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PRODUCT FINAL DIFFERENTIAL STRUCTURES 
ON THE PLANE A N D PRINCIPAL-DIRECTED CURVES 

Product final differential structures S1 and S2 on R2 were defined in 
paper [2]. The differential spaces R xx R = (R 2 ,^ 1) and R x2 R = (R2,<S2) 
have many common properties and they can be considered together as the 
differential space R Xfc R = (R2,«Sfc) where k = 1 or k = 2. In the above-
mentioned paper it was proved that every regular curve in Rx fcR is contained 
in a principal line, i.e. a straight line which is vertical or horizontal. This 
leads to a characterization of such curves as regular ones in R2 which are 
contained in principal lines. It is easily seen that every smooth curve in 
R Xjt R is smooth in R2, but not conversely in general. In this paper we 
present a characterization of arbitrary smooth curves in R X k R as some 
smooth ones in R2 (Theorem 2.20). It turns out that the characterization 
obtained does not depend on k (Corollary 2.21). 

In Section 1 we first observe that every smooth curve in R Xfc R is 
principal-directed in R2, however, there are smooth curves in R2 which are 
not smooth in R XfcR (Example 2.22). For this reason, we start with consid-
erations of principal-directed curves in R2. Next, we distinguish and study 
certain classes of such curves, especially, the class of locally /if-subordinate 
curves which is exactly that of all smooth ones in R x^ R (Theorem 2.20). 

In Section 2 we introduce in different ways the classes of locally in-
subordinate sets in R2 and of C°° subsets of R Xfc R. We prove that these 
classes are identical (Theorem 2.15) and show that they can be used for a 
characterization of smooth curves in R X fc R. Moreover, it turns out that 
such curves are proper for a characterization of smooth maps from R x fc R 
to R XfR where k,£ £ {1,2} (Propositions 2.24 and 2.25). By definitions, 
the class of principal-directed curves (locally K- subordinate sets) in R2 and 
its subclasses considered here do not depend on R X fc R. Since the major 
part of this paper is devoted to the study of such classes, therefore this 
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portion of our paper has respect to the classical differential geometry on the 
plane. 

Clearly, one may generalize considerations from this paper to those for 
R n where n > 2 (compare [2], Section 5). It seems that such generalizations 
can, to a considerable extent, be obtained as the corresponding combinato-
rial n-variants with respect to our case n = 2. However, we must be careful 
whether direct generalized properties can hold since the topological and dif-
ferential structures of R n (n > 2) are much more complicated than the 
corresponding ones of the plane. 

1. Locally iiT-subordinate curves 
In what follows, k — 1 ,2 is fixed but arbitrary. First, we recall the def-

inition of the differential structure Sk on R2 (see [2]). For any a,b G R 
consider the maps ¿¡, : R -»• R2 and ja : R R2 defined by ib(x) = (x, b) 
and ja(y) = (a, y). Let us denote by Tk the family of all real functions (real 
continuous functions) on R2 when k = 1 (k — 2). We set 

Sk = { a G Tk : a o ib G C°°(R) A a o ja G C°°(R) Va, b G R}. 

It is seen that Sk is a differential structure on R2 and the differential space 
R Xfc R is defined to be the pair (R2,<Sfc). We shall regard R x fc R as a 
topological space under the Sikorski topology defined to be the weakest one 
on R2 in which all functions from Sk are continuous (see [3], §14). 

By an interval of R we will mean a nonsingle (i.e. nonsingle-element) 
connected subspace of R. Every curve in R2 is assumed to be a continuous 
map c : I —*• R2 where I = dom(c) is an interval of R. A map c : I —»• R x k R 
is called a smooth curve in R x ^ R if it is a smooth map of differential spaces 
where I = dom(c) is an interval of R regarded as a differential space under 
the natural structure induced from R. Since Sk contains all real smooth 
functions on R2 , it follows that every smooth curve in R X^ R is smooth in 
R2 (in the usual sense). 

