

Tsetska Gr. Rashkova

**VARIETIES OF ALGEBRAS HAVING
A DISTRIBUTIVE LATTICE OF SUBVARIETIES**

1. Introduction and preliminaries

The question of describing in term of identities the varieties having a distributive lattice of subvarieties was raised by L. Bokut in 1976 in [5, problem 19] and in [3] too. Since the survey [2] of V.A. Artamonov in 1978 many results concerning the topic have been obtained [1, 11, 7, 9, 8, 14, 12, 13].

In the paper we consider the absolutely free algebra $F = K\{X\}$ of infinite rank on a countable set X of free generators x_1, x_2, \dots over a fixed field K of characteristic zero. F_m is the subalgebra of rank m generated by x_1, x_2, \dots, x_m . We denote by S_n and GL_m the symmetric group and the general linear group, acting on the set of symbols $\{1, 2, \dots, n\}$ and on a m -dimensional vector space, respectively.

Let I be a T -ideal in F and \mathfrak{M} a variety corresponding to I . We denote F/I by $F\{\mathfrak{M}\}$ and $F_m/F_m \cap I$ by $F_m(\mathfrak{M})$. The space $P_n(\mathfrak{M})$ of all multilinear polynomials of degree n from $F_n(\mathfrak{M})$ has a structure of a left S_n -module. $F_m(\mathfrak{M})$ is a left GL_m -module too.

The irreducible S_n - and GL_m -modules are described by Young diagrams. For a partition $\lambda = (\lambda_1, \dots, \lambda_r)$ of n , $\lambda_1 \geq \dots \geq \lambda_r \geq 0$, $\lambda_1 + \dots + \lambda_r = n$ we denote by $M(\lambda)$ and $N_m(\lambda)$ the S_n - and GL_m -modules corresponding to λ . One can look into [4, 15, 6, 10] for details on the representation theory of the symmetric and general linear groups.

The subvarieties of \mathfrak{M} form a lattice $\Lambda(\mathfrak{M})$ with respect to the intersection and the union of subvarieties. The question of distributivity has been treated by consideration of $P_n(\mathfrak{M})$. Because of [2] $\Lambda(\mathfrak{M})$ is distributive iff $P_n(\mathfrak{M})$ for all n is a sum of pairwise non-isomorphic irreducible S_n -modules $M(\lambda)$.

It is known [6] that the homogeneous component $F_m^{(n)}(\mathfrak{M})$ of $F_m(\mathfrak{M})$ and $P_n(\mathfrak{M})$ have the same module structure. If $P_n(\mathfrak{M}) = \sum_{\lambda} k(\lambda)M(\lambda)$, then $F_m^{(n)}(\mathfrak{M}) = \sum_{\lambda} k(\lambda)N_m(\lambda)$. Thus for convenience the investigations in the paper are on the GL_m -structure of $F_m^{(n)}$. For $n = 2, 3$ we have:

$$\begin{aligned} F_m^{(2)} &= N_m(2) + N_m(1, 1), \\ F_m^{(3)} &= 2N_m(3) + 4N_m(2, 1) + 2N_m(1^3). \end{aligned}$$

Generators of the modules $N_m(3)$ are x_1^3 and $x_1x_2^2$; the modules with diagrams [2,1] are generated by $f_1 = x_1x_2x_1 - x_2x_1x_1$, $f_2 = x_1(x_2x_1) - x_2x_1^2$, $f_3 = x_1^2x_2 - x_2x_1x_1$ and $f_4 = x_1(x_1x_2) - x_2x_1^2$; generators of $N_m(1^3)$ are $S_{21}(x_1, x_2, x_3) = \sum_{\sigma \in S_3} (-1)^{\sigma} x_{\sigma(1)}x_{\sigma(2)}x_{\sigma(3)}$ and $S_{12}(x_1, x_2, x_3) = \sum_{\sigma \in S_3} (-1)^{\sigma} x_{\sigma(1)}(x_{\sigma(2)}x_{\sigma(3)})$, where $(-1)^{\sigma}$ means the sign of the permutation σ .

So identities are needed, which “glue” the isomorphic modules, so that the sum in $F_m^{(3)}(\mathfrak{M})$ will be of non-isomorphic ones only.

For the modules $N_m(3)$ such an identity is

$$(1) \quad \alpha_1x^3 + \beta_1xx^2 = 0, \quad \text{for } (\alpha_1, \beta_1) \neq (0, 0), \alpha_1, \beta_1 \in K.$$

It means that

$$(1^a) \quad xx^2 = 0 \quad \text{if } \alpha_1 = 0, \text{ or}$$

$$(1^b) \quad x^3 - kxx^2 = 0, \quad \text{where } k = \beta_1/\alpha_1 \text{ if } \alpha_1 \neq 0.$$

For $N_m(2, 1)$ the following system has to be fulfilled:

$$\begin{aligned} (2) \quad \gamma_{11}f_1 + \gamma_{12}f_2 + \gamma_{13}f_3 + \gamma_{14}f_4 &= 0 \\ \gamma_{21}f_1 + \gamma_{22}f_2 + \gamma_{23}f_3 + \gamma_{24}f_4 &= 0 \\ \gamma_{31}f_1 + \gamma_{32}f_2 + \gamma_{33}f_3 + \gamma_{34}f_4 &= 0 \end{aligned}$$

and rank $A = 3$, where

$$A = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & \gamma_{24} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & \gamma_{34} \end{bmatrix}, \quad \gamma_{ij} \in K.$$

