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VARIETIES OF ALGEBRAS HAVING
A DISTRIBUTIVE LATTICE OF SUBVARIETIES |

1. Introduction and preliminaries

The question of describing in term of identities the varieties having a
distributive lattice of subvarieties was raised by L. Bokut in 1976 in [5,
problem 19] and in [3] too. Since the survey [2] of V.A. Artamonov in 1978
many results concerning the topic have been obtained [1, 11, 7, 9, 8, 14, 12,
13].

In the paper we consider the absolutely free algebra F = K{X} of
infinite rank on a countable set X of free generators z;,z,,... over a fixed
field K of characteristic zero. Fy, is the subalgebra of rank m generated by
Z1,Z3,...,Zm. We denote by S, and GL,, the symmetric group and the
general linear group, acting on the set of symbols {1,2,...,n} and on a
m-dimensional vector space, respectively.

Let I be a T-ideal in F and 9t a variety corresponding to I. We denote
F/I by F{9} and F,,/F,,NI by F,,,(9). The space P, (M) of all multilinear
polynomials of degree n from F,(9M) has a structure of a left S,-module.
F(9M) is a left GL,,-module too.

The irreducible S,,- and G L,,-modules are described by Young diagrams.
For a partition A = (Ay,..., A )of n, A,y > ...2 A 20, M +...+X, =n
we denote by M()) and Np,(A) the §,,- and GL,,-modules corresponding to
A. One can look into [4, 15, 6, 10] for details on the representation theory
of the symmetric and general linear groups.

The subvarieties of MM form a lattice A(9M) with respect to the intersec-
tion and the union of subvarieties. The question of distributivity has been
treated by consideration of P,(9). Because of [2] A(9N) is distributive iff
P,(9M) for all » is a sum of pairwise non-isomorphic irreducible S,,-modules

M.
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It is known [6] that the homogeneous component F (M) of F,,,(9M) and
P,(90) have the same module structure. If P,(901) = >, k(A)M(]A), then
F,(n")(ﬂﬁ) = >, k(A)Nm(A). Thus for convenience the investigations in the
paper are on the GL,,-structure of F,(n"). For n = 2,3 we have:

F® = Np(2) + Nm(1,1),
F®) = 2N, (3) + 4Npn(2,1) + 2N, (1%).

Generators of the modules N,,(3) are z3 and z;2%; the modules with dia-
grams [2,1] are generated by fi = 212321 — 222121, fo = 21(2221) — 7223,
f3 = 2229 — 227121 and fy = z1(2122) — z,2}; generators of N, (13) are
521(2)1,132,11:3) = Eaesa(_1)axa(l)za(2)ma(3) and 512(21,$2,2§3) =
2ves; (—1)7Zo1)(Zo(2)Z0(3)), Where (—1)7 means the sign of the permu-
tation o.

So identities are needed, which “glue” the isomorphic modules, so that
the sum in F$ )(ZDT) will be of non-isomorphic ones only.

For the modules N,,(3) such an identity is

(1) o1z + frzz? =0, for (a1, 5) # (0,0), 1,5 € K.
It means that

(1%) 2’ =0 ifay =0, or

(1% z® — kzz? =0, wherek =1/, if aq #£0.

For N,,(2,1) the following system has to be fulfilled:

Tih +12fo+13fa+114fs =0
(2) Yorfr + 7222 + Y23 fa + Y24 fs =0
Yarf1 +v32fe +va3fa +734fs =0

and rank A = 3, where

Y11 Y12 M13 T4
A= |71 72 723 7|, 7ij€K.
Y31 Y32 Y33 V34

It means that the following identities hold:

2*) fi=0 fori=1,...,4, or

(2°) fi—kifsy=0 fori=1,2,3 and for ky, ks, k3 € K, if fs =0
is not an identity.

For the modules N,,(13) the needed identity is
(3) a2521(21, 22, 23) + B2512(21, 22, 73) = 0,
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where (a, 52) # (0,0), a2, 8; € K. It means that

(3%) Si2(z1,22,23) =0 ifa; =0, or

(3%)  Sai(zy,72,73) — pS12(%1,22,23) =0, where p= 2/ if a3 # 0.
In the paper the following varieties are examined:

M, = [*, k1, ks, k3, *] with identities (1%), (2°) and (32),
M, = [*, k1, ka, k3, p] with identities (12), (2°) and (3%),
M3 = [k, ky, k2, k3, ] with identities (1°), (2%) and (32),
My = [k, *, *, *, *] with identities (1°), (2%) and (3°%),
M5 = [k, *, *, *, p] with identities (1), (2?) and (3%),
M — a variety, for which P3(9Mg) = M(3).

