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ENDOMORPHISM CONGRUENCES

Introduction

Considered in this paper the notion of endomorphism congruence has a
close connection with a notion of result. To say most generally, results are
fractions such that their numerators are elements of a certain linear space
while their denominators are injective endomorphisms of that space. Gen-
erally, division by an endomorphism is lead out of range of elements. In
connection with it we obtain the regular and singular results. Using the en-
domorphism congruence properties we can decide about regularity of certain
results on the basis of the others confirming, if they are regular or singular.

The adequate examples in the Bittner operational calculus are given in
this article.

1. Results and operators [1}, [2]

Let L(X, X) be the space of endomorphisms of a linear space X (over a
field I"). Moreover, let 7(X) be a multiplicative and commutative semigroup
of injective endomorphisms of L(X, X).

When X and n(X) are given, we can introduce ordered pairs

£:=[z,A], z€ X, Aen(X)
and the quality relation
(=, 4] = [y, B)) €5 (Bz = 4y), =,y € X, 4, B € n(X)

which is of equivalence type.

By this relation the entire set of considered pairs is divided into equiv-
alence classes. These classes are called results. An arbitrary representative
£ = [z, A] of such a class is also called a result. For such representative the
fraction symbol { = % is applied.



50 H. Wysocki

If in the set of results =(X,n(X)) (denoted briefly by Z(X)) we intro-
duce the operations
r y Bzx+Ay T\ "%
A" B AB (Z) A
where z,y € X,y € I', A, B € n(X), then Z(X) is a linear space over the
field I'. The elements of X can be identified with the results, since the map

z€X, Aen(X)

z
Z — 7,
is an isomorphism.

The elements z € X are called regular results and the elements £ €
E(X)\ X are called singular results (cf [6]).

In Z(X) we can also define the operation

T Bz
B(Z) =A

where z € X, A € n(X), B € L(X,X), AB = BA.
With the given endomorphism R € L(X,X) commutative with the
operations A € 7(X), the linear operation given by the formula
z Rz
B~ 4B
is called an operator on the results space (X ) and denoted as p = %. The
operator jg = % is identified with the endomorphism R.

The operator sum, the product of an operator by an element of I and
the superposition of operators are operators. The division by an operator,
the numerator of which is an injection, defined as the product by the inverse
of the operator, is also an operator.

2. Endomorphism congruences

Let End(X) be a commutative algebra of endomorphisms of L(X,X)
(with the usual multiplication of endomorphisms).

It is said that two endomorphisms A, B € Fnd(X) are congruent by the
modulus M € w(X) when there exists an endomorphism K € End(X) such
that

(A-B)z = KMz
for all z € X. Then we denote
A = B (mod M).
This relation is a congruence. If A = B (mod M), then the elements
(A-B)z
M
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are the regular results for all ¢ € X, i.e. the operator A—;;IQ is an endomor-
phism of X.
The set

Jvm = {KM : K € End(X)}, M € n(X)
is an ideal of the ring End(X).
When A, B € End(X), we can write
A = B (mod Ju),
if A — B € Js. Therefore
A= B (mod M) & A= B (modJy).

ExAMPLE 1. Let X be a certain real linear space. Moreover, let End(X)
be an algebra of endomorphisms
Az :=a- 2z, z€X,
where a is a given integer. The modulus M € n(X) is defined by the formula
Mz:=m.z, =z€X,
where m is a given natural number.
Then
A = B (mod M)
if and only if
a = b (modm)
in the classical congruence of integers sense.
EXAMPLE 2. Let X := C°(Q, R!), where @ C R!. The set End(X) is
defined as the algebra of endomorphisms
Az := {A(t)z(1)}, = ={=z(t)}e€ X,
where {A(%)} € X is a given polynomial.
The modulus M € 7(X) is defined as the endomorphism
Mz = {(M($)z(t)}, == {z(t)} € X,
where the given polynomial {M(t)} € X satisfies the condition M(t) # 0
forall t € Q.
Then
A= B (mod M)
if and only if {M(t)} is a divisor of the polynomial {A(t) — B(t)}.
Obviously the same modulus congruences can be added, substracted and
multiplied by sides. It can be generalized by induction for any finite number
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of congruences. In particular, the both sides of a congruence can be multi-
plied by the same endomorphism and they can be also raised to the same
power with a natural exponent.