It means that the following identities hold:

$$(2^a) \quad f_i = 0 \quad \text{for } i = 1, \dots, 4, \text{ or}$$

$$(2^b) \quad f_i - k_i f_4 = 0 \quad \text{for } i = 1, 2, 3 \text{ and for } k_1, k_2, k_3 \in K, \text{ if } f_4 = 0 \\ \text{is not an identity.}$$

For the modules $N_m(1^3)$ the needed identity is

$$(3) \quad \alpha_2 S_{21}(x_1, x_2, x_3) + \beta_2 S_{12}(x_1, x_2, x_3) = 0,$$

where $(\alpha, \beta_2) \neq (0, 0)$, $\alpha_2, \beta_2 \in K$. It means that

(3^a) $S_{12}(x_1, x_2, x_3) = 0$ if $\alpha_2 = 0$, or
 (3^b) $S_{21}(x_1, x_2, x_3) - pS_{12}(x_1, x_2, x_3) = 0$, where $p = \beta_2/\alpha_2$ if $\alpha_2 \neq 0$.

In the paper the following varieties are examined:

$\mathfrak{M}_1 = [*, k_1, k_2, k_3, *]$ with identities (1^a), (2^b) and (3^a),
 $\mathfrak{M}_2 = [*, k_1, k_2, k_3, p]$ with identities (1^a), (2^b) and (3^b),
 $\mathfrak{M}_3 = [k, k_1, k_2, k_3, *]$ with identities (1^b), (2^b) and (3^a),
 $\mathfrak{M}_4 = [k, *, *, *, *]$ with identities (1^b), (2^a) and (3^a),
 $\mathfrak{M}_5 = [k, *, *, *, p]$ with identities (1^b), (2^a) and (3^b),
 \mathfrak{M}_6 — a variety, for which $P_3(\mathfrak{M}_6) = M(3)$.

For a multihomogeneous polynomial $f(x_1, \dots, x_r)$ of degree λ_i in x_i we denote by

$$\text{lin}(f) = f(x_1 \text{I} y_{11}, \dots, y_{1\lambda_1}; \dots; x_r \text{I} y_{r1}, \dots, y_{r\lambda_r})$$

the linearization of $f(x_1, \dots, x_m)$ which equals the multilinear in y_{ij} for $i = 1, \dots, r$ component of

$$f(x_1 + y_{11} + \dots + y_{1\lambda_1}, \dots, x_r + y_{r1} + \dots + y_{r\lambda_r}).$$

We point that $f = 0$ and $\text{lin}(f) = 0$ are equivalent [6].

PROPOSITION 1.1. *Let M be an S_n -submodule of P_n and let Q be the set of the multilinear consequences of degree $n + 1$ of the polynomial identities of M . Then Q is an S_{n+1} -module of P_{n+1} which is a homomorphic image of the S_{n+1} -module*

$$((M^\dagger S_{n-1}) \otimes_K (M(2) + M(1^2)))^\dagger S_{n+1} + 2(M \otimes_K M(1))^\dagger S_{n+1}, \text{ i.e.}$$

a) *In the first summand S_{n-1} acts on the set $\{1, \dots, n-1\}$ fixing n . S_2 acts on $\{n, n+1\}$, the tensor product is an $S_{n-1} \times S_2$ -module, where the direct product $S_{n-1} \times S_2$ is canonically embedded in S_{n+1} .*

b) *The consequences $f(x_1, \dots, x_n) \cdot x_{n+1}$ for $f \in M$ and $x_{n+1} \cdot f(x_1, \dots, x_n)$ generate two factor-modules $M \otimes_K M(1)^\dagger S_{n+1}$, where $S_n \times S_1$ is canonically embedded in S_{n+1} .*

COROLLARY 1.2. *Let λ be a partition of n and let $M(\lambda) \subset P_n$. Then the S_{n+1} -module $M'(\lambda)$ of all multilinear consequences of $M(\lambda)$ in P_{n+1} equals $\sum \alpha_\mu M(\mu)$, where the non-negative integers λ_μ are bounded by the number of diagrams $[\mu]$ obtained by the following devices:*

a) *We remove a box from $[\lambda]$ and obtain a diagram $[\nu]$. Then we add two new boxes to $[\nu]$ and produce a diagram $[\mu]$ such that these two new boxes do not belong to one and the same column of $[\mu]$ if we consider the module*

$M(2)$ (or do not belong to one and the same row of $[\mu]$ if we consider the module $M(1^2)$),

b) We add a new box to $[\lambda]$ and obtain $[\mu]$.