Let c = (a,/3) : I I 2 be a smooth curve, that is, a,/3 G C°°( / ) , 
we define the k-th derivative of c at s G I to be the vector ( D k c ) ( s ) = 
[Dk(a)(s),Dk(f3)(s)]. By c = [d,/3] = D1c will be denoted the canonical 
vector field tangent to c. We call c regular (stationary) at s if. | |c(s)| | > 
0 (||c(a)|| = 0), where ||c(«)|| = (a(s) 2 + / j (s) 2 ) 1 / 2 . Denote by domR(c) 
(doms(c)) the set of all regular (stationary) parameters of c. If dom/j(c) = 
dom(c) (doms(c) = dom(c)), then c is called regular (totally stationary). 
We say that c is completely stationary at s or that s is a singular parameter 
of c if (Z)A:c)(s) = [0,0] for all k > 1. The set of all such parameters of 
c will be denoted by domcs(c) . Obviously, domn(c) is an open subset of 
dom(c) but dom5(c) and domcs(c) are closed subsets of dom(c). We call c 
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V-directed (H-directed) at s in case the vector c(s) is vertical (horizontal). 
Moreover, c is called P-directed at s if it is V-directed or ^-directed at s. 
If X € {V, H, P}, we denote by dom^(c) the set of all parameters s of c 
such that c is X-directed at s. It is seen that dom^(c) is a closed subset of 
dom(c). We say that c is X-directed in case dom^-(c) = dom(c). Moreover, 
a P-directed curve will also be called principal-directed. These definitions 
immediately imply 

1 .1 . LEMMA. If c is a smooth curve in R 2 , then the following equalities 
hold: 

(a) domv(c) U domj/(c) = domp(c); 
(b) dom^(c) fl domjf(c) = doms(c). • 

Clearly, this lemma implies 

1 .2 . COROLLARY. Every regular P-directed curve in R 2 is V-directed or 
H-directed. m 

If X G {V, H}, then by an X-principal line we shall mean a straight line 
in R2 which is vertical if X = V and horizontal if X = H. In turn, by a 
(P-)principal line we shall mean a straight line in R2 which is vertical or 
horizontal. 

Let X 6 {V,H,P}. A curve c in R2 is called locally X-subordinate at 
a parameter s if there are a neighbourhood U of s in dom(c) and an X-
principal line L such that c(U) C L. The set of all such parameters of c 
will be denoted by locx(c). Obviously, locjf (c) is an open subset of dom(c). 
Let the symbol int stand for the interior operation in dom(c). By an easy 
verification we get 

1 .3 . LEMMA. If c is a smooth curve in R 2 , then the following conditions 
hold: 

(a) locy(c) = int domy(c); 
(b) locj/(c) = int domi/(c); 
(c) locp(c) C int domp(c); 
(d) locy(c) u loc#(c) = locp(c); 
(e) locy(c) n locjf(c) = int dom5(c) = int domcs(c). • 

We say that c is locally X-subordinate in case locx(c) = dom(c). From 
Lemma 1.3 it follows immediately 

1.4 . COROLLARY. If X e {V,H,P}, then every smooth locally X-sub-
ordinate curve in R2 is X-directed. Conversely, if X € {V,H}, then every 
X-directed curve in R2 is locally X-subordinate. • 
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c (i) = 

Throughout this paper in several constructions we use the following real 
smooth function iDonR defined by 

0 for t < 0 
e x p ( - l / f ) for i > 0. 

The following example shows that a P-directed curve need not be locally 
P-subordinate, which means that the inclusion in condition (c) of Lemma 
1.3 is essential. 

1.5. EXAMPLE. Let c : R —> R2 be a smooth curve defined by 

' (0 ( - t ) ,O) for i < 0 
- (0,0) for i = 0 

(0,i?(*)) for t > 0. 
Clearly, c is P-directed but not locally P-subordinate at 0. • 

Let X £ {V,H,P}. A curve c : I —• R2 is called globally X-subordinate 
if there is an X-principal line L such that c(7) C L. It is easy to verify 

1.6. PROPOSITION. If X € {V,H} and c is a smooth curve in R2 , then 
the following conditions are equivalent: 

(a) c is X-directed; 
(b) c is locally X-subordinate; 
(c) c is globally X-subordinate, m 
Note that from Corollary 1.2 and Proposition 1.6 we get 

1.7. COROLLARY. If c is a P-directed curve in R2 , then domft(c) C 
locp(c). More precisely, c restricted to any connected component of dom/*(c) 
is globally P-subordinate, so every regular P-directed curve is globally P-
subordinate. m 

Obviously, every globally P-subordinate curve is locally P-subordinate, 
but conversely this need not be satisfied. 

1.8. EXAMPLE. Let c : R -» R2 be a smooth curve defined by 
' ( ( t f ( - l - t ) , 0 ) for i < —1 

< (0,0) for - 1 < t < 0 
(0,t?(i)) for i > 0. 

