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Introduction 
This paper is a sequel to the author's works [1] and [2]. It is concerned 

with the characterisation of finite subdirectly irreducible left normal ban-
doids. In [1] a general structure theorem for left normal bandoids was given. 
In [2] a family of subdirectly irreducibles was constructed. In this and in 
the next paper we show that this family consists of all finite subdirectly 
irreducible left normal bandoids. 

The notation and terminology of [1] and [2] will be used without expla-
nation or apology in this paper. Our numbering here begins with Section 7. 
References in Sections 1 through 6 are to the relevant parts of [1] and [2]. 

Recall that by Lemma 5.1, every nontrivial principal congruence of a 
finite bandoid Β contains a principal congruence generated by pairs of el-
ements a, b of Β such that a < b or a and b satisfy the condition 5.1(ii). 
Hence we conclude that the monolith of a finite subdirectly irreducible left 
normal bandoid Β is a principal congruence Θ(α,ό) on Β with a < b or a 
and b satisfying 5.1(ii). If Θ(α, b) with a < b is the monolith of a subdirectly 
irreducible left normal bandoid, then this bandoid is called to be subdirectly 
irreducible of the first type. If Θ(α, b) with a and b satisfying 5.1(ii) is the 
monolith of B, then Β is called to be subdirectly irreducible of the second 
type. Note that the subdirectly irreducible left normal bandoids constructed 
in Section 5 are of the first type, and these constructed in Section 6 are of 
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the second type. In this paper we give a necessary condition for a finite left 
normal bandoid to be subdirectly irreducible of the first type. A necessary 
condition for a finite bandoid to be subdirectly irreducible of the second 
type will be given in the last paper of this series. 

In this paper our aim is to prove the following theorem: 

THEOREM 7.0. If Β = (Β, ·) is a finite subdirectly irreducible left normal 

bandoid with a monolith 0(a,b) with b < a, then 

B = B(L,R)P 

for some finite distributive lattice L with exactly one coatom, and some 

relation R C<¿ satisfying the following condition 

( i ) for each join — irreducible element t in L \ { 0 } there exist elements t = 

x\, X2,. • •, xn, z\, · · · , ^n- i ) zn = 1 of L such that for all i = 1 , 2 , . , . , η 

and j = 1 ,2 , . . . ,n — 1 

(X,,ZI) G R a n d X\ < XJ+I <L ZJ. 

7. The proof of the theorem 
First we prove some lemmas which are necessary in the proof of the 

theorem. 
Let Β = (Β , · ) be a finite left normal bandoid. 

7.1. LEMMA. Let x,y G Β and χ, y lie in the same orbit or x,y satisfy 

the condition 5.1(H). Then the principal congruence 0(x,y) on Β is the 

equivalence relation on Β generated by the set {(ax, ay) : a G L(B)}, i.e. 

(z,t) G ô(x,y) iff 

( *) there exist elements z\,z2,...,zn G Β such that z\ = z, zn = t and for 

every i < η 

Zi = Zi+1 or {zí,z¡.|_ι} = {ax, ay} for some α G L(B). 

P r o o f . First note that the relation R defined by 

(z,t) G R iff (z,t) satisfy ( * ) 

is exactly the equivalence relation E({(ax,ay) : a G L(B)}) generates 
by the set { ( α χ , a y ) : a G L(B)}. Indeed, the relation R is contained in 
E({(ax,ay) : a G L(B)}) since E({(ax,ay) : a G L(B)}) is an equivalence 
relation containing the set {(ax,ay) : α G L(B)}. It obviously contains 
{(ax, ay) : α G L(B)}. Moreover for every z,t,u G Β: 

(ζ, ζ) G R by the definition of R, via z\ = z, 

(z, t) G R via z\,zo_,... ,zn implies (t, z) G R via zn,...,z\, 

(z, t) G R via z\, zi,..., zn and ( t , u) G R via t\, ¿2,.. ·, tm imply that 
(z,u) G R via z1,z2,...,zn,ti,t2,...,tm. 
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Therefore R = E({(ax,ay) : a G L(B)}). 

Now we will prove that R = 0 ( x , y ) . Note that it suffices to show that 
for every c G Β and a G L{B) the following condition hold: 

Indeed if (z, t ) G R via z\,zi , . . . , z n then by (7.1.1), ( c z , c t ) G R via 
cz\,cz2,..., czn and by (7.1.2) ( z c , t c ) G R via z\c, zie, . . . , znc. This com-
pletes the proof of the fact that R is a congruence on B_. Since obviously 
R Ç &(x,y) and ( x , y ) G R, it follows that 0 ( x , y ) = R. 