2. Consequences of degree 4 as linear combinations of the generators of the modules $N_m(\lambda)$

The symbols x, y, z, t will be used for the free generators of $K\{X\}$. The needed identities of degree 3 are written as:

$$(2.1) \quad \begin{aligned} d_1 &= x^3 - kxx^2 = 0 \\ d_1 &= xyx - yxx - k_1(x(xy) - yx^2) = 0 \\ d_3 &= x(yx) - yx^2 - k_2(x(xy) - yx^2) = 0 \\ d_4 &= x^2y - yxx - k_3(x(xy) - yx^2) = 0 \\ d_5 &= S_{21}(x, y, z) - pS_{12}(x, y, z) = 0, \quad k, k_1, k_2, k_3, p \in K. \end{aligned}$$

$A : N_1(4)$. Due to 1.2 we can have the following diagrams:

$$\begin{aligned} (A1) \quad & \square \square \square \rightarrow \square \square \square \otimes \square \\ (A2) \quad & \square \square \square \rightarrow \square \square \quad \otimes \square \square \\ (A3) \quad & \square \square \quad \rightarrow \square \square \quad \otimes \square \square \end{aligned}$$

For (A 1) we have $d_1x = 0$ and $xd_1 = 0$. For (A 2) we linearize partially d_1 and substitute $u = x^2$ i.e. $d_1(xIx^2) = 0$. For (A 3) we consider $d_1(y = x^2)$ for $i = 2, 3, 4$. So we get the system:

$$(2.2) \quad \begin{aligned} x^4 - kxx^2x &= 0 \\ xx^3 - kx(xx^2) &= 0 \\ x^4 + xx^2x + x^2x^2 - k(x^2x^2 + xx^3 + x(xx^2)) &= 0 \\ xx^2x - x^4 - k_1(x(xx^2) - x^2x^2) &= 0 \\ xx^3 - x^2x^2 - k_2(x(xx^2) - x^2x^2) &= 0 \\ x^2x^2 - x^4 - k_3(x(xx^2) - x^2x^2) &= 0. \end{aligned}$$

$B : N_4(1^4)$. The generators of the modules now are:

$$\begin{aligned} f_1 &= S_{211}(x, y, z, t), \quad f_2 = S_{121}(x, y, z, t), \quad f_3 = S_{22}(x, y, z, t), \\ f_4 &= S_{1(21)}(x, y, z, t), \quad f_5 = S_{1(12)}(x, y, z, t). \end{aligned}$$

The indices show the way of brackets in the standard polynomials, for example $S_{121} = \sum_{\sigma \in S_4} (-1)^\sigma x_{\sigma(1)}(x_{\sigma(2)}x_{\sigma(3)})x_{\sigma(4)}$.

According to Corollary 1.2 we have the following diagrams:

$$(B1) \quad \square \square \quad \rightarrow \square \square \otimes \square$$

$$(B2) \quad \begin{array}{c} \square \\ \square \\ \square \end{array} \rightarrow \begin{array}{c} \square \\ \square \end{array} \otimes \begin{array}{c} \square \\ \square \end{array}$$

$$(B3) \quad \begin{array}{c} \square \\ \square \\ \square \end{array} \rightarrow \begin{array}{c} \square \\ \square \end{array} \otimes \begin{array}{c} \square \\ \square \end{array}$$

For (B 1) right and left multiplication of d_5 by t give

$$(b1) \quad f_1 - pf_2 = 0,$$

$$(b2) \quad f_4 - pf_5 = 0.$$

For (B 2) we consider $d_5(z = [z, t])$, in which three times a circling permutation of x, y, z, t is made alternating the signs. Then we transpose y and z in $d_5(z = [z, t])$ and again a circling of x, y, z, t is used. The sum of the six identities thus received leads to

$$(b3) \quad f_1 - f_2 + f_3 - p(f_3 - f_4 + f_5) = 0.$$

For (B 3) in $d_2(xI[z, t])$ we transpose x and y and then x and t . In the first circling permutation of x, y, z, t in $d_2(xI[z, t])$ we transpose y and z and then x and y . In the second one the transpositions are of z and t and then of y and z . In the third one we transpose x and t and then z and t . So we come to 12 consequences, the sum of which is the identity

$$(b4) \quad -f_1 + f_2 + 2f_3 - k_1(f_3 + 2f_4 + f_5) = 0.$$

Analogous transformations on d_3 and d_4 lead accordingly to:

$$(b5) \quad -f_3 + f_4 + 2f_5 - k_2(f_3 + 2f_4 + f_5) = 0 \quad \text{and}$$

$$(b6) \quad f_1 + 2f_2 + f_3 - k_3(f_3 + 2f_4 + f_5) = 0.$$

Identities (b1), ..., (b6) will be cited as (2.3) later on.

$C : N_2(3, 1)$. The standard generators now are:

$a_1 = xyxx - yxxx$ and a_i ($i = 2, \dots, 5$) for brackets $(*(**)*), (**)(**), *(* **)$ and $*(*(*))$;

$b_1 = x^2yx - yxxx$ and b_i ($i = 2, \dots, 5$) for the respective brackets;

$c_1 = x^3y - yxxx$ and c_i ($i = 2, \dots, 5$) for the respective brackets.