Clearly, c is locally P-subordinate. Moreover, observe that the image of c 
is contained in (R X {0}) U ({0} X R) but it is not contained in R X {0} or 
{0} x R, separately. • 

Let c be a smooth curve in R2 . By a nonsingular parameter of c we shall 
mean any element of the set 

dom;v\s(c) = dom(c)\domcs(c). 

c(t) = 
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We say that c is nonsingular (almost regular) if domcs(c) = 0 (int domcs(c) 
= 0). Since intdoms(c) = intdomcs( c) by Lemma 1.3, c is almost regular 
if and only if intdoms(c) = 0, i.e. cldomfi(c) = dom(c). Lemma 1.3 and 
Proposition 1.6 imply 

1 .9 . P R O P O S I T I O N . Every nonsingular (almost regular) locally P-subor-
dinate curve in R2 is globally P-subordinate, m 

1 .10 . LEMMA. Every nonsingular P-directed curve in R 2 is locally P-
subordinate. 

P r o o f . Let c be a nonsingular P-directed curve in R2 and let s G dom(c). 
First, if s is regular, there is a neighbourhood U of s such that the curve 
c' = c\U is regular and P-directed. Then, by Corollary 1.7, c' is globally 
P-subordinate, which means that c is locally P-subordinate at s. 

Suppose now that s is not regular, which means that s Ç doms(c) fl 
domjv\s(c) because c is nonsingular. Without loss of generality, we can as-
sume further that s = 0. Clearly, there is the least positive integer k > 1 such 
that (Dkc)(0) / 0. Thus, if c = (a, /3), then (Dkc)(0) = [(Dfcà)(0), (£>fc/j)(0)] 
^ 0. We can assume that (Dfca)(0) / 0, so there is t > 0 such that 

(Dkà)(t) ± 0 for t e U = (-s,s). 

Since (jD*à)(0) = 0 for i < k, by the Taylor formula we have 

., , (Dkà)(9t) k , 
à(t) = i TT^-1* iorteU 

K • 

where 6 = 6(t) € (0; 1), whence à(t) ^ 0 for t e *A{0}. Therefore and 
since c is P-directed, we have $(t) = 0 for t £ U. Thus, c\U is globally 
F-subordinate, so 0 G locp(c). • 

Clearly, this Lemma and Proposition 1.9 imply 

1 .11 . P R O P O S I T I O N . Every nonsingular P-directed curve in R 2 is globally 
P-subordinate. m 

Note that this proposition implies the following corollary being a gener-
alization of Corollary 1.7. 

1 . 1 2 . COROLLARY. If c is a P-directed curve in R 2 , then d o m N S ( C ) 
Ç locp(c). More precisely, c restricted to any connected component of 
dom/v\s(c) is globally P-subordinate. m 

Applying this Corollary and Proposition 1.6 one has 

1 . 1 3 . P R O P O S I T I O N . If X E {V,H,P} and c is a smooth curve in R 2 , 
then the following conditions are equivalent: 
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(a) dom(c) = domx(c); 
(b) d o m N S ( C ) C domx(c); 
(c) domii(c) C domx(c); 
(d) doings (c) C loc^(c); 
(e) domR(c) C locx(c). • 

Remark that since condition (a) of Proposition 1.13 means that c is 
X-directed, we can regard the other ones as characterizations of X-directed 
curves among smooth curves in R2. 

For any a, b 6 R, we put Va = {a} x R and -ffj = E x {6}. By a principal 
cross we shall mean a subset K of R2 of the form Kp = Va U H\, where 
p = (a, b) is called the origin of K. The principal cross K = K„ with origin 
o = (0,0) will also be called the central principal one. A curve c in R2 is 
called locally K-subordinate at a parameter s if there are a neighbourhood 
U of s in dom(c) and a principal cross K such that c(U) C K. The set 
of all such parameters will be denoted by loc^(c). We say that c is locally 
K-subordinate provided that loc^(c) = dom(c). Clearly, every locally P-
subordinate curve is locally iiT-subordinate, but not conversely in general. 
However, every smooth locally /^-subordinate curve is P-directed. By an 
easy verification we get 

1 .14 . P R O P O S I T I O N . If X e {P,K} and if c is a P-directed curve in 
R2, then the following conditions are equivalent: 

(a) dom(c) = locx(c); 
(b) doms(c) C locx(c); 
(c) domcs(c) C locx(c). • 

One can see that this proposition can be false in the case when X € 
{V, H}. For example, the horizontal curve c = (id^, 0) : R —• R2 satisfies 
doms(c) = domcs(c) = locy(c) = 0 but dom(c) = R / locy(c) = 0. 
However, we have 

1 . 1 5 . P R O P O S I T I O N . If X E {V, H} and if c is a P-directed curve in R 2 , 
then the following conditions are equivalent: 

(a) dom(c) = locx(c); 
(b) dom5(c) C locjr(c) / 0; 
(c) domcs(c) C locx(c) ^ 0. 