To prove (7.1.1) note that for every c G Β and α G L(B), cax = (L(c) o 
α)χ , cay = (L(c) o a)y and L(c) ο α G L(B). 

To prove (7.1.2) let us assume first that α = L(y\) o ... o L(yn) for 
some t/ i , . . . ,2/n € B. Then by Proposition 1.2.12 and Remark 1.2.5 we 
obtain: (ax)c = (ax)y\c = (j/ic)(<ia;) = [L{y\c)oa)x. Analogously, ( a y ) c = 
(L(yic)oa)y. Since L(y\c)oa G L(B), we have that ( ( a x ) c , (ay)c) = ( j x , j y ) 
for some 7 G L(B). 

Now let a = id s , the identity mapping on B. We consider two cases: x, 
y are in a common orbit vT(B) or x, y satisfy 5.1(ii). If x,y G vT(B), then 
(ax)c = xc = (vx)c = (va:)(vc) = (vc)(vx) = (vc)x = L{vc)x. The third and 
fifth equalities hold by Proposition 1.2.12 and the fourth equality holds by 
Remark 1.2.5. Analogously we show that ( a y ) c = L(vc)y. So (7.1.2) holds 
in this case. 

Now let x, y satisfy 5.1(ii). If xc < x, then since xT(B) \ yT(B) = {x}, 
we have that xc < y and moreover, since ({x, y}, ·) is a left zero semigroup, 
y = yx. Hence, using (B5) (B6) and Corollary 1.2.16 we obtain ( a y ) c = 
yc = (yx)c = (yc)(xc) = (y(xc))c = (xc)c = xc(ax)c. 

If xc = χ then yc = y. Indeed, if yc < y then analogously as in the case 
xc < x, we show that xc — yc and as a consequence of this we obtain yc = χ 
what implies that χ < y, and contradicts the fact that xT(B) \ yT(B) = 
{x}. So we have ((ax)c, (ay)c = (xc,yc) = ( x , y ) = ( idßX , i dß i / ) . Therefore 
(7.1.2) holds in this case as well. 

For a set X, a relation R Ç X2 and a subset U of Λ', the symbol R\u 
denotes the relation R ΓΊ U2 on X. 

7.2. L E M M A . Let x,y,c be elements of Β and x,y lie in the same orbit 
or x,y satisfy 5.1(H). Then 

(7.1.1) 
(7.1.2) 

(cax, cay) = ( ß x , ß y ) for some β G L(B), 

((ax)c,(ay)c) = ( γ χ , 7 y ) for some 7 G L(B) or 
(ax)c = (ay)c, 

Q(x,y)\cT(B) = ^cT(B)· 
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P r o o f . Let (z , t ) G &(x,y)\cT(B)· Then (z , t ) G 0(x,y),z = cz and 
t = cf. By Lemma 7.1 there exist elements ζχ, Z2,..., zn of Β such that 
ζ = zi,t = zn and for every i = 1 , 2 , . . . , n - 1 : z¡ = z t +i or {z¿,z¿+i} = 
{αχ, ay} for some a £ L(B). By Proposition 1.2.14 and definition of L(B), 
if cx = cy then c a i = xa(cx) = ca(cy) = cay. Hence cz,· = cz,+i for 
every i = 1 , 2 , . . . , η — 1. Consequently ζ = cz = czi = czn = t. Therefore 
&(x,y)\cT(B) Ç w c T ( B ) . Obviously a; c X ( B ) Ç 0 ( x , y)|cT(B) since 0 ( x , j / ) is a 
congruence on δ . • 

Recall that in this section we consider only finite subdirectly irreducible 
left normal bandoids of the first type. 

Let Β = (Β, ·) be a finite subdirectly irreducible left normal bandoid. 
Let a, 6 be elements of Β such that b < a and 0 ( a , 6) is the monolith of B. 
Then the following lemmas hold. 

7 . 3 . L E M M A . The element a is maximal in (Β, <). 

