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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 
OF A DELAYED DIFFERENTIAL EQUATION 

1. Introduction 
In this paper we consider the asymptotic expansion of solutions of de-

layed differential equations 
N 

( 1 ) g ( t ) y ( t ) = - a y ( t ) + £ c ^ y ' ( t ) y j (t - r ) , 
t + j = 2 

where N > 2 is an integer, a > 0, r > 0 are constants, g(t) : R+ —• R+, 
Cij(t) : R \ —* R are continuous functions ( further conditions will be given 
latter ). The purpose of this paper is to prove that for each real parameter C 
and function tp € B0 = {V> € C°[-r,0], < 1, ^(0) = 0} which describe 
the power of the set of solutions, there is a solution y(t) = y(t, C, ip) of 1 
which may be at t —• oo represented by asymptotic series (symbol « denotes 
the asymptotic expansions) 

oo 
( 2 ) y { t , C ^ ) * Y , h { t ) v k { t , C ) 

k= 1 
where <p(t,C) is the solution of equation g ( t ) y ( t ) = —ay(t), given by the 
formula ( p ( t , C ) = Cexp J* du, f i ( t ) = 1 and the functions f k ( t ) for 
k = 2 , . . . , n are particular solutions of some system of auxiliary differential 
equations. To prove our results we will use Wazewski's topological method in 
the form, proposed by K. Rybakowski [5], which may be used for differential 
equations with retarded arguments. The first Lyapunoff's method is often 
used to construct the solutions of ordinary differential equations in the form 
of power-like series. Such a way is not possible here. First lefthand ends 
of existence intervals of partial sums can tend to infinity and, secondly, if 
it does not happen, the partial sums need not to converge uniformly. The 
modification of the first Lyapunoff's method were used in [6], [1]. 
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Delayed differential equations appear in many technical problems. The 
form of equation (1) include some equations which have been recently con-
sidered. For example the logistic equation with recruitment delays 

x(t) = x(t - r)(A - Bx(t)) 

which were considered by Gopalsamy [2], with regard to the applications on 
ecology. After substitution x(t) = ^ + y{t) have the form of equation (1), 
where g(t) = 1, a = A, en = —B and c,j = 0 for i ^ 1, j / 1, N = 2. 
Moreover also one branch of the equation partially solved with respect to 
derivative in Diblik's work [1] have (after solving with respect to deriva-
tives) the form of the equation (1), in which are not terms with retarded 
arguments. 

2. Preliminaries 
To describe simply coefficients of power series raised to a power, it is 

suitable to denote: a, ¡3 — are sequences of nonnegative integers with finite 
sumation. 

Let a = {afc}^_1, then we denote 
oo oo oo 

H = afc> = X / ^ = I I a f c ' ' m a x ( ° 0 = m a x ( f c I ak / 0}. 
k=l k= 1 

Let a = {ajfclj^i be any sequence (of numbers or functions). We define 
oo 

a a = J J , where a°k = 1 for every a*, 
l 

Then it is possible to prove 
oo 

k=1 k—n 

where denotes the sumation over all sequences such that |a| = n, V(a) = 
k. As we work with the product of the power series raised to a power, we 
denote the sumation over all couples (a, (5) such that V(a) + V(f3) = 
k, \a\ = i,](3\=j. 

Throughout this paper g(t), G(t) denote functions such that 

C I . g(t) € C°[0, oo), g(t) > 0 for t > t0 and g(t) = 0 (1) as t oo. 
C2. G(t) = o(g(t)) as t oo, where G{i) = (/„* g~\u) du)'1 

C3. there is a constant A > 0 such that 
g(t)-g(t-r)= A 

g{t-r) K 



Asymptotic behaviour of solutions 11 

This condition enables us to consider relative large class of functions: g(t) 
may be constant, a periodical function (r is a period) or there is a positive 
limt-xx) g{t) and if lim^oo g(t) = 0 in addition then the function g(t) must 
satisfy 

t 
J g(u)du = o(gk(t)) as t —• oo, k > 0 is a constant, 
o 

LEMMA 1. Let functions g(t), G(t) satisfy the conditions C l , C 2 , C 3 . 
Then: 

1. G(t) ~ G(t — K ) as t —• oo where K is any constant 
2- g W g ' 1 ^ - ir) - g - \ t - i r + r ) ) = o(Gx(t)) as t o o . 

P r o o f . 

