

B. G. Pachpatte

A NOTE ON OPIAL TYPE INEQUALITIES
INVOLVING PARTIAL SUMS

1. Introduction

In [8] Z. Opial found an interesting and useful integral inequality involving a function and its derivative. Further, a large number of papers deal with various extensions and generalizations of the Opial inequality (see [1], [5]–[10]). The main purpose of the present note is to establish two new Opial type inequalities involving partial sums. Our results are based on the Hardy inequality involving partial sums (see [2]–[4]) and the discrete analogue of the Opial inequality given by Wong in [10].

2. Result

First, we recall the known inequalities.

LEMMA 1 (see [2]–[4]). *Let $\lambda_n > 0$, $a_n \geq 0$, $n = 1, 2, \dots$, and $A_n = \lambda_1 + \dots + \lambda_n$, $A_n = \lambda_1 a_1 + \dots + \lambda_n a_n$. Then*

$$\sum_{n=1}^m \lambda_n \left(\frac{A_n}{A_n} \right)^p \leq \left(\frac{p}{p-1} \right)^p \sum_{n=1}^m \lambda_n a_n^p, \quad p > 1.$$

LEMMA 2 (see [10]). *For nondecreasing sequence of nonnegative numbers $\{u_n\}_1^\infty$ we have*

$$\sum_{n=1}^m u_n^p (u_n - u_{n-1}) \leq \frac{(m+1)^p}{p+1} \sum_{n=1}^m (u_n - u_{n-1})^{p+1}, \quad p \geq 1,$$

with $u_0 = 0$.

AMS subject classification (1991): Primary 26D15, 26D20.

Key words and Phrases: Opial type inequalities, partial sums, Hardy's inequality, discrete analogue, Hölder's inequality.

Our result is given in the following theorem.

THEOREM. *Let $p \geq 1$, $q \geq 1$ and λ_n , a_n , Λ_n , A_n be as defined in Lemma 1. Then*

$$(1) \quad \sum_{n=1}^m \frac{A_n^p (A_n^q - A_{n-1}^q)}{\Lambda_n^{p+q-1}} \leq q \left(\frac{p+q}{p+q-1} \right)^{p+q-1} \sum_{n=1}^m \lambda_n a_n^{p+q},$$

$$(2) \quad \sum_{n=1}^m A_n^p (A_n^q - A_{n-1}^q) \leq \frac{q(m+1)^{p+q-1}}{p+q} \sum_{n=1}^m (\lambda_n a_n)^{p+q},$$

where any number with suffix zero is zero.

Proof. Since $A_{n-1} \leq A_n$, we have

$$(3) \quad A_n^p (A_n^q - A_{n-1}^q) = A_n^p \left(\sum_{k=0}^{q-1} A_n^{q-1-k} A_{n-1}^k \right) (A_n - A_{n-1}) \leq \\ \leq q A_n^{p+q-1} (A_n - A_{n-1})$$

which implies, by using the Hölder inequality with indices $p+q$, $\frac{p+q}{p+q-1}$ and Lemma 1, the inequality

$$\begin{aligned} \sum_{n=1}^m \frac{A_n^p (A_n^q - A_{n-1}^q)}{\Lambda_n^{p+q-1}} &\leq \\ &\leq q \sum_{n=1}^m \left(\frac{A_n}{\Lambda_n} \right)^{p+q-1} (\lambda_n a_n) = \\ &= q \sum_{n=1}^m \alpha_n^{\frac{1}{p+q}} a_n \lambda_n^{\frac{p+q-1}{p+q}} \left(\frac{A_n}{\Lambda_n} \right)^{p+q-1} \leq \\ &\leq q \left(\sum_{n=1}^m \lambda_n a_n^{p+q} \right)^{\frac{1}{p+q}} \left[\sum_{n=1}^m \lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{p+q} \right]^{\frac{p+q-1}{p+q}} \leq \\ &\leq q \left(\sum_{n=1}^m \lambda_n a_n^{p+q} \right)^{\frac{1}{p+q}} \left[\left(\frac{p+q}{p+q-1} \right)^{p+q} \sum_{n=1}^m \lambda_n a_n^{p+q} \right]^{\frac{p+q-1}{p+q}} = \\ &= q \left(\frac{p+q}{p+q-1} \right)^{p+q-1} \sum_{n=1}^m \lambda_n a_n^{p+q} \end{aligned}$$

proving (1).

From (3), using Lemma 2, we have

$$\begin{aligned}
 \sum_{n=1}^m A_n^p (A_n^q - A_{n-1}^q) &\leq q \sum_{n=1}^m A_n^{p+q-1} (A_n - A_{n-1}) \leq \\
 &\leq \frac{q(m+1)^{p+q-1}}{p+q} \sum_{n=1}^m (A_n - A_{n-1})^{p+q} = \\
 &= \frac{q(m+1)^{p+q-1}}{p+q} \sum_{n=1}^m (\lambda_n a_n)^{p+q}
 \end{aligned}$$

which proves (2).

References

- [1] P. R. Beesack, *On certain discrete inequalities involving partial sums*, Canadian J. Math. 21 (1969), 222–234.
- [2] G. Bennett, *Some elementary inequalities*, Quart. J. Math. Oxford 38 (1987), 401–425.
- [3] E. T. Copson, *Note on series of positive terms*, J. London Math. Soc. 2(1927), 9–12.
- [4] G. H. Hardy, J. E. Littlewood, G. Polya, *Inequalities*, Cambridge Univ. Press 1952.
- [5] D. S. Mitrinović, *Analytic inequalities*, Springer-Verlag, Berlin, New York 1970.
- [6] J. Myjak, *Boundary value problems for nonlinear differential and difference equations of second order*, Zeszyty Nauk. Un. Jagiellon., Prace Mat. 15 (1971), 113–123.
- [7] C. Olech, *A simple proof of a certain result of Z. Opial*, Ann. Polon. Math. 8 (1960), 61–63.
- [8] Z. Opial, *Sur une inégalité*, Ann. Polon. Math. 8(1960), 29–32.
- [9] B. G. Pachpatte, *A note on Opial and Wirtinger type discrete inequalities*, J. Math. Anal. Appl. 127(1987), 470–474.
- [10] J. S. W. Wong, *A discrete analogue of Opial's inequality*, Canadian Math. Bull. 10(1967), 115–118.

DEPARTMENT OF MATHEMATICS
 MARATHWADA UNIVERSITY
 AURANGABAD 431004 (MAHARASHTRA), INDIA

Received September 28, 1992.