P r o o f . Suppose on the contrary that χ ζ Β and χ > a. Then ax = aa 
and consequently, by Lemma 7.2, Θ(α, χ)|ατ(Β) = ^αΤ(Β)· Since α, b G aT(B) 
and α φ b it follows that (α, b) $ Θ(α,χ). Since Θ(α,χ) φ U>b, the last 
statement gives a contradiction with the fact that 0(a,b) is the monolith 
of B. 

7 . 4 . L E M M A . The element b is the only predecessor of a in (Β, <). 

P r o o f . First we prove that b is a predecessor of a in ( B , < ) . Suppose 
on the contrary that there is c in Β such that b < c < a. Then 0(6 , c) = 
0(cb,ca) Ç 0(6 , a). On the other hand 0 ( a , 6) Ç 0(6 , c) since 0 ( a , 6 ) is the 
monolith of Β and 0(6 , c) φ u>b· Therefore 0(6, c) = 0 ( a , 6). Consequently 
0(6, c) is the monolith of B. Hence by Lemma 7.3, c is maximal in (Β, <), 
a contradiction to the fact that c < a. So 6 is a predecessor of a. 

It remains to show that there are no other predecessors of a. Suppose 
that d is a predecessor of a and d φ 6. Then db φ d. Indeed, b,d Ç. aT(B) 
and consequently db = bd, so db = d implies that d < 6, hence we conclude 
that d is not a predecessor of a, a contradiction. 

Note that 0(db,d) = 0(db,da) Ç 0 (6 ,α) = 0(α,6) . Since 0 (α ,6 ) is 
the monolith of Β and 0(db,d) φ u>B if follows that 0(db,d) = 0 ( a , 6). 
Consequently 0(db, d) is the monolith of Β and by Lemma 7.3, d is maximal 
in ( Β , <), contradicting d < a. 

7 . 5 . L E M M A . For every χ £ Β the mapping L(a) : (xT(B), ·) —* 
(aT(B), ·)\y —* ay is a semilattice monomorphism. 

P r o o f . Let χ £ Β. By Proposition 1.2.7 it suffices to show that the 
mapping is one to one. Let y,z G xT(B) and y φ z. Suppose on the contrary 
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that ay = az. Then by Lemma 7.2, 0(y,z)\aT(B) = ωαΤ(Β) a n ¿ consequently 
(α, 6) Ç 0(y,z), contradicting the fact that 0(a, b) is the monolith of B. 

7.6. L e m m a . Let X\,X2,... ,xn € Β and i € {1 ,2 , . . . , n } . Then the 
following holds: 

x\,..., xiaxi+χ... xn = X\X2 •.. xn-

P r o o f . By Proposition 1.2.14, dX 1 ) · · · X%Q>X%^\ * • · XJI — dX 1^2 · · · ^n · 
Hence, by Lemma 7.5 we obtain: χ χ . . . χ , α χ { . . . . x n = X\X2 · · · Xn· • 

7.7. Lemma. Let x,y satisfy the condition 5.1(H). Then 

αχ φ ay. 

P r o o f . Suppose that ax = ay. Then by Lemma 7.2, Θ(χ, y)\aT(B) = 
u'aT(B)· Since a, b 6 aT(B) and α φ b, we conclude that (a, 6) G u(x,y). By 
the assumption that x, y satisfy 5.1(ii) it follows that χ φ y and consequently 
0(x,y) φ ωβ. Therefore (α, 6) ζ Q(x,y) gives a contradiction to the fact 
that 0 ( a , b) is the monolith of B. So αχ φ ay. m 

7 . 8 . L e m m a . Let (x,y) € Β2 \ { ( ò , a ) } and χ < y. Then ay = a implies 

αχ φ b. 

P r o o f . First assume that y = a. Then ax = y χ = χ. Since (χ, y) φ (ό, o) 
it follows that αχ φ b. 

Now let y Φ a. Suppose on the contrary that ax = b. Using the fact that 
χ < y and Proposition 1.2.14 we obtain: 

(7.8.1) ax = ayx = ayax. 

By Lemma 7.5 the left multiplication L{a) : (y(T(B),·) (aT(B),·) is 
a monomorphism. So, by (7.8.1), χ = yax. Since ax = b it follows that 
yb = χ. Moreover by Corollary 7.6 we have ya = y. Therefore 0(y, x) = 
0(ya,yb) Ç 0(a,b). Since 0(y,x) φ Uß and 0(a,b) is the monolith of B, 
it follows that 0(y,x) = 0(a,b), i.e. 0(y,x) is the monolith of B, it follows 
that 0(y,x) = 0(a,b), i.e. 0(y, x) is the monolith of B. So by Lemma 7.5 

(7.8.2) the left multiplication L(y) : (aT(B), ·) (yT(B), ·) 
is a monomorphism. 