For a multihomogeneous polynomial f(zy,...,z,) of degree A; in z; we
denote by

lin(f) = f(z1lyin, -« s ¥ings -3 Eelyrty - s Yra,)

the linearization of f(zi,...,2,) which equals the multilinear in y;; for
t=1,...,r component of

f(zl +yn + ---+y1>\1,°'°,xr+yr1 + ---+yr)\,)-
We point that f = 0 and lin(f) = 0 are equivalent [6].

ProrosITION 1.1. Let M be an S, -submodule of P,, and let Q) be the set
of the multilinear consequences of degree n + 1 of the polynomial identities
of M. Then Q is an S,41-module of P,11 which is a homomorphic image
of the Sy 4+1-module

(M'Sn_1) @k (M(2) + M(1%))1Sn41 +2(M @k M(1))'Spp1, ice.

a) In the first summand S,_, acts on the set {1,...,n — 1} fizing n. S,
acts on {n,n + 1}, the tensor product is an S,_1 X Sy-module, where the
direct product S,_1 X S3 is canonically embedded in S,41.

b) The consequences f(Z1,...,Zn). Tny1 for f € M and 241 - f(21,. ..
...,Ty) generate two factor-modules M Qg M(1)18,.,1, where S, x Sy is
canonically embedded in S,41.

COROLLARY 1.2. Let A be a partition of n and let M()) C P,. Then the
Snt1-module M'(X) of all multilinear consequences of M(A) in Ppy1 equals
> a,M(u), where the non-negative integers A, are bounded by the number
of diagrams [u] obtained by the following devices:

a) We remove a boz from [A] and obtain a diagram [v]. Then we add two
new bozes to [v] and produce a diagram [p] such that these two new bozes
do not belong to one and the same column of [u] if we consider the module
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M(2) (or do not belong to one and the same row of [u] if we consider the
module M(1%)),
b) We add a new boz to [A] and obtain [y].

2. Consequences of degree 4 as linear combinations of the gen-
erators of the modules N,,())

The symbols z, y, z, t will be used for the free generators of K{X}. The
needed identities of degree 3 are written as:

di =23 —kzz’ =0
dy = zyz — yzz — ky(z(2y) — y2) = 0
(2.1)  d3 = z(yz) - yz’ — ka(z(zy) —y2?) =0
dy = 2y — yzz — k3(z(2y) — y22) = 0
ds = S (z,y,2) — pS12(z,y,2) =0, k,ky, k2, k3,p € K.
A : Ny(4). Due to 1.2 we can have the following diagrams:

(A1) - IO-OOen
(A2) IO-[0 O
(A3) H -m e

For (A 1) we have dyz = 0 and zd; = 0. For (A 2) we linearize partially
dy and substitute u = z? i.e. dy(zIz?) = 0. For (A 3) we consider d;(y = z?)
for ¢ = 2,3,4. So we get the system:

z? - kzz’z =0
zz® — kz(zz?) = 0
z* + 22’z + 2%2% — k(2%2? + 223 + z(22?)) = 0
zz’z — z¢ — ki(z(22®) — 2%2%) =0
zz® — z’z? — ky(z(22?) — 2%2%) =0
z?z? — 2t — ky(z(zz?) — 2?2?) = 0.
B : N4(1*). The generators of the modules now are:
fi = Sz, 9,2,t), fo=S1a(z,9,2,t), fi=Sn(z,y,2,1),
fa = S1i21)(2,9,2,1), fs = S1a2)(2, 9,2, 1)
The indices show the way of brackets in the standard polynomials, for

example S121 = 3, ¢, (—1)7%5(1)(%0(2)2a(3))To(4)-
According to Corollary 1.2 we have the following diagrams:

(B1) B *B@D

(2.2)
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2 d ~Bed
) P-Bef

For (B 1) right and left multiplication of ds by t give

(b1) h-pfi=0,
(b2) f4 — pf5 = 0.