G(t) ¡ ¿ g ~ \ u ) d u - j ^ g - ^ ^ d u 
lim — — = iim = 
i-OO G(t - K ) i-CO J* g-1 („) d u 

t 
= 1 — l i m G(t) f g ~ 1 ( u ) d u = 1, 

t-K 

therefore the function G(t) is a decraesing function and we obtain 
t / 

l i m G(t) f g~l(u) du < l i m f G ^ g ' ^ u ) du < Ko(l) = 0 . 

t-K t-K 

Moreover for t —> oo using C3 we get 
i i 

g(t) = g(t-ir) J ] ( l + o { G \ t - j r ) ) ) = g(t-ir) + o(GA(f)(l + °(1))) 

i=i j=i 

= 9(t~ir) £ (*.) 1 ^ ( 0 ^ ( 0 ( 1 + o ( l ) ) ) r j = g(t - ir)( l + o(GA(0)-

Thus 

Eventually we get 

5(i)(5~a(i - ir) - g~\t - ir + r)) = 

M - M - V _ g ( * ) - j ( « - » > + r) = 0 ( g a ( î ) ) _ 
g(t - ir) g(t - ir + r) y K " 

LEMMA 2 . Let the coefficients of equation 

( 3 ) g ( t ) m = Kv(.t) + E { t ) f ( t ) 

satisfy: 
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1. K > 0 is a constant, 

2 . the functions g(t), G(t) = (/„ g'^u) du)'1 fulfill C l , C 2 , C 3 , 

3 . E{t) = e x p ] C " = i ft-ir T J(u) where Kj > 0 are constants, 

4. the function f(t) has the asymptotic form f(t) = G7(f)6(f) + 
0 (G 7 + e i ( i ) ) , as t —»• oo where e\ > 0, 7 are constants, 6(i) € C^icoo) 
and moreover: b(t) = o(GT(i)) as i 00, for all r > 0, g(t)b(t) = o(Gs(t)) 

as t 00, where S > 0 is a constant. 

Then there exists the solution Y(t) 0/ (3) s«c/i that, the following asymp-

totic relations hold 

Y(t) = £ ( i ) G 7 ( f ) ( - ^ + 0 ( G ' ( i ) ) ) Y(f) = O G r ^ + ' W ) , 

wAere 0 < e < min(A,£i,tf, 1) is a constant. 

P r o o f . After the subtitution y(t) = x(t)E(t) the equation (3) has form: 
n 

( 4 ) g(t)x(t)=(K + ^ K i g ( t ) ( g - \ t - i r ) - g - \ t - i r + r)))x(t) + f(t). 

i=l 

We define the domain ft = {(x,i)|t > to, u(x,t) < 0}, where u(x,t) = 

(aa;+G'1 '(i)6(i))2-G2(7+e)(i)- T h e assumptions of Picard-Lindelof's theorem 
are locally satisfied in the domain ft, therefore throught each (x,t) £ ft goes 
a unique solution of (4). Using the assumptions 1, 2, 3, 4 we compute the 
trajectory derivative ii(x, t) along the solution x(t) of (3) on the bound dft: 

u(x,t) = -^-{KG2^+£)(t) - G2^+c+1\t) + G2<7+£+A>(i)o(l)± 
9\P) 

± G27+e[GA(t)6(i)o(l) + KG^(t)0( 1) - 7 b ( t ) G ( t ) + G5(i)o(l)]}. 

For sufficiently large t the construction of the number £ implies 

sign i(x,t) = sign ^ - G 2 ^ \ t ) = 1. 

Then according to Wazewski's principle [4, p. 282] there is at least one solu-
tion x(t) of (4) such that x(t) 6 ft. The asymptotic form of the solution x(t) 
and also y(t) = E(t)x(t) is obtained from the construction of the domain ft. 

3. Main results 
Let the formal solution of equation (1) be expressed in the form (2), 

where <p(t,C) is the general solution of the equation g(t)y(t) = —ay{t), 

consequently <p(t, C) = C exp J* ds, where C is a constant and fi(t) = 

1, fk(t) for k > 2 are unknown functions for the time being. After substituing 
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y(t,C) in the equation (1) and comparing coefficients of the same powers 
<pk(t,C) we obtain an auxiliary system of linear differential equations: 

N k ., ., 

(5fc) 9 { t ) h { t ) = a(k - l ) f k ( t ) + £ cy(t) £ á f W W 
i+j=2 i,j 

where 
/• t . N OO 

f(í) = { /*( í )}£ i , h (0 = {M')>r=i = { / * ( * - r ) e x p 1-

As V(a) + V(/3) = A; and |a| + |/?| > 2 yields a, = 0 and /?/ = 0 for I > Jb, 
the auxiliary system (5fc) is recurrent. Therefore we may define recurrently 
two sequences of functions: 

( ' i. "Í 00 

p(0 = (Pfc(*)}£i, q(i) = { » ( « ) } £ ! = - r)exp J ^ ds j ^ , 

P i (0 = 1, 
N k 

V > i+j=2 i,j H 

If |/?| ^ 0, then the expresión exp J*_r ^ y ds is included in and also 
in pk(t). Now using Lemma 2 we describe the asymptotic behaviour of par-
ticular solutions of the system 5fc. 

