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VARIETIES OF ALGEBRAS HAVING 
A DISTRIBUTIVE LATTICE OF SUBVARIETIES 

1. Introduction and preliminaries 
The question of describing in term of identities the varieties having a 

distributive lattice of subvarieties was raised by L. Bokut in 1976 in [5, 
problem 19] and in [3] too. Since the survey [2] of V.A. Artamonov in 1978 
many results concerning the topic have been obtained [1, 11, 7, 9, 8, 14, 12, 
13]. 

In the paper we consider the absolutely free algebra F = K{X} of 
infinite rank on a countable set X of free generators x\, X2,... over a fixed 
field K of characteristic zero. Fm is the subalgebra of rank m generated by 
Xi,X2,..., xm. We denote by Sn and GLm the symmetric group and the 
general linear group, acting on the set of symbols {1 ,2 , . . . ,»} and on a 
m-dimensional vector space, respectively. 

Let I be a T-ideal in F and SETt a variety corresponding to I. We denote 
F/I by F{m} and Fm/FmM by Fm( SW). The space P„(QJi) of all multilinear 
polynomials of degree n from Fn(97t) has a structure of a left 5„-module. 

(97t) is a left GIm-module too. 
The irreducible 5„- and GZTO-modules are described by Young diagrams. 

For a partition A = (Ai , . . . , Ar) of n, Ai > . . . > Ar > 0, Ai + . . . + Ar = n 
we denote by M{A) and Nm(A) the Sn- and GZ/m-modules corresponding to 
A. One can look into [4, 15, 6, 10] for details on the representation theory 
of the symmetric and general linear groups. 

The subvarieties of 9Ji form a lattice A(VJl) with respect to the intersec-
tion and the union of subvarieties. The question of distributivity has been 
treated by consideration of Pn(9JI). Because of [2] yi(SDT) is distributive iff 
Pn(9JT) for all n is a sum of pairwise non-isomorphic irreducible ¿"„-modules 
M( A). 
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It is known [6] that the homogeneous component Fm\?01) of Fm(D3t) and 
Pn($Ji) have the same module structure. If Pn(9JI) = k(\)M(X), then 

= X^a k ( \ )N m ( \ ) . Thus for convenience the investigations in the 
paper are on the GZ/m-structure of Fm . For n = 2,3 we have: 

Fi2) = i\rm(2) + i \rm( i , i ) , 

4 ? ) = 2iVm(3) + 4iVm(2,1) + 2iVTO(l3). 

Generators of the modules Nm(3) are x3 and x\x\] the modules with dia-
grams [2,1] are generated by f \ = XiX2Xi — x2xixi, f2 = xi(x2xi) — x2xj, 
/3 = x\x2 — x2x\x\ and f i = xi(xix2) — x2x\\ generators of iVm(l3) are 
<$21(21,3:2,23) = E ^ s J - ^ ^ d ) ^ ) ^ ) a n d •S'l2(a;i,®2,«3) = 
S t f e s s i - 1 ) ^ ^ ! ^ 1 ^ ) 2 ^ ^ ) ) , where (-l)*7 means the sign of the permu-
tation a. 

So identities are needed, which "glue" the isomorphic modules, so that 
the sum in 

F ^ i t m ) will be of non-isomorphic ones only. 
For the modules Nm(3) such an identity is 

(1) alX
3 + faxx2 = 0, for (c*i,/?i)/ (0,0), 6 K. 

It means that 

(1°) xx2 = 0 if a i = 0, or 

(l6) x3 - kxx2 = 0, where k - fa/cn if ax ^ 0. 

For Nm(2,1) the following system has to be fulfilled: 
7 1 1 / 1 + 712/2 + 713/3 + 714/4 = 0 

(2) 7 2 1 / 1 + 722/2 + 723/3 + 724/4 = 0 

7 3 i / i + 732/2 + 733/3 + 734/4 = 0 

and rank A = 3, where 

A = 
711 712 
721 722 
731 732 

713 714 
723 724 
733 734 

7 i j e K. 

It means that the following identities hold: 

(2°) fi = 0 for i = 1 , . . . , 4 , or 
( 2 b ) fi - kif4 = 0 f o r i = 1 , 2 , 3 a n d f o r klt k2, k3 € K, if / 4 = 0 

is not an identity. 