For (B 2) we consider ds(z = [2,1]), in which three times a circling permu-
tation of z, y, z, t is made alternating the signs. Then we transpose y and
z in ds(z = [2,1]) and again a circling of z, y, 2, t is used. The sum of the
six identities thus received leads to

(b3) h=f+fi-p(fsi-fa+fs)=0.

For (B 3) in dy(zI[2,1]) we transpose z and y and then z and t. In the first
circling permutation of z,y, z,t in da(z[[z, t]) we transpose y and z and then
z and y. In the second one the transpositions are of 2 and ¢ and then of y
and z. In the third one we transpose z and ¢t and then z and t. So we come
to 12 consequences, the sum of which is the identity

(b4) —htfo+2fs-k(fs+2fi+ f5)=0.
Analogous transformations on d3 and d4 lead accordingly to:
(b5) —fat fat+2fs —ke(fs+2fs+ f5)=0 and
(b6) fit2f+fa—ka(fs+2fs+ f5)=0.

Identities (b1),...,(b6) will be cited as (2.3) later on.

C : N3(3,1). The standard generators now are:

a) = zyrz — yzzz and a; (1 = 2,...,5) for brackets (*(*x)*), (x)(*x),
#(* %) and *(*(*x));

by = z2yz — yzzz and b; (i = 2,...,5) for the respectvive brackets;

¢1 =23y — yzzz and ¢; (i = 2,...,5) for the respective brackets.

The system (2.5) in this case consists of identities
(1) 2a3+ b1 —c1+c2 —ki(as — b3+ c3 +2¢4) =0,
(c2) —a1+a3+by+by —ki(—a3+c3+ ¢4 +¢5) =0,
(c3) ax+az+by —ki(bs+cz3+eq)=0,
(c4) a3 — k1, =0,
(c5) —aq+ by —ki(—as +¢5) =0,
(c6) a1 —as+by—bs+c3—k(as—ag+by—bds+ecs)=0,
(c7) 2ay—a3—by+2by—c1—c24+2¢3—k(2a3—as—b3+2bs—c3—c4+2¢5) = 0,
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(c8) @1+ by —3c1 — k(az + b2 — 3¢2) = 0,
(c9) @ag+by+cqg —k(as +bs +¢5) =0,
(c10) az—br+ec1—co—plas—bz+ez—cq) =0
and those of the system (2.4):
2a5 + b3 —c3+ ey —kz2(as —bs+c3+2¢4) =0
—a3+as+by+bs—ka(-az+eztecst+ec5)=0
as +as+ b3 —ka(bs +c3+cs) =0
ay — koby =0
—as +bs — ka(—as +¢5) =0
az — by +¢1+ 2c2 — k3(as — b3 + 3 +2¢4) =0
—a1+01_+02+63—k3(—03+03+c4+65)=0
ba+cr+ea—ka(bs+eates)=0
by —k3by =0
—ay + ¢4 — k3(—as +¢5) = 0.

D : N3(2,1%). The standard generators now are:

(2.4)

fi= ) (1 2@, 1= Y (—1)72:(1)%0(2)T1%0(3)s
0ES; 0ES3

hy = Z (1) 2,1)21Z4(2)Zo(3)-
OES;3

For brackets (#(**)*), (x*)(*%), *(***) and *(*(*x)) the indices are 2,...,5,
respectively.
The system for N3(2,12) is formed by identities

d) -fA+fht+at+a-—g-—h—p(-fitfstgatgi—gs — h4) =0,
(d2) fA-pf2=0,
(d3) fi—gs+hs—p(fs —gs+hs)=0,
(d4) fit+fa—g1+g2+93+2h1+hy—p(fs+fs—93+94+95+2h3+hy) =0,
(d5) fi+2fz+ fa+g1— 92— 93+ hy+2h3

—k(fs+2fs+ fs + 93— 94 — 95 + by + 2h5) = 0,
(d6) —f1 +3g91 — k1(f2 +3h2) =0,
(d7)  2fs+ 94— ha — k1(fs + 295 + hs) = 0,
(d8) —fi+2fs—g1— g2+ hy —k1(—fa+ fs — 93— g5 + 2h5) = 0,
(d9) A —-2fs—g1+92—293+2h1 + P2