P r o o f . Since the cases X = V and X = H are completely analogous, 
we can assume further that X — V. Obviously, it remains to prove the 
implication (c) =>• (a), or equivalently, the statements (1) and (2) below. 
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(1) If 0 = dom<?s(c) C locy(c) ^ 0, then dom(c) = locy(c). 
Indeed, we have domcs(c) C locy(c) C locp(c) and from Proposition 

1.14 for X = P it follows that dom(c) = locp(c), and so, locy(c)Uloc//(c) = 
dom(c) by Lemma 1.3(d). Furthermore, from condition (e) of this lemma we 
get locy(c) nloctf(c) = 0. Therefore, since locy(c) and locj/(c) are open in 
the connected space dom(c) and locy(c) ^ 0, we have dom(c) = locy(c). 

(2) If 0 ^ domcs(c) C locy(c), then dom(c) = locy(c). 
Observe first that this statement is trivial in the case when domcs(c) = 

dom(c). Therefore, we can assume further that domcs(c) / dom(c), i.e. 
domjvs(c) 0. Let us take a parameter s € dom^s(c). Consider the sets 
F~ = {t G domes(c) : t < s} and F+ = {t e domcs(c) : t > s}. Note 
that F~ and F+ are closed disjoint subsets of dom(c) such that F~ U F+ = 
domcs(c). Without loss of generality we can assume that F~ / 0. Let us 
set t~ = max F~ and i + = min F+ if F+ / 0. Consider the interval I 
defined to be ( i " ; i + ) if F+ ^ 0 and (<";+ oo) n dom(c) if F+ = 0. Of 
course, I D domcs(c) = 0 and I is a neighbourhood of s in dom(c). Let 
d = c\I and note that d is a P-directed curve such that domcs(ci) = 0. 
Moreover, observe that locy(d) / 0 because locy(d) = locy(c) D I and 
t~ G domcs(c) C loc^(c), which means that d satisfies the assumption 
of statement (1). Therefore, by statement (1) we have dom(ei) = locy(d), 
whence s € locy(d) C locy(c) and since s can be an arbitrary point of 
dom^s(c), we conclude that domATS(C) C locy(c). Thus and since dom(c) = 
domc5(c) U domws(c) and domcs(c) C loc^(c), it follows that dom(c) = 
locy(c). 

To sum up we have proved the statements (1) and (2) which are equiv-
alent to the implication (c) => (o). • 

Let c be a P-directed curve in R2. Let us set 

domp5(c) = dom(c)\locp(c) 

and note that domp5(c) is a closed subset of dom(c). Moreover, from Corol-
lary 1.12 it follows that domps(c) C domcs(c). Obviously, by Proposition 
1.14 we get 

1.16. COROLLARY. If c is a P-directed curve in R 2 , then the following 
conditions are equivalent: 

(a) dom(c) = loc#(c); 
(b) doms(c) C locx(c); 
(c) domcs(c) C 1 O C K ( C ) ; 

(d) domps(c) C loc#(c). • 

It is easy to verify 
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1 . 1 7 . COROLLARY. Under the same assumptions, if domps(c) is discrete 
in dom(c), then c is locally K-subordinate, m 

2. A characterization of smooth curves in R x ^ R 
We shall regard R2 as a real normed vector space under the coordinate-

wise operations and the norm ||p|| = (a;2 + y2)1/'2 for p = (x, y). In particular, 
R2 will be regarded as a topological space under the Euclidean topology. For 
any p G R2 denote by rp the translation of R2 via p, i.e. Tp(X) = x + p. If 
A C R2, we set A + p = rp(A). Clearly, Kp = K + p for p e R2. 

Let A be a subset of R2. We shall regard A as a differential space with 
structure C°°(A) of all real smooth functions on A. Clearly, A is a differ-
ential space of class V0 (see [4], Theorem (2.1)). For any x £ A denote 
by TXA the tangent vector space of A at x. We associate with A the di-
mension function 6A '• A —>• Z+ defined by SA(X) = dim TXA. It is well 
known that 6A is upper semicontinuous (see [1], Corollary 1). A point p 
of A is called regular (singular) if 6A is continuous (discontinuous) at p, 
or equivalently, constant (nonconstant) locally at p. Moreover, it is also 
known that the set A* (sing A) of all regular (singular) points of A is an 
open (closed) and dense (boundary) subset of A (see [1], Corollary 3). We 
set 

Ai = {p e A : 6A(p) = *} for i = 0,1,2. 

Clearly, A0, A1 and A2 are disjoint and A0 U A1 U A2 = A. Since 6a is 
upper semicontinuous, it follows that A0 and A0 U A1 are open subsets of 
A and A2 is a closed subset of A. Moreover, it is known that A0 consists 
of all isolated points of A (see [1], Proposition 2), so A0 is a discrete subset 
of A. 