For the modules Nm(l3) the needed identity is 

(3) a2-S2i(zi , £2,2:3) + #2 ^12 ( » 1 , 2 2 , 2 3 ) = 0, 
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w h e r e ( a , / 3 2 ) ^ ( 0 , 0 ) , a 2 , / ? 2 £ K. I t m e a n s t h a t 

( 3 ° ) 5 U ( ® I , X 2 , ® 3 ) = 0 i f a 2 = 0 , o r 

( 3 6 ) 5 2 i ( ® i , ® 2 , a ; 3 ) ~ pSi2(xi,x2,x3) = 0 , w h e r e p = f32/a2 i f <*2 i 0 . 

I n t h e p a p e r t h e f o l l o w i n g v a r i e t i e s a r e e x a m i n e d : 

3 J t i = [ * , k i , k 2 , k 3 , * ] w i t h i d e n t i t i e s ( l a ) , ( 2 6 ) a n d ( 3 ° ) , 

T l 2 = [* ,fc i ,Jfc 2 , fc 3 , .p] w i t h i d e n t i t i e s ( 1 ° ) , ( 2 6 ) a n d ( S 6 ) , 

m3 = [k,kltk2,k3,*] w i t h i d e n t i t i e s ( l b ) , (2 f c ) a n d ( 3 ° ) , 

m 4 = [Jfc, * , * , * , * ] w i t h i d e n t i t i e s ( l 6 ) , ( 2 ° ) a n d ( 3 a ) , 

VJ l 5 = [fc, * , * , * , p ] w i t h i d e n t i t i e s ( l 6 ) , ( 2 ° ) a n d ( 3 6 ) , 

S0T6 — a v a r i e t y , f o r w h i c h P3(VJl6) = M ( 3 ) . 

F o r a m u l t i h o m o g e n e o u s p o l y n o m i a l f ( x i , . . . , xr) o f d e g r e e A ; i n X{ w e 

d e n o t e b y 

l i n ( / ) = f{x{iy\\,..., 3/1 ; . . . ; xr\yr\,..., yT\T) 

t h e l i n e a r i z a t i o n o f f{x\,..., xm) w h i c h e q u a l s t h e m u l t i l i n e a r i n yij f o r 

i = 1 , . . . , r component of 

f(x i + y n + ... + yi\1,...,xr + yri + ... + yr\T). 

W e p o i n t t h a t / = 0 a n d l i n ( / ) = 0 a r e e q u i v a l e n t [6]. 

PROPOSITION 1 . 1 . Let M be an Sn-submodule of Pn and let Q be the set 
of the multilinear consequences of degree n + 1 of the polynomial identities 
of M. Then Q is an Sn+\-module of Pn+i which is a homomorphic image 
of the S„+1 -module 

( ( M a 5 „ _ ; t ) ®K (M(2) + M(l2)ysn+1 + 2 ( M ®K J W ( 1 ) ) t 5 „ + i , i.e. 

a) In the first summand 5„_i acts on the set { 1 , . . . , n — 1 } fixing n. S2 

acts on {n,n + 1 } , the tensor product is an Sn-1 x S2-module, where the 
direct product 5n-i * S2 is canonically embedded in Sn+1. 

b) The consequences f{x\,..., xn). zn+i for f € M and xn+i • f(xi,... 
. . . , X N ) generate two factor-modules M ®k A f ( l ) ^ 5 N + I , where Sn X is 
canonically embedded in Sn+\. 

C O R O L L A R Y 1 . 2 . Let X be a partition of n and let M(A) C Pn• Then the 
Sn+i-module M ' ( A ) of all multilinear consequences of M{A) in P n + i equals 

<*tiM(fJ,), where the non-negative integers A^ are bounded by the number 
of diagrams [/x] obtained by the following devices: 

a) We remove a box from [A] and obtain a diagram [v\. Then we add two 
new boxes to [i^] and produce a diagram [/i] such that these two new boxes 
do not belong to one and the same column of if we consider the module 
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M{2) ( o r do not belong to one and the same row o f [/¿] i f we consider the 

module M ( l 2 ) ) , 

b ) We add a new box to [A] and obtain [¿t]. 