—ki(—f3 — fs + 93 + 294 — g5 — 2h3 + 2hy) = 0,
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(d10) fi-fat fs—93— k(93 —ga+ha—hs)=0
and those of the following system (2.6):

—fa+392 —ko(f2+3h2) =0

2fs + 95 —hs — ks(fs + 295 + hs) =0
—fa+2fs—gs—ga+ha—ko(—fa+ fs —ga—gs+2hs) =0

f3—2fs — g3+ 94—2g5s+2hs + hy
—ko(=f3 = f5 + 93+ 294 — g5 — 2ha + 2h4) =0

fos—fo+ fs—95s —ka(93— 94 +ha —hs)=0

fi +3hy — ka(foa +3h2) =0

Ja+294+ha — ka(fs +2g5 + hs) =0
—h+fa—g1—93+2hs—ka(—fs+ fs —g3—9gs+2hs) =0
-h = fi+91+292— 93— 2h + 2h,
—ka(~fs — fs + 93+ 294 — g5 — 2h3 + 2h4) = 0

91— 92 +h2 —hs —k3(gs — g4+ ha — hs) = 0.
Briefly the system of the consequences is denoted by (2.7).

E : N;(2%). A standard generator in this case is

fi= Y (C1) 1) 2r(1)%0(2) T (2)-
”)7652

(2.6)

For brackets (x(#*)#), (#%)(**), *(* * %) and *(*(*x)) the indices of the
generators will be 2,...,5.

Another generator is
fo= Y (1) z1)To(2)@5(1) T (2)
o,TES,

and for the corresponding way of brackets fr,..., fio.
The system (2.9) in this case is formed by identities (el),...,(e6) and
those of the system (2.8):

(el) 2fi-fo+2fs—fo—fo—fo—k(2fs~ fa+2fs — fr— fs — fre) =0,
(€2) —fot+ fo+ fa+ fo—p(=fa+ fr+ fa + f10) =0,

(e3) fo—kifa=0,

(ed) fi—fr~Fkifs =0,

(€8) foi—fe+2fs—fo—ki(2fs =2fr+ fa + f10) =0,

(6) 2fi—fo+ fo—fo—ki(-2fs+2fs +2fs + fa — f10) = 0,
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Jfo—kafe =0
fs—fio—kafs =0
 fa—fr—fs+2fi0—ka(2fs —2f1+ fa + f10) =0
2fs—fa—fr+ fo—ka(-2fs+2fs + fs — f10) =0
h~kfa=0
Ji—kafs =0
2fs+ fo+ fa —2fs —ka(2fs — 2f2+ fs + fr0) =0
=2fi+2fs+ fo — fs —ka(—2f3 +2fs + fs — fr0) = 0.

(2.8)

3. Description of Py(9;) for i = 1,...,5 and P,()

Having already obtained the homogeneous linear systems for the stan-
dard generators of every module N,,()), we determine the rank of the matrix
of the corresponding system in any of the considered cases. If the system has
a trivial solution only, there is no module with the corresponding diagram
in Py(9M;). If the rank is not maximal, we define the multiplicities k() in
the decomposition of Py(9M;) into a sum of irreducible modules i.e. in

(3.1) Py(O;) = k(4)M(4) + k(1Y) M(1*) + k(3,1)M(3,1)
+ k(2,1 M (2,1%) + k(2*) M (2?)

THEOREM 3.1. For MMy = [*, k1, k2, k3, #] in (3.1)

a) k(4) < 1if, [%,k1,2,k1 — 1,%] and a generator of the module M(4) is
the complete linearization of z2x?,

b) k(1) < 1 if [*,k1,0,1 — k1, %] and the module M(1*) is generated by
51(21)(931,12,2?3,104),

¢) k(3,1) =0,

d) k(2,1%) < 1 if [%,0,1,-1,%], where a generator of M(2,1?) is the
linearization of 3=, ¢ 5. (—=1)725(1)(%o(2)(To(3)21))s

e) k(2%) = 0. '

f) Otherwise the variety M, is nilpotent of indez 4.