Note that the assumptions y φ a and ay = a imply that y ^ aT(B). 
Therefore y Ç yT(B) \ aT(B) and so yT(B) \ aT(B) φ 0. 

Let ί be a minimal element in ( y T ( B ) \ aT(B),<). We want to show 
that the elements t and at satisfy the condition 5.1(ii). 
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By Corollary 7.6 we have that tat = tt = t and by Corollary 1.2.16, 
(at)t = at. So 

(7.8.3) ({t, at}, ·) is a left zero semigroup. 

Now we show that tT(B)\(at)T(B) = { t } . Obviously t G tT(B)\(at)T(B). 
Indeed, t G (at)T(B) implies that (at)t = t, whence by Corollary 1.2.16, 
at = t and consequently t G aT(B), a contradiction. We will show that t 
is the unique element of tT(B) \ (at)T(B). Suppose on the contrary that 
t' G tT(B) \ (at)T(B) and t' φ t. Then t' < t. Since t is minimal in ( y T ( B ) \ 
aT(B),<), it follows that t' G aT(B) and consequently t' = at'. Using the 
fact that t' < t and (B3) we obtain: at' = att' = (at)(tt') = (at)(t'). So 
t' = (at)t', i.e. t' G (at)T(B), contradicting t' G tT(B)\(at)T(B). Therefore 
we have 

(7.8.4) tT(B) \ (at)T(B) = {i}· 

To prove that t, (at) satisfy 5.1(ii) it remains to show that ( a t ) T ( B ) \ t T ( B ) = 
{at}. Note that at € (at)T(B) \ tT(B) = {at}. Indeed, at € tT(B) im-
plies that at = tat, whence by Corollary 7.6 and (B.l ) , at = tt = t and 
consequently t £ aT(B), contradicting the fact that t £ yT(B) \ aT(B). 
Therefore at G (at)T(B) \ tT(B). Suppose on the contrary that t" ψ at and 
t" G (at)T(B)\tT(B). Then t" < at. So, by (7.8.2), yt" < yat. By Corollary 
7.6 yat = yt and consequently, since t G yT(B),yat = t. Therefore yt" < t. 
Hence, because t is minimal in ( y T ( B ) \ a T ( B ) , <) , we get that yt" G aT(B). 
Note that t" G aT(B) as well and by (B2), yyt" = yt". Therefore, by (7.8.2) 
we obtain yt" = t". Hence t" G yT(B), contradicting t" G ( a t ) T ( B ) \ t T ( B ) . 
So we have 

(7.8.5) ( a t ) T ( B ) \ tT(B) = {at}. 

From (7.8.3)-(7.8.5) it follows that the elements t and at satisfy the condition 
5.1(ii). Consequently, by Lemma 7.7, at φ aat, contradicting the axiom (B2). 
The last contradiction shows that αχ φ b. This completes the proof. 

7 . 9 . L e m m a . Let ( x , y ) G Β2 \ { ( δ , α ) } and χ < y. Then for every a G 
L(B) 

ay — a implies αχ φ b. 

P r o o f . Let a G L(B) and ay = a. If a = id# then obviously αχ φ b 
since ( x , y ) φ (b ,a ) . Let α φ idß. Then a — L(z\) o L(z2) o ... o L(zn) for 
some zi,z2,...,zn G Β. By Corollary 1.2.8, ax < ay. So ay,ax G aT(B). 
Consequently 

(7.9.1) ax = aax - az\z2 . • .znx 



Left normal bandoids 865 

and 

(7.9.2) ay = aay = aziz2...zny. 

Let ζ,-j, Z i 2 , . . . , Zik be a subsequence of the sequence z\, z2,. •., zn obtained 
by dropping all elements equal to a. By Proposition 1.2.14, from (7.9.1) and 
(7.9.2) it follows that 

(7.9.3) ax = azit zÌ2 ... zik χ 

and 

(7.9.4) ay = azhzi2...ziky. 