2. Consequences of degree 4 as linear combinations of the gen-
erators of the modules Nm(A) 

The symbols x, y, z, t will be used for the free generators of K{X}. The 
needed identities of degree 3 are written as: 

di = x 3 - kxx2 = 0 

d\ = xyx — yxx — k i ( x ( x y ) — y x 2 ) = 0 

(2.1) d 3 = x ( y x ) - yx2 - k 2 ( x ( x y ) - y x 2 ) = 0 

¿4 = x 2 y — yxx — f c 3 ( x ( x y ) — y x 2 ) = 0 

¿ s = S 2 i ( x , y , z ) - p S u ( x , y , z ) = 0 , k, k u k2,k3,p G K . 

A : Ni(4). Due to 1.2 we can have the following diagrams: 

(Ai) r m - + r r n ® n 

(A2) r m ^ m ® m 

(A3) P P ^ m ® m 

For (A 1) we have d\x = 0 and xd\ = 0. For (A 2) we linearize partially 
d\ and substitute u = x2 i.e. d i ( x l x 2 ) = 0. For (A 3) we consider d\{y = x2) 

for i = 2 ,3 ,4. So we get the system: 

x4 — kxx2x = 0 

xx3 — kx(xx2) = 0 

x 4 + xx 2 x + x2x2 — k(x2x2 + xx 3 + x (xx 2 ) ) = 0 

XX2X - xi - k ! ( x ( x x 2 ) - x2x2) = 0 

xx3 — x2x2 — k2(x(xx2) — x2x2) = 0 

(2.2) 

2 2 4 XX — X k3(x(xx ) — X X ) = 0 

B : ^ ( l 4 ) . The generators of the modules now are: 

h = S 2 1 1 ( x , y , z , t ) , f 2 = S 1 2 i ( x , y , z , t ) , f 3 = S 2 2 ( x , y , z , t ) , 

h - S i ( 2 i ) ( x , y , z , t ) , f 5 = 5 1 ( 1 2 ) (x , j / , z , i ) . 
The indices show the way of brackets in the standard polynomials, for 

example S m = £<T6s4(_l)<Ta;<T(i)(a;<T(2)2;<7(3))a;<7(4)-
According to Corollary 1.2 we have the following diagrams: 

(Bl) 
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(B2) 

(B3) EP-B®B 
For (B 1) right and left multiplication of d$ by t give 

(bl) 
(b2) 

f l - PÍ2 = 0, 
h - v h = 0 . 

For (B 2) we consider d5(z = [z,£]), in which three times a circling permu-
tation of x, y, z, t is made alternating the signs. Then we transpose y and 
z in d$(z = [z,t]) and again a circling of x, y, z, t is used. The sum of the 
six identities thus received leads to 

For (B 3) in d2{x\[z,t\) we transpose x and y and then x and t. In the first 
circling permutation of x, y, z, t in d2(xl[z, f]) we transpose y and z and then 
x and y. In the second one the transpositions are of z and t and then of y 
and z. In the third one we transpose x and t and then z and t. So we come 
to 12 consequences, the sum of which is the identity 

Identities ( b l ) , . . . , (b6) will be cited as (2.3) later on. 
C : ^ ( 3 , 1 ) . The standard generators now are: 
a\ = xyxx — yxxx and a,- (1 = 2 , . . . , 5 ) for brackets (*(**)*), (**)(**), 

*(* * *) and *(*(**)); 

61 = x2yx — yxxx and b{ (i = 2 , . . . , 5) for the respectvive brackets; 
a = x3y — yxxx and c,- (i = 2 , . . . , 5) for the respective brackets. 

The system (2.5) in this case consists of identities 
(cl) 2a3 + h-ci + c2- fci(a5 - 63 + c3 + 2c4) = 0, 

(c2) -ai + a3 + bl + b2- ki(-a3 + c 3 + c4 + c 5 ) = 0, 

(c3) a2 + a3 + b1-k1(bs + C3 + c4) = 0, 

(c4) ai - kib2 = 0, 
(c5) - a 4 + 64 - ki(-as + c 5 ) = 0, 

(c6) ai - a2 + b2 - 6 3 + c3 - k(a3 - a4 + 64 - 6 5 + c5) = 0, 
(c7) 2 a 1 - a 3 - & 1 + 2 & 2 - c i - C 2 + 2 c 3 - A ( 2 a 3 - a s - & 3 + 2 6 4 - c 3 - c 4 + 2 c 5 ) = 0, 

(b3) f i ~ h + h ~ ?{h - h + h ) = 0. 

(b4) ~ f l +f2+ 2 / 3 - * l ( / 3 + 2 /4 + / 5 ) = 0. 