Proof. We consider the corresponding G L,,-modules.
(4): The system (2.2) leads to the following matrix of the coefficients of
the generators z2z2, zz2 and z%:

1 1 0 k1 0 -1
A B 0 -1 |1 1 0
“lk,-11 0 ky —2 0 0
ks+1 0 —1 ks—ki+1 0 0

Rank A = 2 gives the conditions on k, and k3 in a).
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(1%): In this case the first three identities of (2.3) are changed, namely
f2=0,fs =0, f3 — f4 = 0 and the matrix of the coefficients of f;, f3 and f4
is the following:

01 -1 0 1 0
Ao |-l 2-k -2 -1 22—k 2 — 3k,
Tl 0 -1-ky 1-2k 0 —-1—k, -3k,
1 1-ks —2k3 0 3—ki—ks 3—3k1—3ks
(3.1): Corresponding to (c6),...,(c10) of (2.5) are now the identities:
as +bs+c5=0

as —bz3+c3—c4 =0
a3 —ag+by—bs+c5=0
2a3 —as — b3 +2by — €3 —cy +2¢5=0
az +by—3c;=0
The system has a trivial solution only.
(2,12): Corresponding to (d1),...,(d5) of (2.7) are:
—fat+fo+g93+gs—gs—hy=0
f2=0
fs—gs+hs=0
fstfs—g3+91a+95+2h3+hy=0
f3+2fs+ fs+93— 91— g5+ ha +2hs = 0.
Easily we get the following matrix A;7x12:

[ 0 -1 0 0 0 1 1 0 0 0 -1 -1 ]
0 1 0 2 0 -1 1 0 0 2 1 1
0 1 2 0 0 1 -1 0 0 0 1 1
-1 0 0 0 3 0 0 0 —3k; 0 0 0
0 0 -2 3K 0 0 -1 0 0 0 1 3k
-1 kK 0 0 -1 K 0 0 1-k; O 0 -k
1 k-2 0 2K -1 -2-k; -2k 2 14k 2k -2k k1
1 1 0 0 0 -1-k Kk 0 0 0 —ky k1
0 0 0 ko-—-1 0 0 0 0 0 0 0 ko
0 k-1 2 0 0 kp~-1-1 0 0 0 1 —k9
0 1+k2 O 2ky—4 0 —1—ky 1-2k; 0 O 242k 1-2k2 k9o—2
0 1 -1 0 0 —ky ko 0 0 0 —ko ko—1
1 0 0 0 0 0 0 3 -3ks3 0 0 0
0 0 1 —3k3 0 0 2 0 0 0 1 —3k3
-1 14k3 0 0 -1 k3-1 0 0 0 2 0 —k3
-1 k3—-1 0 2k3 1 —1—k3 —2k3 -2 242ky 2k —2ks3 ks
[ 0 o0 0 0 1 k3 k3 0 1-ky -1 —k3 k3 |

Investigations on its rank give the result.
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(2%). Now the first two identities in (2.9) are
2fa-fa+2fs—fr—fs—f1o=0 and —fy+fr+fs+ fio=0

The system has a trivial solution only.

Proof of condition f). The partial linearization of z* = 0 and the
identities a; = b, = ¢; = 0 lead to yrzz = zyzz = z’yz = 23y = 0. New
partial linearizations in = and fi = fs = 0 (generators for N,(2?)) lead to

zlyy = zyyz = yrzy = yP22 = Tyzy = yryr = 0.

In a similar way the partial linearizations of these identities in y and
fi = g1 = hy = 0 (generators of N3(2,1?)) lead to zzzy = zyzz = zlyz =
zyze = yrzz = yzzx = 0.

New linearizations and fi = 0 (a generator of N4(1*)) give zytz = 0.
Another way of brackets is treated anagously.