Note that z¿ ,z j 2 . . .Zjk j-a. Indeed, by Remark 1.2.10, z^z^ .. .Zik — a im-
plies that a < z¡1, and since α φ 2,·, we have a < Z{1, contradicting the fact 
that, by Lemma 7.3, a is maximal in (Β , < ) . Therefore (zí1z¡2 . . .Zikx,Zi1Zj2 

. . . Ziky) φ (b ,a ) . Moreover, by Remark 1.2.11 we have that Zi1Zi2 ...Zikx < 

zhzÍ2 ...ziky. I f zhzÍ2 ...zikx = zhzÍ2 ...ziky, then by (7.9.3) and (7.9.4), 
ax = ay and consequently αχ φ b since ay = a. If z^Z{2 . . .Zjkx < 
Zi1Zi2 . . .Ziky, then by Lemma 7.8, since azi1z¡2 .. -Ziky = ay = a, we obtain 
that azi1zi2 ...z¡kx φ b and consequently, by (7.9.3), αχ φ b. m 

7.10. L e m m a . Let (x,y) E Β2 \ {(b, a ) } and χ < y. Then there exists 

a G L(B) such that ay = a and ax < b. 

P r o o f . Clearly, if y = a then for a : = idß we have that ay = a and, by 
Lemma 7.4, ax < b. 

Let y φ a. Suppose on the contrary that for every a G L(B),ay — a 

implies ax < b. Then, by Lemma 7.4, for every a G L(B),ay = α implies 
a i = û o r a i = b. Consequently, by Corollary 7.9 for every a G L(B), ay = a 

implies ax = a. On the other hand, by Corollary 1.2.8 for every a G L(B) : 

ax < ay. Hence by Lemma 7.3, for every α G L(B),ax = a implies ay = a. 

So we have 

(7.10.1) αχ = a iff ay = a 

for every a G L(B). We will show that (a,b) £ 0(x,y). This will give a 
contradiction with the fact that Θ(α, b) is the monolith of B. Suppose on the 
contrary that (a, 6) G 0(x,y). Then by Lemma 7.1 there exist elements, say 
ζχ,ζ2,.··,ζη such that a = z\, b = zn and for each i = 1 ,2 , . . . , n, z,· = 

or for some a G L(B), { ζ , · , ζ , · + ι } = { α χ , ay}. Hence, by (7.10.1), it follows 
that a = z\ = zi = . . . = zn = b, a contradiction to b < a. Therefore 
(a, 6) G 0(x,y), contradicting the fact that Θ (α ,ό ) is the monolith of B. 

This contradiction completes the proof. • 

7.11. L e m m a . Let x,y G aT(B) and χ be a predecessor of y in (B,<). 

Let a be an element of L(B), such that ay = a and ax < b. 
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Then ax is the supremum of the set { ν ζ aT(B)\vy = χ } in ( B , < ) . 

P r o o f . Let us denote Ζ := {υ ζ aT(B)\vy = x } . First we show that ax 

is an upper bound of Ζ in (Β , < ) . 
Let ν € Z. By Proposition 1.2.14, vay = va(vy) and consequently, since 

vy = x, we obtain vay = vax. Because ay = a, ν = va = vay = vax. Since 
ax and a lie in the same orbit aT(B), we have that vax = (ax)v. Therefore 
ν = (αχ)υ, i.e. υ < ax for all ν G Ζ. Now it suffices to show that ax £ Z. 

By Remark 1.2.5, since χ < y, it follows that xy = yx = x. Therefore χ € Ζ 

and consequently, as was shown in the first part of the proof χ < ax. Hence 
by Remark 1.2.11, xy < (ax)y, i.e. χ < (ax )y . On the other hand (ax)y < y 

since by Remark 1.2.5 and Corollary 1.2.16, y(ax)y = ((ax)y)y = (ax)y. 

Since χ is a predecessor of y, we have the following 

(7.11.1) ( a x ) y = y or (ax)y = x. 

Suppose that (ax)y = y. Then a(ax)y) = ay. Corollary 1.2.8 and Propo-
sition 1.2.14 it follows that a((ax)y) = ( a ( a x ) ) ( a y ) = (ax)(ö2/). Conse-
quently (ax)(«2/) = ay. Since ay — a and, by Corollary 1.2.8, ax < ay, we 
obtain that ax = ( a x ) ( a y ) = (ax)a = a, contradicting ax < b. Therefore 

(7.11.2) (ax)y φ y. 

From (7.11.1) and (7.11.2) it follows that (ax)y = χ and in consequence 
ax G Ζ, what completes the proof. • 

7.12. R e m a r k . Let x,y,a satisfy the hypothesis of Lemma 7.11. Then 

y < ax. 

