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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF A DELAYED DIFFERENTIAL EQUATION

1. Introduction
In this paper we consider the asymptotic expansion of solutions of de-
layed differential equations

N
(1) g(®i(t) = —ay(t) + Y iy ()t —1),
i+7=2

where N > 2 is an integer, a > 0, r > 0 are constants, g(?) : Ri — Ry,
¢ij(t) : R% — R are continuous functions ( further conditions will be given
latter ). The purpose of this paper is to prove that for each real parameter C
and function ¥ € B, = {¢p € C°[-r,0],[|¢|| < 1, %(0) = 0} which describe
the power of the set of solutions, there is a solution y(t) = y(t,C,®) of 1
which may be at t — oo represented by asymptotic series (symbol = denotes
the asymptotic expansions)

o0
(2) y(t,Cop) = Y ft)e*(t,C)

k=1
where ¢(t,C) is the solution of equation g¢(t)j(t) = —ay(t), given by the
formula ¢(t,C) = Cexp fot 76 9%, f1(t) = 1 and the functions fi(t) for
k =2,...,n are particular solutions of some system of auxiliary differential
equations. To prove our results we will use Wazewski’s topological method in
the form, proposed by K. Rybakowski [5], which may be used for differential
equations with retarded arguments. The first Lyapunoff’s method is often
used to construct the solutions of ordinary differential equations in the form
of power-like series. Such a way is not possible here. First lefthand ends
of existence intervals of partial sums can tend to infinity and, secondly, if
it does not happen, the partial sums need not to converge uniformly. The
modification of the first Lyapunoff’s method were used in [6], [1].
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Delayed differential equations appear in many technical problems. The
form of equation (1) include some equations which have been recently con-
sidered. For example the logistic equation with recruitment delays

#(t) = z(t — r)(A ~ Bz(t))

which were considered by Gopalsamy [2], with regard to the applications on
ecology. After substitution z(t) = 4 + y(t) have the form of equation (1),
where g(t) = 1,a = A,¢;1y = —Band ¢;; =0fore # 1,5 #1, N = 2.
Moreover also one branch of the equation partially solved with respect to
derivative in Diblik’s work [1] have (after solving with respect to deriva-
tives) the form of the equation (1), in which are not terms with retarded
arguments.

2. Preliminaries

To describe simply coefficients of power series raised to a power, it is
suitable to denote: a, B — are sequences of nonnegative integers with finite
sumation.

Let a = {ax}$2,, then we denote

la] = Zak, V(a)= Ekak, al= H ai!, max(a) = max{k | ax # 0}.
Let a = {ak} 2 , be any sequence (of numbers or functions). We define
¢ = H ap*, where a% = 1 for every ay.

Then it is possible to prove

(gakx) Z Z_a,

where Zf, denotes the sumation over all sequences such that [a| = n,V(a) =
k. As we work with the product of the power series raised to a power, we
denote E is the sumation over all couples (a, ) such that V(a)+V(8) =

k, lof = 4, 8] = j.

Throughout this paper g(t), G(t) denote functions such that
C1. g(t) € C°[0, ), g(t) > 0 for t > to and g(t) = O(1) as t — oo.
C2. G(t) = o(g(?)) as t — oo, where G(t) = (fotg‘l(u) du)™!

C3. there is a constant A > 0 such that

90 =9(=1) _ e ay o o
= GD) ast oo
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This condition enables us to consider relative large class of functions: g(t)
may be constant, a periodical function (r is a period) or there is a positive
lim;_, o g(t) and if lim; o g(t) = 0 in addition then the function g(¢) must

satisfy
t

f g(uv)du = o(gF(t)) ast— oo, k> 0is a constant.
0

LEMMA 1. Let functions g(t), G(t) satisfy the conditions C1, C2, C3.
Then:

1. G(t) ~ G(t — K) as t — oo where K is any constant
2. gt g7t —ir) — g7t — ir + 7)) = o(G*(t)) as t — <.
Proof.
G heT @ [ g (w)du
lim ———— = lim
t—oo G(t — K) t-oco fo g-1(u) du

—1_ 1 -1
=1- lim G(t) f g (u)du =1,
t-K
therefore the function G(t) is a decraesing function and we obtain

t t
Jim G(t) f g Hu)du < tlggg f G(u)g™*(u)du < Ko(1) = 0.
t-K t—-K
Moreover for t — oo using C3 we get

9(t) = g(t—ir) H(l +0(G*(t—jr))) = g(t~ir) H(l +0o(G(t)(1 + o(1)))

= g(t- mz (5)1e(@ 0 + o))y = gle— in)1 + ol @),

Thus o(t) - g(t—ir) _
g(t~1r)

= o(GA(t)).