Let p € A C R2 . If X € {V, H, P}, we say that A is locally X-subordinate 
at p in case there are a neighbourhood U of p in R2 and an X-principal line 
L such that A fl U C L. Moreover, we say that A is locally K-subordinate 
at p if there is a neighbourhood U of p in R2 such that A fl U C Kp. 
For X € {V, H, P, K} we denote by locx A the set of all points p of A 
such that A is locally X-subordinate at p. Clearly, locx A is an open sub-
set of A. We call A locally X-subordinate in case locx A = A. If X £ 
{V,H,P} and A is contained in an X-principal line, we call A globally 
X-subordinate. Similarly, if A is contained in a principal cross, we say 
that it is globally K-subordinate. Obviously, we have the following lem-
mas. 

2.1. L E M M A . For any subset A of R2 the following conditions hold: 
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(a) locy A n l o c j / A = A 
(b) locy A U \ocff A = l o c p A Ç A0 (J A1; 
(c) Iock A\ locp A Ç A2. m 

2 .2 . LEMMA. If A is a locally K-subordinate subset of R 2 , then the 
following conditions hold: 

(a) A1 = loc P A\A°; 

(b) A2 = IOCK A\ locp A Ç singA and A2 is a discrete subset of A. u 

It is easy to verify 

2 .3 . PROPOSITION. Let A be a connected subset of R 2 . 

(1) If X G {V,H, P} and A is locally X-subordinate, then A is globally 
X-subordinate', 

(2) If A is locally K-subordinate, then l o c p A = A*, m 

By applying Lemma 2.2 we get 

2 .4 . PROPOSITION. If A is a nonsingle connected locally K-subordinate 
subset of R2 , then the following conditions hold: 

(a) A° = 0; 
(b) A1 = \ocpA = A*; 
(c) A2 = singA. • 

From this Proposition and Lemma 2.2 we obviously get 

2 .5 . COROLLARY. If A is a connected locally K-subordinate subset of 
R2 , then the following statements hold: 

(1) singA is a discrete closed subset of A; 
(2) If A is closed in R2 , then singA is a discrete closed subset of R2; 
(3) If A is compact, then singA is finite, m 

The following example shows that if A is a disconnected and compact 
locally /T-subordinate subset of R2 , then the set singA can be dense in itself 
and of the continuum power. 

2.6. EXAMPLE. Consider the closed interval I = [0; 1] Ç R. Let C be the 
Cantor set regarded as a subset of I, that is, C consists of all x € I which 
have the following representations 

oo 

j=l 
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where = 0,2. It is known that C is dense in itself and compact boundary 
subset of I of the continuum power. Clearly, 

oo 
I\C = (J(an;6n) 

n=l 

where {(an; bn) : n G N} is a family of disjoint open intervals of R. For 
any n G N let us take a discrete countable subset Pn of (an; i>„) such that 
Onj^n € Pn- Consider the set 

oo 
( J P n U C . 
n=l 

We can regard that i C E 2 via the identification x (x,0). Clearly, A is a 
disconnected and compact globally /^-subordinate subset of R2 . Moreover, 
note that 

oo 
A0 = A* = I J Pn, A1 = singA = C and A2 = 0. • 

n=l 

Let X € {V,H,P,K}. Denote by lso(X) the class of all locally X-
subordinate subsets of R2 . It is easy to verify 

2.7. PR O P O S I T I O N . Let X G {V,H,P,K}. The class lso(X) has the fol-
lowing properties: 

(1) If A e lso(X) and B C A, then B G lso(X); 
(2) If A C R 2 and for each p G A there is a neighbourhood U of p in 

R2 such that A n U G lso(X), then A G lso(X); 
(3) If in addition X G {V, H, K}, then A,B G lso(X) involves A U B G 

lso(X). • 

The proposition above immediately implies 

2.8 . C O R O L L A R Y . Let X G {V, H, K}. If 3" is a locally finite family of 
sets from the class lso(X), then (J J € lso(X). • 

The following example shows that the union of a countable family of sets 
from the class lso(ii') as well as the closure of a set of this class need not 
belong to lso(.K'). Analogous examples we can construct for X G {V,H,P}. 

2.9. E X A M P L E . Let us set K n = K ( 2 - » ) 2 - » ) for n G N. Consider the 
families 3 i = {Kn : n G N} and = {&} U Clearly, 3i is a locally finite 
family of sets from l s o ( K ) , so ( J3 i G lso(-ft') by Corollary 2.8. On the other 
hand, Jo is riot such a family and (J i5o ^ lso(ii') because (J is not locally 
/L-subordinate at o. Finally, note that (J Jo is the closure of |J . • 



Principal-directed curves in the plane 65 

If A is a subset of R Xk R (A C R2), then by Sk(A) will be denoted 
the differential structure on A induced from R x j l . We say that A is a 
C°° subset of R Xfc R in case Sk(A) = C°°(A). Obviously, every vertical or 
horizontal line in R Xfc R is such a subset. Let us denote by sub°°(R Xfc R) 
the class of all C°° subsets of R Xfc R. We need the following lemmas. 