The system (2.5) in this case consists of identities

$$(c1) \quad 2a_3 + b_1 - c_1 + c_2 - k_1(a_5 - b_3 + c_3 + 2c_4) = 0,$$

$$(c2) \quad -a_1 + a_3 + b_1 + b_2 - k_1(-a_3 + c_3 + c_4 + c_5) = 0,$$

$$(c3) \quad a_2 + a_3 + b_1 - k_1(b_5 + c_3 + c_4) = 0,$$

$$(c4) \quad a_1 - k_1 b_2 = 0,$$

$$(c5) \quad -a_4 + b_4 - k_1(-a_5 + c_5) = 0,$$

$$(c6) \quad a_1 - a_2 + b_2 - b_3 + c_3 - k(a_3 - a_4 + b_4 - b_5 + c_5) = 0,$$

$$(c7) \quad 2a_1 - a_3 - b_1 + 2b_2 - c_1 - c_2 + 2c_3 - k(2a_3 - a_5 - b_3 + 2b_4 - c_3 - c_4 + 2c_5) = 0,$$

$$(c8) \quad a_1 + b_1 - 3c_1 - k(a_2 + b_2 - 3c_2) = 0,$$

$$(c9) \quad a_4 + b_4 + c_4 - k(a_5 + b_5 + c_5) = 0,$$

$$(c10) \quad a_3 - b_1 + c_1 - c_2 - p(a_5 - b_3 + c_3 - c_4) = 0$$

and those of the system (2.4):

$$\begin{aligned}
 (2.4) \quad & 2a_5 + b_3 - c_3 + c_4 - k_2(a_5 - b_3 + c_3 + 2c_4) = 0 \\
 & -a_3 + a_5 + b_3 + b_4 - k_2(-a_3 + c_3 + c_4 + c_5) = 0 \\
 & a_4 + a_5 + b_3 - k_2(b_5 + c_3 + c_4) = 0 \\
 & a_2 - k_2 b_2 = 0 \\
 & -a_5 + b_5 - k_2(-a_5 + c_5) = 0 \\
 & a_3 - b_1 + c_1 + 2c_2 - k_3(a_5 - b_3 + c_3 + 2c_4) = 0 \\
 & -a_1 + c_1 + c_2 + c_3 - k_3(-a_3 + c_3 + c_4 + c_5) = 0 \\
 & b_3 + c_1 + c_2 - k_3(b_5 + c_3 + c_4) = 0 \\
 & b_1 - k_3 b_2 = 0 \\
 & -a_4 + c_4 - k_3(-a_5 + c_5) = 0.
 \end{aligned}$$

$D : N_3(2, 1^2)$. The standard generators now are:

$$\begin{aligned}
 f_1 &= \sum_{\sigma \in S_3} (-1)^\sigma x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_1, \quad g_1 = \sum_{\sigma \in S_3} (-1)^\sigma x_{\sigma(1)} x_{\sigma(2)} x_1 x_{\sigma(3)}, \\
 h_1 &= \sum_{\sigma \in S_3} (-1)^\sigma x_{\sigma(1)} x_1 x_{\sigma(2)} x_{\sigma(3)}.
 \end{aligned}$$

For brackets $(*(**))$, $(**)(**)$, $*(***)$ and $*(*(**))$ the indices are $2, \dots, 5$, respectively.

The system for $N_3(2, 1^2)$ is formed by identities

$$(d1) \quad -f_1 + f_3 + g_1 + g_2 - g_3 - h_2 - p(-f_3 + f_5 + g_3 + g_4 - g_5 - h_4) = 0,$$

$$(d2) \quad f_1 - p f_2 = 0,$$

$$(d3) \quad f_4 - g_4 + h_4 - p(f_5 - g_5 + h_5) = 0,$$

$$(d4) \quad f_1 + f_3 - g_1 + g_2 + g_3 + 2h_1 + h_2 - p(f_3 + f_5 - g_3 + g_4 + g_5 + 2h_3 + h_4) = 0,$$

$$(d5) \quad f_1 + 2f_2 + f_3 + g_1 - g_2 - g_3 + h_2 + 2h_3$$

$$-k(f_3 + 2f_4 + f_5 + g_3 - g_4 - g_5 + h_4 + 2h_5) = 0,$$

$$(d6) \quad -f_1 + 3g_1 - k_1(f_2 + 3h_2) = 0,$$

$$(d7) \quad 2f_4 + g_4 - h_4 - k_1(f_5 + 2g_5 + h_5) = 0,$$

$$(d8) \quad -f_1 + 2f_2 - g_1 - g_2 + h_2 - k_1(-f_3 + f_5 - g_3 - g_5 + 2h_5) = 0,$$

$$(d9) \quad f_1 - 2f_3 - g_1 + g_2 - 2g_3 + 2h_1 + h_2$$

$$-k_1(-f_3 - f_5 + g_3 + 2g_4 - g_5 - 2h_3 + 2h_4) = 0,$$

$$(d10) \quad f_1 - f_2 + f_3 - g_3 - k_1(g_3 - g_4 + h_4 - h_5) = 0$$

and those of the following system (2.6):