Analogous transformations on d3 and lead accordingly to: 

(b5) - f 3 + U + 2/5 - k2 ( f 3 + 2 / 4 + fh) = 0 and 

(b6) f i + 2 / 2 + f3 - k 3 ( f 3 + 2 / 4 + / 5 ) = 0. 
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( c 8 ) a i + 6 i - 3 c i - f c ( a 2 + & 2 - 3 c 2 ) = 0 , 

( c 9 ) a 4 + b4 + c4 - k(a5 + b5 + c 5 ) = 0, 

(c lO) a3 - &i + ci - c 2 - p(a5 - b3 + c3 - c 4 ) = 0 

and those of the system ( 2 . 4 ) : 

2a5 + b3 - c3 + c4 - k2(a5 - b3 + c3 + 2c4) = 0 
—«3 + as + &3 + &4 - k2(-a3 + c3 + c4 + c5) = 0 

a4 + a5 + b3- k2(bs + c3 + c4) = 0 
a2 - k2b2 = 0 

(2 4 ) - a s + 65 - ¿ 2 ( - 0 5 + c 5 ) = 0 

«3 - + ci + 2c2 - k3(a5 -b3 + c3 + 2c4) = 0 
- a i + ci + c 2 + c 3 - fc3(-a3 + c 3 + c 4 + c 5 ) = 0 

i»3 + ci + c 2 - fc3(&5 + c 3 + c 4 ) = 0 

h - = 0 

- a 4 + c4 - k3(-a5 + c5) = 0. 

D : N3(2, l 2 ) . T h e s tandard generators now are: 

/l = XI i-1)*®^!)®^)®^)«!, 9\= (~1VX<r(l)X<T(,2)^l^<j(3), 
<t€53 <T€53 

= T, {-^Y xc{i)X\X^2)Xc(3y 
o-es3 

For brackets ( * ( * * ) * ) , ( * * ) ( * * ) , * ( * * * ) and * ( * ( * * ) ) the indices are 2 , . . . , 5 , 
respectively. 

T h e system for N3(2, l 2 ) is formed by identities 

( d l ) -fx + f3 + gi + g2 - g3 - h2 - p(-f3 + fs + g3 + g\ - gs - h4) = 0 , 

(d2) f i - p f 2 = 0, 
(d3 ) f i -g4 + h4 -p(f5 - gs + h5) = 0 , 

(d4) fi+f3-gi+g2+g3+2h1+h2-p(f3+f5-g3+gi+g5+2h3 + h4) = 0, 
(d5 ) fi + 2 / 2 + f3 + " 92 ~ 03 + h2 + 2h3 

- K h + 2 / 4 + h + 93 - 54 - gs + hi + 2/15) = 0, 

( d 6 ) —fi + Zgi — k i ( f 2 + 3 / i 2 ) = 0, 

(d7) 2/4 + g4-h4- hifs + 205 + h5) = 0, 
(d8) -h + 2 / 2 -gi-g2 + h2- fci(-/3 + f5 - g3 - g5 + 2h5) = 0, 
(d9 ) h ~ 2 / 3 - 9i + 52 - 253 + 2 ^ + h2 

- * i ( - / 3 - fs + 93 + 2g4 -g5- 2h3 + 2h4) = 0, 
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( d l O ) h ~ h + h ~ 93 ~ h(93 ~94 + h 4 - h 5 ) = 0 

and those of the following system (2.6): 

- / 2 + 3fiT2 - + 3^2) = 0 
2 / 5 + <75 - / is - k 2 ( f s + 205 + h ) = 0 

- h + 2 / 4 - 93 - 9i + h4 - k 2 ( - f 3 + h ~ 93 ~ 9s + 2/15) = 0 

f z ~ 2/s - 53 + 9i - 205 + 2 h 3 + hi 

- k 2 ( - f 3 " h + 93 + 2<74 - - 2 / 13 + 2 / 1 4 ) = 0 

( 2 61 f s - h + f s - 9 s - h(93 - 94 + - h5) = 0 

U + 2<74 + /i4 ~ fc3(/5 + 2ffs + /»5) = 0 
- / 1 + /a " 9i ~ 93 + 2/13 - * 3 ( - / 3 + /s - <73 - 5s + 2/is) = 0 
- / 1 - /a + 9i + 202 - 03 - 2/n + 2h2 

- k 3 ( - f 3 - / s + 03 + 2 0 4 - 0s - 2 / 13 + 2 / i 4 ) = 0 

0 1 - 02 + h2 - h3 - k3(g3 - 04 + hi - h5) = 0 . 