T H E O R E M 1. Let the functions pk(t) have the asymptotic form 

Pk(t) = Ek(t)G^(t)(bk(t) + 0(GCk(t)) 

as t —• oo where sk > 0 , jk are constants, bk(t) G C^ífcjoo), bk(t) = o(gT(t)) 

as t —» o o for any positive r , g(t)bk(t) = o(gXk(t)), as t —> o o , > 0 ¿ s 

a constant. 

n* t—ir+r , 
= e x p ^ t f * f - A -

,=1 t_¿ r ' 

Assume further there is a sequence { ^ / t } ^ ! sucA f/ia£ 

v\t € {ikilk + min(A, ¿fc, - zlfc)), 

where A*k = max(zli , . . Ai = 0, A¡ = 7 i+e¡-u¡ fori = 2,..., k-1. 

Then the coeficients f k ( t ) of the series ( 2 ) , which are the solutions of the 

auxiliary system ( 5 k ) , i. e. 
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( 6 0 fk(t) = 

t > i+j=2 i,j ^ K t ' J 

can be expressed in the asymptotic form 

A M = + H 

P r o o f . The formulas (6fc) are obtained by integrating the system (5fc). 
The convergence of (6fc) is evident. It remains to show the asymptotic esti-
mate (7jt). This will be done by induction. 

For k = 2 the coefficients of the equation (52) satisfy the requirements 
of Lemma 2, thus the solution (62) has the form (72). 

In spite of f(t) being substituted instead of p(t) and h(t) being substi-
tuted instead of q(t), in the recurrent definition of pk(t), the asymptotic 
form 

Pt(t) = g-»mhk(t) + O(b*0k(t)g^(t)))Gk(t) 
has the same asymptotic properties like Pk(t). Therefore the equation (5*) 
satisfies the assumptions of Lemma 2, then (6^) takes the form (7^) and the 
theorem is proved. 

R e m a r k . The necessary condition for satisfying assumptions of Theo-
rem 1 is limt-Kx, Cij(t) exp(—rGf_1(i)) = 0. This is satisfied for example if 
functions c, j(i) have the same asymptotic behaviour Pk{t)-

We shall denote 
n N k 

Vn(t) = Y^fk(t)<pk(t,C) and £ ( « ) = £ ^ ¿ ^ W ^ 
k= 1 n i+j=2 i,j 

T H E O R E M 2. Let the assumptions of Theorem 1 hold and suppose that 

Km / n + i W e x p i - ' r t r 1 ^ ) ) = 0, 

where T < 1 is a constant. Then for every C ^ 0 andtp 6 C°[—r, 0], ||V>|| < 1, 
-0(0) = 0 there exists a solution yc(t) of equation (1) such that 

(8) Iycit) - yn(t)I < ¿»|/n+1(0vn+1(i, C)I 

for t G [<c,oo) where coefficients fk(t) are the solutions (6^) of the sys-
tem (5fc), 6 > 1 is a constant, tc is a function of the parametr C and of 
6, n. 
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P r o o f . The existence of solution yc{t) which satisfies the inequality (8) 
will be proved by Wazewski's principle for retarded functional differential 
equations y = f(t, yt), where yt denotes an element of C° = C°[—r, 0] defined 
as yt(9) = y(t + 9), 0 G [—r, 0] for any continuous mapping y from an 
interval [—r -f t,t] into R. For this method see [5]. The function f(t,yt) : 
R X C ° [ - r , 0 ] —* R, defined by a formula 

1 N 

9^ > i+j=2 

is continuous and Lipschitzian in in each compact set in f2e, where 

Qc = {(t, i>)\t > to - r; ||y> - ynt\\ < A{t)}, 

M = sup \m\ and ^( i ) = (£ + l ) max. (fn+1(6)<pn+1(0,C)) 
-r<e<0 t-r<e<t 

for a positive constant e. Thus for any (i, <j>) G i?e there exists the unique 
solution of the equation y = f(i,yt) [3,p. 42]. 

We shall prove that u; = | l(y,t) < 0, t > tc}, where l(y,t) = 
(y — yn(t))2 — C))2 is regular polyfacial set with respect 
to the equation y = f(t,yt), where f(t,<f>) is defined as above. Then for all 
^ € ( -1 ,1 ) 

l(y, t) = ^ {(±6<Pn+1(t, C)\fn+1(t)\) [ - a(yn(t) ± 6<pn+1(t, C)\fn+1(t)\)+ 

N 

t+j—2 
n 

+ K6\fn+l(t - r)\vn+\t - r, C)Y + ayn(t) - £ <pk(t, C) £(t)] -
fc=i fc 

- (S^(t,C)f[-a(n + 1 )f2n+1(t) + g(t)fn+1(t)fn+1(t)}). 

