X2 R) = cur®(K). =»

By a principal K -graph in R? we shall mean a compact connected locally
K-subordinate subset of R2. The simplest example of such a graph is given
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by a principal closed segment, i.e. a closed segment lying in a principal
line. One can see that every principal K-graph is a union of a finite family
of principal closed segments. From Theorem 2.20 it follows that if ¢ is a
smooth curve in R X R, then for any a,b € dom(c) such that a < b the
image c([a; b]) is a principal K-graph.

The following example shows that a P-directed curve in R? need not be
locally K-subordinate, i.e. smooth in R x; R.

2.22. ExAMPLE. Clearly, one can construct functions o', 8’ € C'*°([0;1])
satisfying the following conditions:

&(t) > 0 and Fi(t) = 0if = <1< L where k is odd;

k

g = ' ;L 1
a(t)—Oand,B(t)>01fk+l<t<k

o(t)= B'(t) = 0 if t = % (k€ N)ort=0.

where k is even;

Let us set
8

a(s) = f a'(t)dt and f(s)= f B'(t)dtfor0<s<1

0 0
and note that the curve ¢ = (e, 8) : [0; 1] — R? is P-directed. It is seen that
we have the following decomposition:

_ ~ 1 1

ime = kL:JIC(Ik) U {0} where I = [k+ % k]'
Clearly, c(I)) is a vertical (horizontal) closed segment in R? provided that &
is even (0odd). One can see that this decomposition is unique in the following
sense. If § is an arbitrary nonsingle segment in R? such that § C imc, then
there is a unique k¥ € N such that S C ¢(Ix). In addition, im ¢ = ¢([0;1]) is
not a principal K-graph, so c is not smooth in Rx; R. = '

It is easy to verify

2.23. LEMMA. For any principal K-graph G in R? there is a smooth
curve ¢: [0;1] = R Xx R such that ¢([0;1]) = G. =

Denote by gr( K) the class of all principal K-graphs in R?. Clearly, gr(K)
is a C* generator of Iso(K). If f is a smooth map from R x;x R to R X, R
where k,f € {1,2}, then by Lemma 2.23 and Theorem 2.20 we conclude
that A € gr(K) involves f(A) € gr(K). Denote by §**¢ the family of all
smooth maps from R x; R to R x; R. Moreover, we adopt that F!! = F1.2
(F%?) denotes the family of all maps (continuous maps) of R2. If ¢ is a
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curve in R? and f is a map of R?, we set fg(c) = foc. It is easy to ver-
ify

2.24. PROPOSITION. Let k,£ € {1,2}, (k,£) # (2,1), and f € F**t. Then
the following conditions are equivalent:

(a) fesM

(b) fa(cur(R xx R)) C cur(R %, R);

(c) fa(cur®(K)) C cur®(K);

(d) If A €gr(K), then flA: A — f(A) is a smooth map of C* subsets
of R xR and R xR, respectively. m

Clearly, this proposition implies equalities 12 = S1'! and §%? = S n
F22, One can ask whether there is a corresponding characterization of
smooth maps from R X2 R to R x; R. This problem has a solution for
all cases k,£ € {1,2} (Proposition 2.25). Let C¥+* denote the family of all
continuous maps from R X R to R X, R with respect to the corresponding
Sikorski topologies. It is easy to verify

2.25. PROPOSITION. Let k,£ € {1,2} and f € C*%. Then the following
conditions are equivalent:

(a) f e S

(b) fg(cur(R xx R)) C cur(R X, R);

(c) fg(cur®(K)) C cur®(K);

(d) If A €gr(K), then flA: A — f(A) is a smooth map of C™ subsets
of R, R and R X, R, respectively. m

By the definitions C?? = F22 5o in the case when (k,£) = (2,2) Propo-
sitions 2.24 and 2.25 coincide. However, for the remaining cases, the fol-
lowing question arises: what are functions belonging to C**. Since we do
not know any full answer to this question, Proposition 2.25 is less use-
ful than Proposition 2.24. One can observe that a reason of such a sit-
uation is also justified by the fact that there is still open the question:
what is the kind of the Sikorski topology of R X; R, called shortly the
Sl-topology, i.e. the weakest one on R? for which all functions from &!
are continuous (see (2], Question 5.6). However, it is easily seen that if ¢
and 9 are functions from S, then the function (¢,%) : R? — R? defined
by the assignment (z,y) — (é(z),¥(y)) belongs to C!? where ¢ and o
can be taken from S'\S? (see [2], Example 1.5). Moreover, since the S!-
topology is stronger than the Euclidean one, it follows that C*? C C!+? and
C%*! C C*»2. But it seems to be much more complicated to state anything
about C111,
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