Briefly the system of the consequences is denoted by (2.7). 
E : iV2(22). A standard generator in this case is 

f l = ^ 2 (-ir+TMl)XT(l)Z<7-(2)Zr(2)-

For brackets (*(**)*), (**)(**), *(* * *) and *(*(**)) the indices of the 
generators will be 2 , . . . , 5. 

Another generator is 

<r,reS2 

and for the corresponding way of brackets f j , . . . , f i o -

The system (2.9) in this case is formed by identities (e l ) , . . . , (e6) and 
those of the system (2.8): 

( e l ) 2 h ~ h + 2 / 3 - h - h - h - * ( 2 / s - U + 2 / s - h ~ h - f i o ) = 0 , 

(e2) - f 2 + fe + f s + f 9 - P ( ~ f i + h + h + f i o ) = 0, 
(e3) h ~ h f 2 = 0, 
( e 4) U - h ~ h h = 0, 
(e5) f2 - h + 2/s - h ~ ki{2U - 2/7 + / 8 + /1 0) = 0, 
( e 6 ) — 2 / i - f 2 + f 6 - f 9 - h ( - 2 f 3 + 2 / s + 2 / s + h ~ f i o ) = 0 , 
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(2.8) 

h - ¿2/2 = 0 
h - ho - k2h = 0 
h ~ h ~ h + 2/io - ¿2(2/4 - 2/ 7 + U + /10) = 0 

- 2 / 3 - f é - f r + f s - M - 2 / 3 + 2/s + / 8 - /10) = 0 

/1 - h f 2 = 0 
fi - hh = 0 
2/2 + fe + h - 2/9 - ¿3(2/4 - 2/7 + fs + f10) = 0 

- 2 / 1 + 2/3 + h ~ h ~ M - 2 / 3 + 2/5 + h ~ fio) = 0. 

3. Description of P^Wli) for i = 1 , . . . ,5 and Pn(D3î6) 
Having already obtained the homogeneous linear systems for the stan-

dard generators of every module Nm( A), we determine the rank of the matrix 
of the corresponding system in any of the considered cases. If the system has 
a trivial solution only, there is no module with the corresponding diagram 
in PA@Jli). If the rank is not maximal, we define the multiplicities k(A) in 
the decomposition of P^(9Jli) into a sum of irreducible modules i.e. in 

(3.1) Pi(m) = fc(4)M(4) + Jfc(l4)M(l4) + Jb(3,1)M(3,1) 
+ k(2,12)M(2, l 2 ) + fc(22)M(22) 

T H E O R E M 3 .1 . For SDTi = [*,h,k2,k3,*] in ( 3 . 1 ) 

a ) ¿(4) < 1 i f , [*,/:i,2,A;i — 1,*] and a generator of the module M( 4) is 
the complete linearization of x2x2, 

b) £(14) < 1 i/[+, ¿1,0,1 — fcj,*] and the module M ( l 4 ) is generated by 
S\(2\){X1,X2,X3,XA), 

c) Jfc(3,1) = 0, 
d) k(2, l 2 ) < 1 if [*, 0,1, —1, *], where a generator of M(2, l 2 ) is the 

linearization of E<Tes3(_1)<ri^i)(a:«-(2)(a;^(3)®i))) 

e) Jb(22) = 0. 
f) Otherwise the variety QJti is nilpotent of index 4. 

P r o o f . We consider the corresponding Gim-modules. 
(4): The system (2.2) leads to the following matrix of the coefficients of 

the generators x2x2, xx3 and x4: 

A = 

1 
h 
k2 - 1 

Lfc3 + 1 

l 
0 
1 
0 

0 
- 1 

0 
- 1 J 

r * i 
1 
¿ 2 - 2 
k3 - h + 1 

0 
1 
0 
0 

- I l 
0 
0 
0 J 

Rank A = 2 gives the conditions on k2 and ¿3 in a). 
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(l4): In this case the first three identities of (2.3) are changed, namely 
/2 = 0, /s = 0, f3 — j\ = 0 and the matrix of the coefficients of / i , f3 and 
is the following: 

" 0 1 - 1 "I I" 0 1 0 
. _ - 1 2 - f c i -2ki - 1 2 - f c i 2 - 3 h 

0 - 1 -k2 l-2Jfc2 ~ 0 -l-k2 -3k2 
. 1 l - k 3 -2k3 J L 0 3 - k i - k s 3 - 3 k i ~ 3 k 3 . 