2.10. LEMMA, (see [2], Lemma 2.1). For every p G R2 the translation tp 

is a diffeomorphism of RXfcR, and so, the family sub°°(RXfcR) is invariant 
under any translation of R2 . • 

Let us set R2 = R 2 \ { o } where o = (0,0). 

2 . 1 1 . LEMMA (see [2], Corollary 1.4). Assume that a G Fk. Then a G Sk 

if and only if a |R2 € Sk(R2) and a |K € C°°(K). • 

By an easy verification we get 

2 . 1 2 . LEMMA. The following properties hold: 

(1) If A G sub°°(R Xfc R) and B C A, then B G sub°°(R xk R). 
(2) If A C R2 and for each p G A there is an open neighbourhood U of 

p in R2 such that AdU € sub°°(R xk R), then A G sub°°(R x* R). • 

2 . 1 3 . LEMMA. For any p G R 2 we have K P G s u b ° ° ( R xk R ) . 

P r o o f . By Lemma 2.10 and since Kp = K + p for p G R2 , it suffices to 
show that the central principal cross K is a C°° subset of R X fc R. Since K 
equipped with the structure <Sfc(K) is a differential subspace of R Xfc R, we 
conclude that the differential structure <Sfc(K) is generated by the restrictions 
y>|K for <p G Sk. From the definition of Sk it follows that for any <p G Sk we 
have tpoi G C°°(R) and ipoj G C°°(R) where i(z) = (x,0) and j(y) = (0,y) 
for x, y G R. It is seen that if ip' = <p o t and tp" = tp o j, then the function 
¡p : R2 -> R defined by 

¡p(x,y) = (p\x) + <p"(y) - <p(o) 

belongs to C°°(R2). Note that = v?|K, which means that the differential 
structure on K is generated by restrictions of smooth functions on R2 , and 
so, K is a C°° subset of R x k R. • 

2 . 1 4 . LEMMA. Let { P „ } be an infinite sequence of distinct points of R 2 

such that l impn = o and pn K for each n G N. If { i n } is an infinite 
sequence of real numbers such that lim tn = 0, then there is a function 
<p G such that y>|K = 0 and <p(pn) = in for each n G N. 

P r o o f . One can see that there is a discrete sequence {?7n} of open 
subsets of R2 such that pn G Un and Un H K = 0 for each n G N. Next, 
we can choose a sequence {<pn} of real smooth functions on R2 such that 
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0 < fnil) < 1 for g G R 2 , <Pn(Pn) = 1 and supp ipn C Un. Define the 
function <f : R2 -»• R by 

oo 
v(?) = ^'«¥>«(?)• 

n = l 

Clearly, <p is continuous such that y>|K = 0 and <p(pn) = tn for n G N. 
Moreover, p|R2 G C°°(R2), so (p e S2 by Lemma 2.11. • 

2.15. T H E O R E M . sub°°(R Xi R) = sub°°(R x 2 R ) = lso(Jir). 

P r o o f . Clearly, the inclusion lso(A') C sub00(Rx^K) follows from Lem-
mas 2.12 and 2.13. To prove the converse inclusion, suppose to the contrary 
that A G sub°°(R Xk R)\ho(K). This means that there is p G A such that 
A is not locally if-subordinate at p. By Lemma 2.10 we can assume that 
p = o. It follows that for every open neighbourhood U of o in R2 we have 
(AD J7)\K ^ 0. This implies that there is a sequence of distinct points 
of A such that lim pn = o and pn £ K for n G N. Let us set tn = Hpnll1̂ 2 f° r 

n G N. By Lemma 2.14 there is a function <p G «S2 C Sk such that (p(o) = 0 
and <p(pn) = \\pn\\l/\ 

We set <p' = ip\A and note that <p' G ¿>fc(A). Since A is a C°° subset of 
RXfcR, it follows that G C°°(A). Then there are an open neighbourhood U 
of o in R2 and a function ip € C°°(R2) such that if>\AMI = <p'\AnU. Clearly, 
V>(o) = cp(o) = 0 and since limpn = o, we have ip(pn) = <p(pn) = Ibnll1^2 for 
sufficiently large n. Hence we get 

to I M - 1 * ' » , 
llPnll 

which means that the function tjj is not diiferentiable at o, a contradiction. 
This completes the proof of our assertion. • 

A family S C lso(.ft') is called a C°° generator of lso(A') in case the 
following condition holds: 

If a G Tx and a\A G C°°(A) for each A G 27, then a\B G C°°(B) for all 
B G \so(K). 