$$\begin{aligned}
 (2.6) \quad & -f_2 + 3g_2 - k_2(f_2 + 3h_2) = 0 \\
 & 2f_5 + g_5 - h_5 - k_2(f_5 + 2g_5 + h_5) = 0 \\
 & -f_3 + 2f_4 - g_3 - g_4 + h_4 - k_2(-f_3 + f_5 - g_3 - g_5 + 2h_5) = 0 \\
 & f_3 - 2f_5 - g_3 + g_4 - 2g_5 + 2h_3 + h_4 \\
 & -k_2(-f_3 - f_5 + g_3 + 2g_4 - g_5 - 2h_3 + 2h_4) = 0 \\
 & f_3 - f_4 + f_5 - g_5 - k_2(g_3 - g_4 + h_4 - h_5) = 0 \\
 & f_1 + 3h_1 - k_3(f_2 + 3h_2) = 0 \\
 & f_4 + 2g_4 + h_4 - k_3(f_5 + 2g_5 + h_5) = 0 \\
 & -f_1 + f_3 - g_1 - g_3 + 2h_3 - k_3(-f_3 + f_5 - g_3 - g_5 + 2h_5) = 0 \\
 & -f_1 - f_3 + g_1 + 2g_2 - g_3 - 2h_1 + 2h_2 \\
 & -k_3(-f_3 - f_5 + g_3 + 2g_4 - g_5 - 2h_3 + 2h_4) = 0 \\
 & g_1 - g_2 + h_2 - h_3 - k_3(g_3 - g_4 + h_4 - h_5) = 0.
 \end{aligned}$$

Briefly the system of the consequences is denoted by (2.7).

$E : N_2(2^2)$. A standard generator in this case is

$$f_1 = \sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} x_{\sigma(1)} x_{\tau(1)} x_{\sigma(2)} x_{\tau(2)}.$$

For brackets $(*(**)*), (**)(**), *(****)$ and $*(*(**))$ the indices of the generators will be $2, \dots, 5$.

Another generator is

$$f_6 = \sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} x_{\sigma(1)} x_{\sigma(2)} x_{\tau(1)} x_{\tau(2)}$$

and for the corresponding way of brackets f_7, \dots, f_{10} .

The system (2.9) in this case is formed by identities (e1), ..., (e6) and those of the system (2.8):

- (e1) $2f_1 - f_2 + 2f_3 - f_6 - f_8 - f_9 - k(2f_3 - f_4 + 2f_5 - f_7 - f_8 - f_{10}) = 0,$
- (e2) $-f_2 + f_6 + f_8 + f_9 - p(-f_4 + f_7 + f_8 + f_{10}) = 0,$
- (e3) $f_6 - k_1 f_2 = 0,$
- (e4) $f_4 - f_7 - k_1 f_5 = 0,$
- (e5) $f_2 - f_6 + 2f_8 - f_9 - k_1(2f_4 - 2f_7 + f_8 + f_{10}) = 0,$
- (e6) $-2f_1 - f_2 + f_6 - f_9 - k_1(-2f_3 + 2f_5 + 2f_6 + f_8 - f_{10}) = 0,$

$$\begin{aligned}
 (2.8) \quad & f_9 - k_2 f_2 = 0 \\
 & f_5 - f_{10} - k_2 f_5 = 0 \\
 & f_4 - f_7 - f_8 + 2f_{10} - k_2(2f_4 - 2f_7 + f_8 + f_{10}) = 0 \\
 & -2f_3 - f_4 - f_7 + f_8 - k_2(-2f_3 + 2f_5 + f_8 - f_{10}) = 0 \\
 & f_1 - k_3 f_2 = 0 \\
 & f_4 - k_3 f_5 = 0 \\
 & 2f_2 + f_6 + f_8 - 2f_9 - k_3(2f_4 - 2f_7 + f_8 + f_{10}) = 0 \\
 & -2f_1 + 2f_3 + f_6 - f_8 - k_3(-2f_3 + 2f_5 + f_8 - f_{10}) = 0.
 \end{aligned}$$

3. Description of $P_4(\mathfrak{M}_i)$ for $i = 1, \dots, 5$ and $P_n(\mathfrak{M}_6)$

Having already obtained the homogeneous linear systems for the standard generators of every module $N_m(\lambda)$, we determine the rank of the matrix of the corresponding system in any of the considered cases. If the system has a trivial solution only, there is no module with the corresponding diagram in $P_4(\mathfrak{M}_i)$. If the rank is not maximal, we define the multiplicities $k(\lambda)$ in the decomposition of $P_4(\mathfrak{M}_i)$ into a sum of irreducible modules i.e. in

$$\begin{aligned}
 (3.1) \quad P_4(\mathfrak{M}_i) = & k(4)M(4) + k(1^4)M(1^4) + k(3,1)M(3,1) \\
 & + k(2,1^2)M(2,1^2) + k(2^2)M(2^2)
 \end{aligned}$$

THEOREM 3.1. For $\mathfrak{M}_1 = [\ast, k_1, k_2, k_3, \ast]$ in (3.1)

- a) $k(4) \leq 1$ if, $[\ast, k_1, 2, k_1 - 1, \ast]$ and a generator of the module $M(4)$ is the complete linearization of $x^2 x^2$,
- b) $k(1^4) \leq 1$ if $[\ast, k_1, 0, 1 - k_1, \ast]$ and the module $M(1^4)$ is generated by $S_{1(21)}(x_1, x_2, x_3, x_4)$,
- c) $k(3,1) = 0$,
- d) $k(2,1^2) \leq 1$ if $[\ast, 0, 1, -1, \ast]$, where a generator of $M(2,1^2)$ is the linearization of $\sum_{\sigma \in S_3} (-1)^\sigma x_{\sigma(1)}(x_{\sigma(2)}(x_{\sigma(3)}x_1))$,
- e) $k(2^2) = 0$.
- f) Otherwise the variety \mathfrak{M}_1 is nilpotent of index 4.