(3.1): Corresponding to (c6) , . . . , (clO) of (2.5) are now the identities: 
a5 + bs + c5 = 0 
as - h + c3 - c4 = 0 
0-3 — 04 + — h + C5 = 0 
2a3 - a5 - 63 + 264 - c3 - c4 + 2c5 = 0 

03 + &2 - 3C2 = 0 

The system has a trivial solution only. 
(2, l2): Corresponding to ( d l ) , . . . , (d5) of (2.7) are: 

~ h + h + 93 + 94 ~ 95 ~ ^ = 0 
h = 0 
h ~ 95 + h5 = 0 
f3 +¡5 -93 +94 + 95 + 2/13 + /*4 = 0 
/a + 2/4 + h + 53 - 94 - 95 + hi + 2/15 = 0. 

Easily we get the following matrix A n x u ' 
• 0 - 1 0 0 0 1 1 0 0 0 -1 — 1 

0 1 0 2 0 - 1 1 0 0 2 1 1 
0 1 2 0 0 1 - 1 0 0 0 1 1 

- 1 0 0 0 3 0 0 0 -3*1 0 0 0 
0 0 -2 3*i 0 0 - 1 0 0 0 1 3*1 

- 1 0 0 - 1 0 0 1—*2 0 0 
1 jfci-2 0 2*1 -1 -2 ki 2 l+*2 2*x -2*i 
1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 *2 
0 *2-l 2 0 0 *2-l - 1 0 0 0 1 "*2 
0 l + *2 0 2*2-4 0 - l -*2 1-2*2 0 0 2+2*2 1-2*2 *2" 
0 1 -1 0 0 "*2 *2 0 0 0 -*2 *2-
1 0 0 0 0 0 0 3 -3*3 0 0 0 
0 0 1 0 0 2 0 0 0 1 -3*3 

-1 l+*3 0 0 -1 *3-l 0 0 0 2 0 *3 
-1 *3-l 0 2*3 1 - l-*3 -2*3 -2 2+2*2 2*3 -2*3 *3 

0 0 0 0 1 "*3 *3 0 l-*2 - 1 *3 *3 
Investigations on its rank give the result. 
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(22). Now the first two identities in (2.9) are 

2 / 3 - U + 2 / s - h - h ~ fio = 0 and - U + h + h + /10 = 0 
The system has a trivial solution only. 

P r o o f o f c o n d i t i o n f). The partial linearization of xi = 0 and the 
identities a j = 61 = Ci = 0 lead to yxxx = xyxx — x2yx — x3y = 0. New 
partial linearizations in x and f\ = fe = 0 (generators for iV2(22)) lead to 

x2yy = xyyx = yxxy = y2xa; = xyxy = yxyx = 0. 

In a similar way the partial linearizations of these identities in y and 
f i = gx = hi = 0 (generators of N3(2,l2)) lead to zxxy = xyxz = x2yz = 
xyzx = yxzx = yzxx = 0. 

New linearizations and /1 = 0 (a generator of iV^l4)) give zytx = 0. 
Another way of brackets is treated anagously. 

THEOREM 3 .2 . ForD)l2 = [ * , k 3 , p ] the conditions on the multiplic-
ities of the modules in (3.1) are the following: 

a ) &(4) < 1 *7 [*>fci>2,fci — l,p]. The module M(4) is generated by the 
complete linearization of x2x2, 

b) *(l4) < 1 if[*,ku2- * i , * i , 0 ] , or 

[*,ki,k2,k3,p ± 0,1 : k2(p2 -2p-l) = pkx + h - 2, 

+ 3p + 1) = 2 + p - fc3 - pk3]. 

The module M ( l 4 ) ¿s generated by £i(i2)(a;i, x2, x 3 , £4), 

c) jfc(3,l) = 0, 
d) 1 < k(2, l 2 ) < 2 i / [ * , —2, —1, —1, —1]. Module generators are the 

linearizations o/EagSsC-^OMljx^Kxii^a)) and Effes.i-1)"®^!) x 

(®<t(2)®1®O,(3) ) j 
e) fc(22)<l if[*,0,1, — l,p]. M(2 2 ) ¿5 generated by the complete linealiza-

tion of Y^a t€S2(—^Y+ T x<t(I){xt(I){xc(2)xt(2)))- The same unequality holds 
for both the cases [+,2,-1,1,1] and [*, —2, —1, —1,5] and the module M(22) 
is generated by the complete linearization of Tes2(~l)<T+Tx<rWx<?(2) x 

(*T(1)®T(2))-

f ) Otherwise is a nilpotent variety of index 4. 