It is seen that the families of all principal lines and of all principal crosses 
are C°° generators of lso(A'). Moreover, if S is a C°° generator of lso(A"), 
then so is the family 27(<B) = {A D U : A G S, U G 05} where <8 is an 
arbitrary topological base of R 2 . We obviously have 

2.16. L E M M A . If S is a C°° generator of lso(K), then 

Sk = { a G Tk : a|A G C°°(A) VA G S}. m 

It is easy to verify 
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2 . 1 7 . PROPOSITION. Let M be a differential space. Let S be a C°° gen-
erator of \so{K). A map (continuous map) / : R2 —> M is smooth from 
R Xi R (R X2 R) to M if and only if f\A : A —> M is smooth for each 
A € Z. m 

We say that a curve c : I —• R2 is locally C°° subordinate to R x* R 
if for each s G J there is an open neighbourhood U of s in I such that 
c(U) £ sub°°(R xfc R). From Theorem 2.15 we obviously get 

2.18. COROLLARY. A curve c in R2 is locally K-subordinate if and only 
if it is locally C°° subordinate to Ex^R. • 

Clearly, we have 

2 . 1 9 . LEMMA. Let c be a smooth curve in R 2 . If c is locally C°° subor-
dinate to R Xfc R, then it is smooth in R x k R. • 

2 . 2 0 . THEOREM. If c is a smooth curve in R 2 , then the following condi-
tions are equivalent: 

(a) c is smooth in R x ̂  R; 
(b) c is locally K-subordinate; 
(c) c is locally C°° subordinate to R x t R. 

P r o o f . From Corollary 2.18 and Lemma 2.19 it follows that the impli-
cations (b)=^(c) and (c)=£-(a) are satisfied. Thus, it remains to prove the 
implication (a)=^(b). Suppose to the contrary that there exists a smooth 
curve c : RxjfcR which is not locally i^-subordinate. This means that 
there is a parameter s £ I such that for each e > 0 we have 

c([s - £; s + £] n / ) n (R2\Kp) ^ 0 

where p = c(s). By Lemma 2.10 and since the parameterization of c may be 
changed, one can assume that s = 0 and p = o. Then there is a sequence {tn} 
of parameters of c converging to 0 such that the sequence (c(fn)} consists 
of distinct points of R 2 \K and limc(in) = o. By Lemma 2.14 there is a 
function <p € Sk such that <p(c(tn)) = (-1)™ • tn and <^(c(0)) = 0. Hence 
we get (<£>(c(fn)) — <p(c(0)))/tn = (—l)n, which means that c is not smooth 
curve in R Xjt R at 0, a contradiction. • 

Denote by cur(R x k R) the class of all smooth curves in R x fe R. In turn, 
by cur(ii') (cur°°(A')) we denote the class of all locally ^T-subordinate curves 
(smooth curves) in R2. Clearly, Theorem 2.20 implies 

2 . 2 1 . COROLLARY . cur(R Xi R) = cur(R x2 R) = CUT°°(K). • 

By a principal K -graph in R2 we shall mean a compact connected locally 
iiT-subordinate subset of R2. The simplest example of such a graph is given 
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by a principal closed segment, i.e. a closed segment lying in a principal 
line. One can see that every principal A%graph is a union of a finite family 
of principal closed segments. From Theorem 2.20 it follows that if c is a 
smooth curve in R x ^ R , then for any a, 6 € dom(c) such that a < b the 
image c([a; b]) is a principal if-graph. 

The following example shows that a P-directed curve in R2 need not be 
locally A'-subordinate, i.e. smooth in R x ^ R . 

2.22. EXAMPLE. Clearly, one can construct functions a' ,/? ' € C°°([0;1]) 
satisfying the following conditions: 

a'(t) > 0 and (3'(t) = 0 if , 1 „ < i < 7- where k is odd; 
k + 1 k 

a'(t) = 0 and (3'(t) > 0 if , ^ „ < t < 7- where k is even; 
k -f 1 k 

a'(t) = /?'(*) = 0 i f t = j (k <E N) or t = 0. 