Proof. We consider the corresponding GL_m -modules.

(4): The system (2.2) leads to the following matrix of the coefficients of the generators $x^2 x^2$, xx^3 and x^4 :

$$A = \begin{bmatrix} 1 & 1 & 0 \\ k_1 & 0 & -1 \\ k_2 - 1 & 1 & 0 \\ k_3 + 1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} k_1 & 0 & -1 \\ 1 & 1 & 0 \\ k_2 - 2 & 0 & 0 \\ k_3 - k_1 + 1 & 0 & 0 \end{bmatrix}.$$

Rank $A = 2$ gives the conditions on k_2 and k_3 in a).

(1⁴): In this case the first three identities of (2.3) are changed, namely $f_2 = 0$, $f_5 = 0$, $f_3 - f_4 = 0$ and the matrix of the coefficients of f_1, f_3 and f_4 is the following:

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 2 - k_1 & -2k_1 \\ 0 & -1 - k_2 & 1 - 2k_2 \\ 1 & 1 - k_3 & -2k_3 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 - k_1 & 2 - 3k_1 \\ 0 & -1 - k_2 & -3k_2 \\ 0 & 3 - k_1 - k_3 & 3 - 3k_1 - 3k_3 \end{bmatrix}$$

(3.1): Corresponding to (c6), ..., (c10) of (2.5) are now the identities:

$$\begin{aligned} a_5 + b_5 + c_5 &= 0 \\ a_5 - b_3 + c_3 - c_4 &= 0 \\ a_3 - a_4 + b_4 - b_5 + c_5 &= 0 \\ 2a_3 - a_5 - b_3 + 2b_4 - c_3 - c_4 + 2c_5 &= 0 \\ a_3 + b_2 - 3c_2 &= 0 \end{aligned}$$

The system has a trivial solution only.

(2, 1²): Corresponding to (d1), ..., (d5) of (2.7) are:

$$\begin{aligned} -f_3 + f_5 + g_3 + g_4 - g_5 - h_4 &= 0 \\ f_2 &= 0 \\ f_5 - g_5 + h_5 &= 0 \\ f_3 + f_5 - g_3 + g_4 + g_5 + 2h_3 + h_4 &= 0 \\ f_3 + 2f_4 + f_5 + g_3 - g_4 - g_5 + h_4 + 2h_5 &= 0. \end{aligned}$$

Easily we get the following matrix $A_{17 \times 12}$:

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 2 & 0 & -1 & 1 & 0 & 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & -3k_1 & 0 & 0 & 0 \\ 0 & 0 & -2 & 3k_1 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 3k_1 \\ -1 & k_1 & 0 & 0 & -1 & k_1 & 0 & 0 & 1-k_2 & 0 & 0 & -k_1 \\ 1 & k_1-2 & 0 & 2k_1 & -1 & -2-k_1 & -2k_1 & 2 & 1+k_2 & 2k_1 & -2k_1 & k_1 \\ 1 & 1 & 0 & 0 & 0 & -1-k_1 & k_1 & 0 & 0 & 0 & -k_1 & k_1 \\ 0 & 0 & 0 & k_2-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_2 \\ 0 & k_2-1 & 2 & 0 & 0 & k_2-1 & -1 & 0 & 0 & 0 & 1 & -k_2 \\ 0 & 1+k_2 & 0 & 2k_2-4 & 0 & -1-k_2 & 1-2k_2 & 0 & 0 & 2+2k_2 & 1-2k_2 & k_2-2 \\ 0 & 1 & -1 & 0 & 0 & -k_2 & k_2 & 0 & 0 & 0 & -k_2 & k_2-1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -3k_3 & 0 & 0 & 0 \\ 0 & 0 & 1 & -3k_3 & 0 & 0 & 2 & 0 & 0 & 0 & 1 & -3k_3 \\ -1 & 1+k_3 & 0 & 0 & -1 & k_3-1 & 0 & 0 & 0 & 2 & 0 & -k_3 \\ -1 & k_3-1 & 0 & 2k_3 & 1 & -1-k_3 & -2k_3 & -2 & 2+2k_2 & 2k_3 & -2k_3 & k_3 \\ 0 & 0 & 0 & 0 & 1 & -k_3 & k_3 & 0 & 1-k_2 & -1 & -k_3 & k_3 \end{bmatrix}$$

Investigations on its rank give the result.

(2^2) . Now the first two identities in (2.9) are

$$2f_3 - f_4 + 2f_5 - f_7 - f_8 - f_{10} = 0 \quad \text{and} \quad -f_4 + f_7 + f_8 + f_{10} = 0$$

The system has a trivial solution only.

Proof of condition f). The partial linearization of $x^4 = 0$ and the identities $a_1 = b_1 = c_1 = 0$ lead to $yxxx = xyxx = x^2yx = x^3y = 0$. New partial linearizations in x and $f_1 = f_6 = 0$ (generators for $N_2(2^2)$) lead to

$$x^2yy = xyyx = yxx = y^2xx = xyxy = yxyx = 0.$$

In a similar way the partial linearizations of these identities in y and $f_1 = g_1 = h_1 = 0$ (generators of $N_3(2, 1^2)$) lead to $zxx = xyxz = x^2yz = xyzz = yxzx = yzxx = 0$.