THEOREM 3.2. For M, = [+, k1, k2, k3, p] the conditions on the multiplic-
ities of the modules in (3.1) are the following:

a) k(4) < 1 if [*,k1,2,k1 — 1,p|. The module M(4) is generated by the
complete linearization of x*z?,

b) k(1*) < 1 if [*, k1,2 — k1, k1, 0], [, k1,1 — kg, k3,1] or

[*7k1ak27k3’p 71: 071 : kZ(PZ - 2p_ 1) = pkl + kl - 2a

ki(p* +3p+1) =2+ p — k3 — pka].
The module M(1*) is generated by Sy(12)(21, Z2, T3, 24),

c) k(3,1) =0,

d) 1 < k(2,1%) < 2 if [+,—2,—1,—1,—1]. Module generators are the
linearizations of Eaess(—1)0(%(1)%(2))(zl%(")) and Eaes,(_l)axd(l) X
(Zo(2)Z1Z4(3) )5

e) k(2%)<1 if [+,0,1,—1,p]. M(2?) is generated by the complete linealiza-
tion of ZU,TESQ(—I)""‘T:::,(I)(:1:,(1)(1:,(2):1:,(2))). The same unequality holds
for both the cases [*,2,—1,1,1] and [*,-2,—1,—1,5] and the module M(2?)
is generated by the complete linearization of 20,7652(—1)"*"’3:,(1):1:0(2) X
(Z71)%r(2))-

f) Otherwise M, is a nilpotent variety of indez 4.

THEOREM 3.3. For M3 = [k, k1, ko, k3, %] we have in (3.1):

a') k(4) < 1 Zf [O’klakla _kla*]a [lakl, k2 # 1,k3,*] or
[k ;é 0, 1,k1,k2,k3, * 3 ka(k - 1) = k2 -k + kkl, 2k3 =2k + kl - (3 + k)kg],

k(4) =1 Zf [1, kl ;ﬁ 0, k2, k3, *] or [1, kl, kz, k3 75 —1, *].

M(4) is generated by the complete linearization of
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z(zz?), 1 < k(4) £ 2 if[1,0,1,-1,*). The two generators are complete
linearizations of zz%z and z(z2?),

b) k(1*) < 1 if [k, k1,0,1 — ky,*]. The module M(1*) is generated by
S1012) (21, %2, T3, 24),

c) k(3,1) £1if[0,0,0,0,%] or [1,0,0,1,%]. In the first case M(3,1) is
generated by the complete linearization of 3, ¢ 5. (=1)"Z,(1)(71(Z124(2))) or
by that of 3_,cs,(—1)7T5(1)2121Z4(2) in the second one,

d) k(2,1%) =0,

e) k(2%) < 1if[k #1,0,1,-1,+]. The module M(2?) is generated by the
complete linearization of 2611652(—1)”+T(za(1)zf(l))(za(g)zT(g)),

k(2?) = 2 if [1,0,1,—1,+). Generators are the complete linearizations
of 3y res, (=17 (2o(1)2r(1) (Zo(2)2(2)) and of 30, L5, (~1)7F 250) X
(T2(1)To(2)T(2))-

f) Otherwise the variety M3 is nilpotent of indez 4.

THEOREM 3.4. If in My and M5 k # 1 then Py(IMy) = {0} and Py(Ms)
= {0}. For k =1 Py(9My) = M(4) and P,(M5) = M(4).

THEOREM 3.5. P,,(Ms) = M(n) forn > 3.

Proof. Because of f;=0 (i=1,...,4) and $12=9591=0 z...2kZTp41
co Tg—Ty .. Thp1Zk ... T4 € Py(IMs)NT (M) for any brackets save (+#)(x*).

In the last case we refer to the corresponding to (2.2), (2.3), (2.5), (2.7) and
(2.9) systems and get P4(9) = M(4). Using induction on n we see that

Z1...(TkTh41) .- Tn — Ty .. (Th412Zk) ... T € P N T(Mg).
If k> 1 then
(Z1(. . zp))(Zr41Zh42 - - - Zn) — (21(- . - Tht1) ) (TR TRp2 . - - Z1)
= Zrp1(21( - 2k)Thy2 .. 2n) — Ti(z1(- . . Tht1)Tht2 - - Zn)
= zx41(21(. . Tht2)Th .- Tn) — Th(Z1(- . Thp2) Tkt - - Zn)
= (z1(. .. Tk42) ) (k412 - . - Tn) — (21(. . . Tht2))(TkThg1 .- - Zn) = 0.
Fork=1
T1(Z2,23...25) — za(2123...24p)
= (2223)(2124 . ..24) — (2123) (2224 . . . T4)
= (z2(z124)) (2325 . . .Tp) — (21(2224)) (2325 ... 2,,) = 0.
All the equalities are modulo P,_; N T(Mg). So P, (M) = M(n).
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