THEOREM 3 .3 . Fori))I3 = [k,ki,k2,k3,*] we have in ( 3 . 1 ) : 

a) *(4) < 1 i/[0,A;i,Ai,-fci,*], [l,kuk2 f l , f c 3 , * ] or 

[IB 0; A;2, * : k3(k- 1 ) = k2 - k + k^, 2k3 = 2k + ki - ( 3 + 

k(4) = 1 if[l,k! £ 0,A;2,A:3,*] or [1, ku k2, k3 ± - 1 , * ] . 

M(4) is generated by the complete linearization of 
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x(xx 2 ) , 1 < ¿(4) < 2 if [ 1 , 0 , 1 , - 1 , * ] . The two generators are complete 
linearizations ofxx2x and x(xx2), 

b) &(14) < 1 if [k,ki,0,1 — The module M(l4) is generated by 
Sl(12)(xi,X2,X3,X4), 

c) k(3,1) < 1 if [0 ,0 ,0 ,0 ,*] or [1 ,0,0,1,*] . In the first case M(3,1) is 
generated by the complete linearization o/S<t6S2(— l) t T ; Ecr(i)(a ;i( : cia ;<T(2))) or 

by that of E<7es 2 ( — ^Y xc(i)xixixc(2) the second one, 
d) k(2, l 2 ) = 0, 
e) Jb(22) < 1 if[k / 1 , 0 , 1 , - 1 , * ] . The module M(2 2 ) is generated by the 

complete linearization of E 0 - , T es 2 ( - 1 ) < 7 + T ( : Mi)®t(i )X®«t(2)®t(2)) , 
fc(22) = 2 z / [ 1 , 0 , 1 , —1, *]. Generators are the complete linearizations 

o/E^.res^-1) (x^(i)a ;T(i))(^(2)a ;T(2)) and of Eff,T6Sa(-1)'+T®»(i) x 

(iT(1)a;£r(2)XT(2)). 
f ) Otherwise the variety SUI3 is nilpotent of index 4. 

T h e o r e m 3 . 4 . If in 9JT4 and 9Jt5 k / 1 i /jen P 4 ( 2 J t 4 ) = { 0 } and P 4 ( 9 J I 5 ) 
= { 0 } . For k = 1 P 4 ( 9 t t 4 ) - M ( 4 ) a n d P 4 ( 9 J t 5 ) = M(4). 

T h e o r e m 3 . 5 . P „ ( S J l 6 ) = M ( n ) / o r n > 3 . 

Proof . Because of /¿=0 ( t = l , . . . , 4 ) and 5i2=5l2i=0 xi.. .xfcxjt+i 
.. .X4—x\ .. .xk+\xk . . .x 4 G P4(OT6)nT(im6) for any brackets save (**)(**). 
In the last case we refer to the corresponding to (2.2), (2.3), (2.5), (2.7) and 
(2.9) systems and get P4(2Jie) = M(4). Using induction on n we see that 

n € Pyx 

If k > 1 then 

(XX(. ..Xk))(xk+iXk+2 ...Xn)- (Xi( . . ,Xk+1))(xkXk+2 ...Xn) 

= xk+l(xl(.--xk)xk+2 • • -xn) ~ Zfc(2l(. . .Xfc+l)Xfc+2 • • .Xn) 

= xk+l(xl(---xk+2)xk • • -xn) ~ xk(xl(---xk+2)xk+l •••xn) 

= (xl(---xk+2))(xk+lxk . . .®n) - («l(. ..Xjt+2))(«feXfc+i . ..Xn) = 0. 

For k = 1 

x i ( x 2 , x 3 . . . X n ) - X2(x1X3...Xn) 

= (Z2Z3XZ1Z4 • • • x„) - (xix3)(x2a;4 . . . ®n) 
= (X2(X1X4))(X3X5 . . . Xn) - (X1(X2X4))(X3X5 . . . Xn) = 0. 

All the equalities are modulo Pn_i n T(OT6). So Pn(97t6) = M(n). 
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