Eventually we get
gt) g™t —ir) — g Nt —ir+ 7)) =
9(t)—g(t—ir) g(t)—gt—ir+r) _

A
g(t—1ir) gt—ir+r) oAG7(1))-
LEMMA 2. Let the coefficients of equation
() 9()y(t) = Ky(t) + E() f(2)

satisfy:
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1. K > 0 is a constant,

2. the functions g(t), G(t) = (fy 97 (v) du)=? fulfill C1, C2, C83,

3.E(t)=expy i, ::::M ;I(% du, where K; > 0 are constants,

4. the function f(t) has the asymptotic form f(t) = G(£)b(t) +
O(G7*1(t)), as t — 0o where &1 > 0, 7 are constants, b(t) € Cl[ty,00)
and moreover: b(t) = o(G™(t)) as t — oo, for all 7 > 0, g(t)b(t) = o(G%(t))
as t — oo, where § > 0 is a constant.

Then there exists the solution Y (t) of (3) such that, the following asymp-
totic relations hold

Y() =BG ( - 2 +0(G°w)  ¥(0) = 0™ )G (),

where 0 < ¢ < min(\,€,8,1) is a constant.

Proof. After the subtitution y(t) = z(t)E(t) the equation (3) has form:

(4) 9(®)i(t) = (K + Y Kig(t) (g™ (t - ir) — g72(¢ v + 7)) )2(t) + £(2).
i=1

We define the domain 2 = {(z,t)|t > to, u(z,t) < 0}, where u(z,t) =
(az+G(1)b(2))?—G*+4)(¢). The assumptions of Picard-Lindeléf’s theorem
are locally satisfied in the domain {2, therefore throught each (z,t) € £2 goes
a unique solution of (4). Using the assumptions 1, 2, 3, 4 we compute the
trajectory derivative 4(z,t) along the solution z(t) of (3) on the bound 9£2:
2
9(t)
+ GG 1)b(t)o(1) + KG(1)0(1) — vb(t)G(t) + G°(t)o(1)]}.

For sufficiently large ¢ the construction of the number ¢ implies

a(z,t) = {KGz(’V“)(t) - G2("+‘+1)(t) + G2(7+5+A)(t)o(1):{:

2a
sign 4(z,t) = sign — G2+ (1) = 1.
gui(e, ) = sign 256 (1)

Then according to Wazewski’s principle [4, p. 282] there is at least one solu-
tion z(t) of (4) such that z(t) € £2. The asymptotic form of the solution z(t)
and also y(t) = E(t)z(t) is obtained from the construction of the domain 2.

3. Main results

Let the formal solution of equation (1) be expressed in the form (2),
where ¢(t,C) is the general solution of the equation g(t)y(t) = —ay(t),
consequently ¢(¢,C) = Cexp ftto () 45, where C' is a constant and fi(t) =
1, fx(¢) for k > 2 are unknown functions for the time being. After substituing
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y(t,C) in the equation (1) and comparing coefficients of the same powers
¢*(t,C) we obtain an auxiliary system of linear differential equations:

(5x)  g()fr(t) = a(k — 1) fi(t) + Z c,_,(t)z 'ﬂ'fa(t)hﬁ(t)

i+j=2

where
(O = (A0}, b0 = (a2 = { At r)ewp f s}

As V(a)+ V(B) =k and |a| + |B| > 2 yields a; = 0 and 3; = 0 for | > k,
the auxiliary system (5;) is recurrent. Therefore we may define recurrently

two sequences of functions:

P(t) = {p(t)}i21, a(t) = {a(®)}iz1 = {Pk(t —r)exp f g—a(% ds}k_l,

t—r

Pl(t) =1,

P = s 2 c,,()Z .[,',p“(t)qf’(t)

+J-2

If || # 0, then the expresion exp f s ds is included in q#(t) and also
in pr(t). Now using Lemma 2 we descrlbe the asymptotic behaviour of par-
ticular solutions of the system 5.