New linearizations and $f_1 = 0$ (a generator of $N_4(1^4)$) give $zytx = 0$. Another way of brackets is treated analogously.

THEOREM 3.2. For $\mathfrak{M}_2 = [\ast, k_1, k_2, k_3, p]$ the conditions on the multiplicities of the modules in (3.1) are the following:

- a) $k(4) \leq 1$ if $[\ast, k_1, 2, k_1 - 1, p]$. The module $M(4)$ is generated by the complete linearization of x^2x^2 ,
- b) $k(1^4) \leq 1$ if $[\ast, k_1, 2 - k_1, k_1, 0], [\ast, k_1, 1 - k_1, k_3, 1]$ or $[\ast, k_1, k_2, k_3, p \neq 0, 1 : k_2(p^2 - 2p - 1) = pk_1 + k_1 - 2,$

$$k_1(p^2 + 3p + 1) = 2 + p - k_3 - pk_3]$$
.

The module $M(1^4)$ is generated by $S_{1(12)}(x_1, x_2, x_3, x_4)$,

- c) $k(3, 1) = 0$,
- d) $1 \leq k(2, 1^2) \leq 2$ if $[\ast, -2, -1, -1, -1]$. Module generators are the linearizations of $\sum_{\sigma \in S_3} (-1)^\sigma (x_{\sigma(1)}x_{\sigma(2)})(x_1x_{\sigma(3)})$ and $\sum_{\sigma \in S_3} (-1)^\sigma x_{\sigma(1)} \times (x_{\sigma(2)}x_1x_{\sigma(3)})$,
- e) $k(2^2) \leq 1$ if $[\ast, 0, 1, -1, p]$. $M(2^2)$ is generated by the complete linearization of $\sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} x_{\sigma(1)}(x_{\tau(1)}(x_{\sigma(2)}x_{\tau(2)}))$. The same inequality holds for both the cases $[\ast, 2, -1, 1, 1]$ and $[\ast, -2, -1, -1, 5]$ and the module $M(2^2)$ is generated by the complete linearization of $\sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} x_{\sigma(1)}x_{\sigma(2)} \times (x_{\tau(1)}x_{\tau(2)})$.
- f) Otherwise \mathfrak{M}_2 is a nilpotent variety of index 4.

THEOREM 3.3. For $\mathfrak{M}_3 = [k, k_1, k_2, k_3, \ast]$ we have in (3.1):

- a) $k(4) \leq 1$ if $[0, k_1, k_1, -k_1, \ast], [1, k_1, k_2 \neq 1, k_3, \ast]$ or $[k \neq 0; 1, k_1, k_2, k_3, \ast : k_3(k - 1) = k_2 - k + kk_1, 2k_3 = 2k + k_1 - (3 + k)k_2]$,
- $k(4) = 1$ if $[1, k_1 \neq 0, k_2, k_3, \ast]$ or $[1, k_1, k_2, k_3 \neq -1, \ast]$.

$M(4)$ is generated by the complete linearization of

$x(xx^2)$, $1 \leq k(4) \leq 2$ if $[1, 0, 1, -1, *]$. The two generators are complete linearizations of xx^2x and $x(xx^2)$,

b) $k(1^4) \leq 1$ if $[k, k_1, 0, 1 - k_1, *]$. The module $M(1^4)$ is generated by $S_{1(12)}(x_1, x_2, x_3, x_4)$,

c) $k(3, 1) \leq 1$ if $[0, 0, 0, 0, *]$ or $[1, 0, 0, 1, *]$. In the first case $M(3, 1)$ is generated by the complete linearization of $\sum_{\sigma \in S_2} (-1)^\sigma x_{\sigma(1)}(x_1(x_1x_{\sigma(2)}))$ or by that of $\sum_{\sigma \in S_2} (-1)^\sigma x_{\sigma(1)}x_1x_1x_{\sigma(2)}$ in the second one,

d) $k(2, 1^2) = 0$,

e) $k(2^2) \leq 1$ if $[k \neq 1, 0, 1, -1, *]$. The module $M(2^2)$ is generated by the complete linearization of $\sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} (x_{\sigma(1)}x_{\tau(1)})(x_{\sigma(2)}x_{\tau(2)})$,

$k(2^2) = 2$ if $[1, 0, 1, -1, *]$. Generators are the complete linearizations of $\sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} (x_{\sigma(1)}x_{\tau(1)})(x_{\sigma(2)}x_{\tau(2)})$ and of $\sum_{\sigma, \tau \in S_2} (-1)^{\sigma+\tau} x_{\sigma(1)} \times (x_{\tau(1)}x_{\sigma(2)}x_{\tau(2)})$.

f) Otherwise the variety \mathfrak{M}_3 is nilpotent of index 4.

THEOREM 3.4. If in \mathfrak{M}_4 and \mathfrak{M}_5 $k \neq 1$ then $P_4(\mathfrak{M}_4) = \{0\}$ and $P_4(\mathfrak{M}_5) = \{0\}$. For $k = 1$ $P_4(\mathfrak{M}_4) = M(4)$ and $P_4(\mathfrak{M}_5) = M(4)$.

