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E N D O M O R P H I S M CONGRUENCES 

Introduction 
Considered in this paper the notion of endomorphism congruence has a 

close connection with a notion of result. To say most generally, results are 
fractions such that their numerators are elements of a certain linear space 
while their denominators are injective endomorphisms of that space. Gen-
erally, division by an endomorphism is lead out of range of elements. In 
connection with it we obtain the regular and singular results. Using the en-
domorphism congruence properties we can decide about regularity of certain 
results on the basis of the others confirming, if they are regular or singular. 

The adequate examples in the Bittner operational calculus are given in 
this article. 

1. Results and operators [1], [2] 
Let L(X, X) be the space of endomorphisms of a linear space X (over a 

field r). Moreover, let 7r(X) be a multiplicative and commutative semigroup 
of injective endomorphisms of L(X,X). 

When X and n(X) are given, we can introduce ordered pairs 

£ := [x,A], xeX, A e r(X) 

and the quality relation 

([*, A] = [y, B]) = Ay),x,y£X,A,Be x(X) 

which is of equivalence type. 
By this relation the entire set of considered pairs is divided into equiv-

alence classes. These classes are called results. An arbitrary representative 
£ = [x, A] of such a class is also called a result. For such representative the 
fraction symbol £ = 4- is applied. 
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If in the set of results E(X, ir(X)) (denoted briefly by S (X) ) we intro-
duce the operations 

x V _ Bx + Ay f x \ 7X 
A + B'= AB ' 1\~A) "" T ' 

where i , j f G l , 7 6 i , ^(-^Q) then S(X) is a linear space over the 
field r. The elements of X can be identified with the results, since the map 

x h* x e X, Ae n(X) 

is an isomorphism. 
The elements x £ X are called regular results and the elements £ £ 

S(X) \ X are called singular results (cf [6]). 
In S(X) we can also define the operation 

where x € X, A e t t ( X ) , B 6 L(X,X), AB = BA. 
With the given endomorphism R 6 L(X,X) commutative with the 

operations A € 7r(X), the linear operation given by the formula 
x _ Rx 

^B := AB 
is called an operator on the results space S(X) and denoted as fi = j . The 
operator fio = ^ is identified with the endomorphism R. 

The operator sum, the product of an operator by an element of T and 
the superposition of operators are operators. The division by an operator, 
the numerator of which is an injection, defined as the product by the inverse 
of the operator, is also an operator. 

2. Endomorphism congruences 
Let End(X) be a commutative algebra of endomorphisms of L(X,X) 

(with the usual multiplication of endomorphisms). 
It is said that two endomorphisms A,Be End(X) are congruent by the 

modulus M 6 n(X) when there exists an endomorphism K £ End(X) such 
that 

(A - B)x = KMx 
for all x 6 X. Then we denote 

A = B (modM). 

This relation is a congruence. If A = B (mod M), then the elements 
(A - B)x 

M 
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are the regular results for all x € X, i.e. the operator is an endomor-
phism of X . 

The set 
JM •= {KM : K € End(X)}, M £ jr(X) 

is an ideal of the ring End(X). 
When A,B £ End(X), we can write 

A = B (mod JM)I 

if A - B G JM- Therefore 

A = B (mod M ) <-» A = B (mod J M ) . 

EXAMPLE 1. Let X be a certain real linear space. Moreover, let End(X) 
be an algebra of endomorphisms 

Ax := a • x, x € X, 

where a is a given integer. The modulus M 6 7r(X) is defined by the formula 

Mx := m • x, x € X, 

where m is a given natural number. 
Then 

A = B (mod M ) 

if and only if 
a = b (mod m) 

in the classical congruence of integers sense. 

EXAMPLE 2. Let X := Ca(Q,B>), where Q c R1. The set End(X) is 
defined as the algebra of endomorphisms 

Ax := {A(i)x(i)>, x = (x(i)} G X, 

where (A(i)} 6 X is a given polynomial. 
The modulus M G 7r(X) is defined as the endomorphism 

Mx := {M(t)x(t)}, x = {*(*)} € X , 

where the given polynomial {M(t)} € X satisfies the condition M(t) ^ 0 
for all t G Q. 

Then 
A = B (mod M ) 

if and only if {M(t)} is a divisor of the polynomial - B(t)}. 