THEOREM 1. Let the functions pi(t) have the asymptotic form
Pr(t) = Ex()G™ () (be(t) + O(G®*(2))

ast — oo where g, > 0, v are constants, br(t) € C[tg, 00), b(t) = o(gT(t))
as t — oo for any positive T, g()bi(t) = o(g**(t)), as t — 00, Ax > 0 is

a constant.
nk t—ir4r d

Ex(t) = epoK,i f I:)

i=1 t—ir
Assume further there is a sequence {vi}52, such that
Vg € (7ka Yk + min(/\, 6k’ 1,ex — A;))y

where A = max(A;,...,Ak-1), A1 =0, 4; = yi+e—v forl =2,...,k-1.
Then the coeficients fi.(t) of the series (2), which are the solutions of the
auziliary system (5x), . e.
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(6k) fk(t) =

¢;i(s *(s)h?(s)ex a(k—l)u S
Ly ,J()Z SO e { - f =laufa

i+5=2
can be expressed in the asymptotzc form
bi(t) v
fi(t) = Ex()G™ ()| — ——= + 0(¢™ (1))
(7k) ( a(k - 1) >
fe(t) = —=Ex(£)O(G™(t)).

(t)

Proof. The formulas (6) are obtained by integrating the system (5¢).
The convergence of (64) is evident. It remains to show the asymptotic esti-
mate (7x). This will be done by induction.

For k = 2 the coefficients of the equation (5:) satisfy the requirements
of Lemma 2, thus the solution (62) has the form (73).

In spite of f(t) being substituted instead of p(t) and h(t) being substi-
tuted instead of q(t), in the recurrent definition of px(t), the asymptotic
form

pi(t) = g™ ()(bre(t) + O(bi(1)g™ ~2+(1)))G(2)
has the same asymptotic properties like pi(t). Therefore the equation (5¢)
satisfies the assumptions of Lemma 2, then (6;) takes the form (7;) and the
theorem is proved.

Remark. The necessary condition for satisfying assumptions of Theo-
rem 1 is lim;_, o ¢;j(t) exp(—~7G~1(t)) = 0. This is satisfied for example if
functions c¢;;(t) have the same asymptotic behaviour pg(?).

We shall denote

(1) = Y f(De"(t,C) and Y (1) = Z Cta(t)z .ﬂ,f"(t)hﬁ(t)
k=1 n

i+5=2
THEOREM 2. Let the assumptions of Theorem 1 hold and suppose that

Jlim f7 () exp(-TG7I()) = 0,

where T < 1 is a constant. Then for every C # 0 and 1 € C°[-r,0], ||¥|| < 1,
1¥(0) = 0 there ezists a solution yc(t) of equation (1) such that

(8) lyc(t) ~ ya (] < 8l fara(e™(2, O))|

for t € [tc,00) where coefficients fi(t) are the solutions (6;) of the sys-
tem (5¢), 6 > 1 is a constant, tc is a function of the parametr C and of
é,n.
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Proof. The existence of solution yc(t) which satisfies the inequality (8)
will be proved by Wazewski’s principle for retarded functional differential
equations § = f(t,y;), where y; denotes an element of C° = C°[—r, 0] defined
as y4(8) = y(t + 8), 8 € [-r,0] for any continuous mapping y from an
interval [—r + ¢,¢] into R. For this method see [5]. The function f(t,y:) :
R x C°[-r,0] — R, defined by a formula

N

f6:8)= == (~as0)+ 3 e (08O (-7))

(t) i+j=2
is continuous and Lipschitzian in ¢ in each compact set in 2%, where

= {6 D)t > to — 75 llo — ynell < A@D)},
¢l = sup 16(6)] and A(t) = (e +1) max (far1(8)e"*'(6,C))
-r<6<0 t—-r<6<t

for a positive constant €. Thus for any (t,¢) € £2¢ there exists the unique
solution of the equation y = f(¢,y:) [3,p. 42].

We shall prove that w = {(y,?) | I{(y,t) < 0, t > tc}, where I(y,t) =
(y=n(1))> = (8 fosr1 ()™ (2, C))? is the regular polyfacial set with respect
to the equation y = f(t,y:), where f(¢,¢) is defined as above. Then for all
K e (-1, 1)

itw,1) = —= (6™ (4, )l s (D)| - aly(t) & 86" (2, O (D)4

(t)

+ E ¢ii () (n(t) £ 8l fasr (D™ (2, C)) X (yal(t — )+
i+j=2

+ K8 faa(t = )™t = 7, C)Y + aya(t) = I 0H(6,C) 3] -
k

k=1
= (6¢™1(t, O [=a(n + 1)f241(8) + 9(8) a1 (D frna (1)])-

Using binomial theorem for ¢, j-power in sumation Eﬁ j=2 We obtain

itr,) = 25 (0™ 0 O [an + Dfa() = (Ofar (O fraa (D)