Using binomial theorem for i, j-power in sumation Yli+j=2 w e obtain 

Kv,t) = ^y((^n+1(i,C))2[-a(n + 1 )fn+1(t) - g(t)fn+1(t)fn+1(t)}± 

± 6 < p n + \ t , C ) [ - j 2 < P k ( t , C ) Y , ( t ) + £ C i t f X y t i t M t ~ r ) + 
k i+j=2 
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where 

V i ( t ) = ^ ^ y - i y - W n ( t - r ) ( K 6 \ f n + 1 ( t - r ) \ e x ? j d s j x 

x ( < p n + 1 { t , c ) y - ' - \ 

Therefore 

{(a,/3) | V{a) + V(/3) < n + 1, \a\ + \f3\ > 2, max(a) < n, max(/J) < n} = 
{(a,/3)\V(a) + V { f l ) < n + 1 , \a\ + \P\ > 2 } , 

we obtain 
N n=l 

E CiiWnWni* - 0 = E C ) E W + 
i+j=2 k-1 fc 

n^ N k 

+ E 2 E 
fc=n+2 i+j=2 i„j„ 

where ^ denotes the sumation ower all (a, 0 ) such that V(a)-\-V((3) = k, 

|a | = i, |/3| = j, max(a) < n, max(/3) < n. 
Eventualy we get 

K y , t ) = ^ f f 2 n + \ t , c ) x 

X [ { a n f l + l { t ) - g ( t ) f n + 1 ( t ) f n + 1 ( t ) ) 8 * ± 6 f n + 1 ( t ) £ ( * ) ] ± 
n+l 

nN N k 

k=n+2 i+j=2 »„j„ 

i+j=2 

For sufficiently large t > tc and i > 1 we deduce that 

sign/(j/,i) = sign(an/^+1(i) - g ( t ) f n + 1 ( t ) f n + 1 ( t ) ) . 

As lim^eo = limt->oo(Gl/"+1_A"+1(<) = 0 we obtain 

sign i ( y , t ) = sign a n f l + 1 ( t ) = 1. 
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Consequently u is the polyfacial set regular with respect to the equation (1), 

W = du, Z = {(.y,tc)\l{y,tc) < 0}. 
We define p : B = Z n (Z U W) = Z C as: 

The mapping is evidently continuos and for every 2 G B p(z) satisfies: 

( i c + € « for 8 £ [—r,0). 

Moreover it holds: Z n W is a retract of W but Z D W is not a retract 
of Z. Then all assumptions of Wazewski principle for retarded functional 
differential equations are satisfied and thus there exists at least one solution 
yc(t) of (1) such that yc(t) € w for t > tc- The asymptotic form of the 
solution yc(t) is obtained from the construction of the domain w and proof 
is complete. 

R e m a r k . As the relation hk(t) = fk(t — r)exp Jfi_r ds is used in 
the definition of the sequences f(i) and h(i) and the function /ifc(f) is used 
in the definition of /fc+i(i) the lefthand end of the existence interval of 
the function fk+i(t) is greater by r then the lefthand end of the existence 
interval of fk(t)- If lefthand ends of the existence intervals of the functions 
Cij(t) are finite then lefthand ends of the existence intervals of the functions 

must tend to infinity. 

C O R O L L A R Y . If all asumptions of Theorem 2 are satisfied for every n, 
then there exists the asymptotic expansion of the solution yc (t) in the form 

oo 

n=l 

where the coefficients fn(t) are the solutions (5„). 

P r o o f . As ^ fn+1(t)<p»+\t,C) _ 
fn(t)<fin(t,C) 

t-oo w bln(t) + 0(g»»-y*{t)) ; 

the assertion is proved. 

E X A M P L E . We consider the equation: 

!»(<) = -2y(t) + y2(t-l) + tsmty2(t)y(t - 1). 
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In this case we have a = 2, r = 1, g(t) = j , A = 2, i(j(t) = —1. Then the 
auxiliary system (4*) have a form: 

- U t ) = 2 ( » - 1 )fn(t) + 7 - ^ T T exp(on/ + 6b)(1 + 0(t-°-9)). 

Using Lemma 2 we obtain: 

fn(t) = ^ T J j ! eXP(fl"f + b»)(! + °(i_0'9))' 

where an = n2 + 2n - 2 and bn = -\{2n3 + 3n2 - l l n + 6). Then according 
the Theorem 2 and corollary we obtain 

°° C ( t2\ 
K t f ) * E e x P + - 2 J • 
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