Obviously the same modulus congruences can be added, substracted and 
multiplied by sides. It can be generalized by induction for any finite number 
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of congruences. In particular, the both sides of a congruence can be multi-
plied by the same endomorphism and they can be also raised to the same 
power with a natural exponent. 

Therefore, if A,-, U 6 End(X), i = 0 , 1 , . . . , n and 
W(U) := Ao + AiU + .-. + AnU11, 

then W(U) € End(X) and 
(1) A = B (mod M) implies W(A) = W(B) (modM). 

3. Operational calculus 
In accordance with notation used e.g. in [2], the Bittner operational 

calculus is the system 
CO(LQ,Ll,S,Tq,sq,q,Q), 

where L° and L1 are linear spaces over a field J". 
The linear operation S : L1 —• L° (denoted as 5 € L(Ll,L0)), called the 

(abstract) derivative, is a surjection. Moreover, Q is a nonempty arbitrary 
set of indices q for the operations Tq € L(L°, X1) such that STqf = / , 
/ G called integrals, and for the operations sq 6 L(Ll, Ll) such that 
sqx = x — TqSx, x € L1, called limit conditions. The kernel of 5, i.e. the 
set Ker S := {c € L1 : Sc = 0}, is called the space of constants for the 
derivative S. 

Assume that Ll C L°. Then 
Ker S CL1 CL° 

and the integrals Tq,q £ Q are endomorphisms of L°. The iterations of these 
operations can be also formed. 

4. Examples of congruences in the operational calculus 
A. It is not difficult to check that any integral Tq, q £ Q is an injection of 

L°. None of two endomorphisms A, B, A ^ B of L° and KerS are congruent 
by the modulus Tq, because 

r_(A-B)c 

is a singular result for all c £ Ker S \ {0}. In reality, if d := {A — B)c,where 
c £ Ker S \ {0} , then d € Ker S \ {0} and Tq( = d. Then with f 6 L° it 
would be sqTq£ = sqd = d and hence d = 0, what is impossible (cf [2]). 

B. If R is an endomorphism of L° and L1, commutative with the deriva-
tive S and the limit condition sq, then R is commutative with the integral Tq. 

Moreover, if an abstract differential equation 
(2) Sx = Rx, x e L1 
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with the limit condition 
sqx = 0 

has only zero solution, then R is called the g-logarithm. 
If R is a g-logarithm, then there exists a semigroup n(L°) such that 

7 — TqR G 7r(i°), where 7 := idjja and the result 

is well defined. 
If the result £ is regular, then it is called an exponential element and 

denoted by the symbol eRt"c (see [2], cf [3, 6]). 
The exponential element x = eRt" c is a solution of the equation (2) with 

the limit condition sqx = c. Moreover, for every n £ N we have 

x = c + TqRc + . . . + T™Rnc + T"+1Rn+1x. 

The expression 
wn = c + TqRc + . . . + T?Rnc 

is called the n-th Taylor polynomial for the exponential element x = eRt*c 
(in the point q € Q). 

Let 
W(U) :=I+U + . . . + Un, 

where n £ N, I :=idLo, U € End(L°). 

Then 
wn = W(TqR)c. 

Since 
I = TqR ( m o d ( 7 -TqR)), 

so, on the basis of (1), the result 
_ Wn 

T]~ I -TqR 

is regular if and only if f is the regular result. 
C. Assume that the abstract differential equation 

S2x + Sx + x = 0, x e L2 := {x e L1 : Sz e L1} 

with the limit conditions 

SqX - 0, SqSx = 0 

has only zero solution. 
Then there exists a semigroup w(L°) such that I + Tq + T2 € tt(L°). By 

induction it can be proved that the congruence 
(7 + r , ) 2 n + 1 = - T g + 2 (mod(7 + Tq + T2)) 

holds for all non-negative integer n. 
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Due to the above mentioned the solution of the abstract integral equation 

(I + Tg + Tl)d = ( I + T q ) 2 n + 1 f , £ € 5(L°), 

where / 6 L° is a given element and n is an arbitrary but fixed non-negative 
integer, is a regular result if and only if the solution of the equation 

(/ + Tq + T2
q)rj = —Tg+2f, T) e S(L°) 

is a regular result. 
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