+ o™ (1, 0)| - E<P"(t X+ S e - )t

i+j=2

HADE™ (G OO+ -1 (5, CIVa() +67H (0, OVOV()] ),
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where
i-1 ,. . y
- IN 1yt (t—r —Mex a(n+1) \ j
Vl(t)—g(’)( 7= (Ko=) » I is)
x (p™H(t, C)Y 1,
i-1 .
0= 3 (§) CO A6 @D~ (o 0)
=0
Therefore

{(,8)| V(e) +V(B) < n+1, |af +]6] > 2, max(e) < », max(f) < n} =
{(a, B)IV(e) + V(B) < n+1,]a| +16] > 2},

we obtain
N
Y ei®umvi(t—r) = Zsok(t C) Z(t)+
i+j=2
aN
+ Y M60) 5 c,J(t)Z .ﬂ.f“(t)hﬁ(t),
=n+2 i+j=2 inin

where E ;, denotes the sumation ower all (, 8) such that V(a)+V(8) =
le| = 4, |6] = §, max(e) < n, max(8) < n.
Eventualy we get

i(y,t) = —=¢""**(1,C)x

(t)
x |(anf241(8) = 9O fars (O fars (D)8 £ 8 faia () I (1)] £

n+1

53 (4, C)[ E * (¢, C) Z c,J(t)Z , ﬂ'f“(t)h"(t)x

k=n+2 i+j=2 indn

N
X Y cii(OFGOVIE) + it - n)Va(t) + ¢™(8,C )Vl(t)Vz(t))]-
i45=2
For sufficiently large t > tc and § > 1 we deduce that
sign(y, t) = sign(anfay1 () — 9(t) fat1(t) fata(1))-
As lim;, o g(t)%ﬁ% = lim;—, oo (G¥»+1~*2+1(t) = 0 we obtain

signl(y,t) = signanfZ, (t) = 1.
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Consequently w is the polyfacial set regular with respect to the equation (1),
W = 0w, Z = {(y.tc) | [(u,tc) < 0}.
We define p: B=ZN(ZUW) =27 — C as:

n+1

The mapping p(z) is evidently continuos and for every 2 € B p(z) satisfies:
(tc +60,p(2)(0)) €w for 8 € [-r,0).

Moreover it holds: Z N W is a retract of W but Z N W is not a retract
of Z. Then all assumptions of Wazewski principle for retarded functional
differential equations are satisfied and thus there exists at least one solution
yc(t) of (1) such that yc(t) € w for t > to. The asymptotic form of the
solution yc(t) is obtained from the construction of the domain w and proof
is complete.

+(¥n(t))ee for 2=(y, tc).

Remark. As the relation hx(t) = fi(t — r)exp ftt_r ﬁ%ds is used in
the definition of the sequences f(t) and h(t) and the function hx(t) is used
in the definition of fr+1(t) the lefthand end of the existence interval of
the function fr41(t) is greater by r then the lefthand end of the existence
interval of fi(t). If lefthand ends of the existence intervals of the functions
¢i;(t) are finite then lefthand ends of the existence intervals of the functions
fx(t) must tend to infinity.

COROLLARY. If all asumptions of Theorem 2 are satisfied for every n,
then there ezists the asymptotic expansion of the solution yc(t) in the form

yo(t) = ) fa(D)e"(t,C),
n=1

where the coefficients f,(t) are the solutions (5,).

Proof. As
. fn+1(t)90n+l(t’ C) _
T RO C)
- wt1 =7y 21n1(2) + O(g¥m+1 7741 (1))
= tl—g{olo G" v (t) bln(t) + O(g"»'% (t))

the assertion is proved.

#(t,C)=0

EXAMPLE. We consider the equation:

29(t) = ~29(0) + 97(t - 1) + tsin g (B)y(t - 1)
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In this case we have a = 2,7 =1, g(t) = 1, A = 2, 9(t) = —1. Then the
auxiliary system (4;) have a form:

%fn(t) = 2(n - 1)fn(t) + -(n—_l—Q—)i exp(ant + bn)(l + O(t—O.Q)).

Using Lemma 2 we obtain:

1
w(t) = 00— nt + by, 709
D) = s exalant + )1 +0(09)),
where a, = n? + 2n— 2 and b, = —}(2n3 4+ 3n% — 11n 4 6). Then according
the Theorem 2 and corollary we obtain

(t)~i——c—— b, L
Yc ~n=1 2(n_1)!exp a,t+ n 9 .
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