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A NOTE ON OPIAL TYPE INEQUALITIES 
INVOLVING PARTIAL SUMS 

1. Introduction 
In [8] Z. Opial found an interesting and useful integral inequality invol-

ving a function and its derivative. Further, a large number of papers deal 
with various extensions and generalizations of the Opial inequality (see [1], 
[5]—[10]). The main purpose of the present note is to establish two new Opial 
type inequalities involving partial sums. Our results are based on the Hardy 
inequality involving partial sums (see [2]—[4]) and the discrete analogue of 
the Opial inequality given by Wong in [10]. 

2. Result 
First, we recall the known inequalities. 

LEMMA 1 (see [2]-[4]). Let An > 0, an > 0, n = 1,2, . . . , and An = 
Aj + . . . + An, An = Axax + . . . + Anan. Then 

LEMMA 2 (see [10]). For nondecreasing sequence of nonnegative numbers 
(un}i° we have 

n = l 

with u0 = 0 . 

m , - i \p to 
2 - Un_i) < ^ r r E K - "n-l)P+1, p > 

=1 r n = l 
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Our result is given in the following theorem. 

T H E O R E M . Let p > 1, q > 1 and A N , an, An, An be as defined in 
Lemma 1. Then 

(1) E Al{Al-Al_x)^ , p + q 

n = l 

m 

v + a - 1 ' n-l 

(2) j T A U A l - A U ) < g ( m + | )
g

P + 9 " 1 ¿ ( A n O n ) ^ , 
n = l n = l 

where any number with suffix zero is zero. 

P r o o f . Since An-\ < An, we have 

9 - 1 
(3) Al{Al - A U ) = ^ ( X ^ r 1 - ^ - ! ) ^ - An—i) < 

Jt=0 

<qAi+*-\An-An-X) 

which implies, by using the Holder inequality with indices p + q, and 
Lemma 1, the inequality 

jkAUAl-AU) < 

n-l /[P+9-1 

p+q-1 
(Anan)— 

P+9-1 

p+9-1 
P + 4 

71 = 1 ^ / i i l ' 

"L _1_ p+«-i / 4 \ 
= T 1 

n = l 

771 1 r 771 4 

n = l *-n=l n 

m i r / . \ p+g m 

7 1 = 1 L I 1 / n = 1 

/ I \ P+9 —1 m 

r+i-i J> + « 

proving (1). 
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From (3), using Lemma 2, we have 
Til 771 

- < q J 2 K + q - l ( A n - An-i) < 
71=1 71=1 

èÌ 

which proves (2). 
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