THEOREM 3.5. $P_n(\mathfrak{M}_6) = M(n)$ for $n \geq 3$.

Proof. Because of $f_i=0$ ($i=1, \dots, 4$) and $S_{12}=S_{21}=0$ $x_1 \dots x_k x_{k+1} \dots x_4 - x_1 \dots x_{k+1} x_k \dots x_4 \in P_4(\mathfrak{M}_6) \cap T(\mathfrak{M}_6)$ for any brackets save $(**)(**)$. In the last case we refer to the corresponding to (2.2), (2.3), (2.5), (2.7) and (2.9) systems and get $P_4(\mathfrak{M}_6) = M(4)$. Using induction on n we see that

$$x_1 \dots (x_k x_{k+1}) \dots x_n - x_1 \dots (x_{k+1} x_k) \dots x_n \in P_n \cap T(\mathfrak{M}_6).$$

If $k > 1$ then

$$\begin{aligned} & (x_1(\dots x_k))(x_{k+1}x_{k+2} \dots x_n) - (x_1(\dots x_{k+1}))(x_k x_{k+2} \dots x_n) \\ &= x_{k+1}(x_1(\dots x_k)x_{k+2} \dots x_n) - x_k(x_1(\dots x_{k+1})x_{k+2} \dots x_n) \\ &= x_{k+1}(x_1(\dots x_{k+2})x_k \dots x_n) - x_k(x_1(\dots x_{k+2})x_{k+1} \dots x_n) \\ &= (x_1(\dots x_{k+2}))(x_{k+1}x_k \dots x_n) - (x_1(\dots x_{k+2}))(x_k x_{k+1} \dots x_n) = 0. \end{aligned}$$

For $k = 1$

$$\begin{aligned} & x_1(x_2, x_3 \dots x_n) - x_2(x_1 x_3 \dots x_n) \\ &= (x_2 x_3)(x_1 x_4 \dots x_n) - (x_1 x_3)(x_2 x_4 \dots x_n) \\ &= (x_2(x_1 x_4))(x_3 x_5 \dots x_n) - (x_1(x_2 x_4))(x_3 x_5 \dots x_n) = 0. \end{aligned}$$

All the equalities are modulo $P_{n-1} \cap T(\mathfrak{M}_6)$. So $P_n(\mathfrak{M}_6) = M(n)$.

Acknowledgment: I would like to thank V. Drensky for suggesting this problem to me and the useful conversations during the preparation of the paper.

References

- [1] A. S. Anan'in, A. R. Kemer, *Varieties of associative algebras with distributive lattices of subvarieties*, Sibirsk Mat. Ž. (4) 17 (1978), 723–730 [Russian].
- [2] V. A. Artamonov, *Lattices of varieties of linear algebras*, Uspehi Mat. Nauk (2) 33 (1978), 135–167 [Russian].
- [3] L. A. Bokut', *Some topics in ring theory*, Serdica (4) 3 (1977), 299–308 [Russian].
- [4] G. D. James, *The representation theory of the symmetric groups*. Lecture Notes in Math. vol. 682 (Springer-Verlag), 1978.
- [5] *Dnestrovskaja tetrad'*: Institut Matematiki SO AN SSSR, Novosibirsk (1976) [Russian].
- [6] V. S. Drenski, *Representations of the symmetric group and varieties of linear algebras*, Mat. Sb. 115 [Russian]. Translation: Math. USSR Sb. 43 (1981), 85–101.
- [7] V. S. Drenski, *Lattices of varieties of associative algebras*, Serdica 8 (1982), 20–31 [Russian].
- [8] V. S. Drensky, Ts. Gr. Rashkova, *Varieties of metabelian Jordan algebras*, Serdica (4) 15 (1989), 293–301.
- [9] V. Drensky, L. Vladimirova, *Varieties of pairs of algebras with a distributive lattice of subvarieties*, Serdica 12 (1986), 166–170.
- [10] P. E. Koshlukov, *Polynomial identities for a family of simple Jordan algebras*, Comm. Algebra 16 (1988), 1325–1371.
- [11] W. D. Martirosjan, *Lattice distributivity for subvarieties of alternative algebras' varieties*, Mat. Sb. (1) 118 (1982), 118–131 [Russian].
- [12] A. Popov, *Varieties of unitary associative algebras having a distributive lattice of subvarieties I*, God. Sof. Univ. Fak. Mat. Mech. (1) 79 (1985), 223–244 [Russian].
- [13] A. Popov, R. Nikolaev, *Varieties of unitary associative algebras having a distributive lattice of subvarieties II*, God. Sof. Univ. Fak. Mat. Mech. (1) 80 (1986), 15–23 [Russian].
- [14] A. Popov, P. Chekova, *Varieties of unitary associative algebras having a distributive lattice of subvarieties*, God. Sof. Univ. Fak. Mat. Mech. (1) 77 (1983), 205–222 [Russian].
- [16] H. Weyl, *The classical groups, their invariants and representations*. (Princeton Univ. Press, 1946).

CENTRE OF MATHEMATICS,
TECHNICAL UNIVERSITY ROUSSE
ROUSSE, 7017 BULGARIA

Received November 3, 1992.