Let us set 
s s 

a(s) = f a'(t) dt and p(s) = f ¡5'{t) dt for 0 < 5 < 1 
0 0 

and note that the curve c = (a, (3) : [0; 1] —>• R2 is P-directed. It is seen that 
we have the following decomposition: 

00 

im c = [ J c(Ik) U {0} where Ik = 
k= 1 

Clearly, c(ifc) is a vertical (horizontal) closed segment in R2 provided that k 
is even (odd). One can see that this decomposition is unique in the following 
sense. If S is an arbitrary nonsingle segment in R2 such that S C im c, then 
there is a unique k € N such that S C c(ifc). In addition, imc = c([0; 1]) is 
not a principal AT-graph, so c is not smooth in R Xjt R. • 

It is easy to verify 

2 . 2 3 . LEMMA. For any principal K-graph G in R 2 there is a smooth 
curve c : [0; 1] —> R Xfc R such that c([0; 1]) = G. m 

Denote by gr(A') the class of all principal A-graphs in R2 . Clearly, gr(Tif) 
is a C°° generator of lso(A'). If / is a smooth map from R R to R x* R 
where k,£ 6 {1,2}, then by Lemma 2.23 and Theorem 2.20 we conclude 
that A e g r ( K ) involves f(A) € gr(A'). Denote by Sk,e the family of all 
smooth maps from R X* R to R Xe R. Moreover, we adopt that T 1 ' 1 = T 1 , 2 

(J72'2) denotes the family of all maps (continuous maps) of R2 . If c is a 

1 1 
Jfe + l' k ' 
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curve in R2 and / is a map of R2, we set /#(c) = foe. It is easy to ver-
ify 

2 . 2 4 . PROPOSITION. Let k,l e { 1 , 2 } , (k,t) £ ( 2 , 1 ) , and f G Jrk'e. Then 
the following conditions are equivalent: 

(b) / # (cur(R Xfc R)) Ç cur(R xe R); 
(c) / # ( cu r~ ( JO) Ç CUT°°(K); 

(d) If A G gr(ii'), then f\A : A —• f(A) is a smooth map of C°° subsets 
of R Xjt R and Rx^R, respectively, m 

Clearly, this proposition implies equalities «S1'2 = S1 '1 and S2'2 = «S1'1 H 
T 2 , 2 . One can ask whether there is a corresponding characterization of 
smooth maps from R X2 R to R Xi R. This problem has a solution for 
all cases k,£ € {1,2} (Proposition 2.25). Let Ck,t denote the family of all 
continuous maps from R x ^ l t o R x ^ R with respect to the corresponding 
Sikorski topologies. It is easy to verify 

2 . 2 5 . PROPOSITION. Let k,£ e {1,2} and f e Then the following 
conditions are equivalent-. 

(a) / G 
(b) / # (cur(R Xjt R)) C cur(R xt R); 
(c) /#(cur<»(#)) Ç cur 
(d) If A € gr(K), then f\A : A —>• f(A) is a smooth map of C°° subsets 

o / R X j ^ R and R x 1R, respectively, m 

By the definitions C2'2 = T2'2, 
so in the case when (k,£) = (2,2) Propo-

sitions 2.24 and 2.25 coincide. However, for the remaining cases, the fol-
lowing question arises: what are functions belonging to Ck'e. Since we do 
not know any full answer to this question, Proposition 2.25 is less use-
ful than Proposition 2.24. One can observe that a reason of such a sit-
uation is also justified by the fact that there is still open the question: 
what is the kind of the Sikorski topology of R Xi R, called shortly the 
<S1-topology, i.e. the weakest one on R2 for which all functions from «S1 

are continuous (see [2], Question 5.6). However, it is easily seen that if <f> 
and ip are functions from «S1, then the function (<f>, tp) : R2 —»• R2 defined 
by the assignment ( x , y ) H-> (<f>(x),ip(y)) belongs to C1'2 where <f> and ip 
can be taken from «S1\«S2 (see [2], Example 1.5). Moreover, since the «S1-
topology is stronger than the Euclidean one, it follows that C2'2 Ç C1,2 and 
C2'1 C C2'2. But it seems to be much more complicated to state anything about C1'1. 



70 B. P r z y b y l s k i 

References 

[1] A. Kowalczyk, J. K u b a r s k i , A local property of the subspaces of Euclidean differ-
ential spaces, Demonstratio Math., 11 (1978), 875-885. 

[2] B. P r z y b y l s k i , Product final differential structures on the plane, Demonstratio 
Math., 24 (1991), 573-599. 

[3] R. S i k o r s k i , Abstract covariant derivative, Colloq. Math., 18 (1967), 251-272. 
[4] P. W a l c z a k , A theorem on diffeomorphisms in the category of differential spaces, 

Bull. Acad. Sci., Ser. Sci. Math., Astronom., Phys., 21 (1973), 325-329. 

INSTITUTE OF MATHEMATICS 
UNIVERSITY OF L 6 D 2 
ul. S. Banacha 22 
90-238 L6D2, POLAND 

Received December 17, 1992. 