Therefore, if A;,U € End(X),:=0,1,...,n and
W({U):=Ao+ AAU+...+A,U",
then W(U) € End(X) and
(1) A =B (mod M) implies W(A)= W(B) (mod M).

3. Operational calculus

In accordance with notation used e.g. in [2], the Bittner operational
calculus is the system

CO(LO, Ll’ S’ Tq, sq’ q, Q),

where L% and L! are linear spaces over a field I

The linear operation § : L! — L° (denoted as § € L(L1, L°)), called the
(abstract) derivative, is a surjection. Moreover, @ is a nonempty arbitrary
set of indices ¢ for the operations T, € L(L° L') such that ST,f = f,
f € LY called integrals, and for the operations s, € L(L!, L) such that
$qz = ¢ — TySz, z € L1, called limit conditions. The kernel of S, i.e. the
set KerS := {c € L' : Sc = 0}, is called the space of constants for the

derivative S.
Assume that L! ¢ LO. Then

KerScIlclI®

and the integrals Ty, ¢ € @ are endomorphisms of L. The iterations of these
operations can be also formed.

4. Examples of congruences in the operational calculus

A. It is not difficult to check that any integral Ty, ¢ € @ is an injection of
L°. None of two endomorphisms A, B, A # B of L° and KerS are congruent
by the modulus T, because
£ = (A- B)e

T,

is a singular result for all ¢ € Ker S\ {0}. In reality, if d := (A — B)c,where
¢ € Ker S\ {0}, then d € Ker S\ {0} and T,¢ = d. Then with £ € L° it
would be 5,T,¢ = sqd = d and hence d = 0, what is impossible (cf [2]).

B. If R is an endomorphism of L? and L!, commutative with the deriva-
tive S and the limit condition s,, then R is commutative with the integral T,.

Moreover, if an abstract differential equation

(2) Sx =Rz, =ze€l!
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with the limit condition
sz =0

has only zero solution, then R is called the ¢g-logarithm.

If R is a g-logarithm, then there exists a semigroup =(L°) such that
I —T,R € n(L%), where I :=idy0 and the result
£= }—_—ch—é, c € Ker S
is well defined.

If the result £ is regular, then it is called an exponential element and
denoted by the symbol efec (see [2], cf [3, 6]).

The exponential element = = eftec is a solution of the equation (2) with
the limit condition s, = c. Moreover, for every n € N we have

g=c+TyRe+...+ TR c+ Tq"HR""'lx.
The expression
wp=c+TyRe+...+T;R"
is called the n-th Taylor polynomial for the exponential element z = e

(in the point ¢ € Q).
Let

Rt

WU):=I+U+...+U",
where n € N, I :=idpo, U € End(L°).
Then
wy, = W(T,R)c.
Since
I = T,R (mod (I — TyR)),
so, on the basis of (1), the result
wn
I-T,R
is regular if and only if £ is the regular result.
C. Assume that the abstract differential equation
S22+ Sz+2=0, zel’:={zecl':8z¢cl'}

with the limit conditions

17:

sz =0, 5,52=0

has only zero solution.
Then there exists a semigroup 7(L°) such that I+ T, + T? € =(L°). By
induction it can be proved that the congruence

(I+T,)*" = —~T;+? (mod (I + T, + T?))

holds for all non-negative integer n.
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Due to the above mentioned the solution of the abstract integral equation
I+ T, +TE=(T+T)"f, e (LY,

where f € L9 is a given element and n is an arbitrary but fixed non-negative
integer, is a regular result if and only if the solution of the equation

I+ T, +THn=-T;*?f, ne=(1%

is a regular result.
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