P r o o f . This follows immediately from (7.11.2). • 
Since Β is finite and all orbits of Β are semilattices with unit, it follows 

that each pair (x, y) of elements of an orbit has a join χ + y, the supremum 
of {x,2/} in ( Β , < ) . So for any χ in Β, the algebra ( x T ( B ) , + , ·) is a lattice. 

7.13. LEMMA. The lattice (aT(B),+,·) is modular. 

P r o o f . Suppose on the contrary that ( a T ( B ) , + , ·) contains as a subal-
gebra a copy of the lattice N5, say the lattice pictured below. 

9 
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Additionaly let us assume that d i s a predecessor of c. By Lemma 7.10 we 
may assume that a is an element of L(B) such that ax — a and ad < b. By 
Lemma 7.11, ad = Σ(ν £ aT(B)\vc = d) and consequently, since de = d we 
obtain 

(7.13.1) ad > d. 

Note that fc = fd. Hence by Proposition 1.2.14 and Remark 1.2.5, it follows 
that / = f a = f a c = f a ( f c ) = f a ( f d ) = f ( a d ) = (ad)f and consequently 

(7.13.2) ad > f . 

By (7.13.1) and (7.13.2) we obtain that f + d < ad, i.e. g < ad. Hence 
c < ad. But by Remark 7.12 c < ad, a contradiction. • 

7 . 1 4 . L E M M A . The lattice (aT(B),+,·) is distributive. 

P r o o f . By Lemma 7.13 the lattice ( a T ( B ) , + , · ) is modular. So it re-
mains to show that it does not contain as a subalgebra a copy of the lattice 
M3. Suppose on the contrary that the lattice pictured below is a subalgebra 
of (aT(B), + , ·). 

Let ζ be an element of Β such that / is a predecessor of ζ and ζ < e. By 
Lemma 7.10 there exist an element of L(B), say a, such that az — a and 
af < b. By Lemma 7.11, af > c + d since cz = / and de = / . Therefore 
af ^ 9 a n ¿ consequently af > z, contradicting the fact that by Remark 
7.12, ζ ^ a f . So the proof is complete. • 

Recall that for a lattice L the symbol JI(L) denotes the set of all join 
— irreducible elements of L. The principal ideal of a lattice, generated by 
χ is denoted by (ζ). 

7 . 1 5 . L E M M A . Let t G J I ( a T ( B ) ) and s be a predecessor o f t in ( Β , <). 
Then for every ζ G B,zs φ zt implies that the left multiplication L ( z ) : 
( ( f ] , ·) —• ( z T ( B ) , ·) is a monomorphism. 

P r o o f . Let zs φ zt. By Proposition 1.2.7 it suffices to show that the 
left multiplication L ( z ) : ( ( / ] , ·) ( z T ( B ) , •) is one to one. 
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Let u, ν G (f] and u φ v. Suppose on the contrary that zu = zv. Since 
u φ ν, we have that uv φ ν or vu φ u. Without loss of generality we may 
assume that uv φ v. By Proposition 1.2.14 and Remark 1.2.5, vuv = vu = 
uv, whence uv < v. Therefore uv < v. Let w b e a predecessor of ν such that 

(7.15.1) uv < w. 

By Lemma 7.10 we may assume that av = a and aw < b. By Corollary 
1.2.8 and (7.15.1) it follows that 

(7.15.2) a(uv) < aw. 

By Remark 7.12 we have 

(7.15.3) ν £ aw. 

From (7.15.2) and (7.15.3) it follows that ν < a(uv) and consequently t 
a(uv), i.e. 

(7.15.4) a(uv)t φ t. 

Since aw < b < a, from (7.15.2) it follows that a(uv) G aT(B). Hence 
by Remark 1.2.5 we conclude that ta(uv) = a(uv)t. So, by Remark 1.2.10, 
a(uv)t < t and in consequence, by (7.15.4) we obtain a(uv)t < t. Since s is 
a predecessor of t and t G JI(aT(B)), the last inequality implies 

(7.15.5) a(uv)t < s. 

Note that 
zt = zta since t G aT(B) 

= ztav since αν = a 
= zta(zv) since by assumption zu = zv and consequently, by 

Proposition 1.2.7, zuv = (zu)(zv) = (zv)(zv) = zv 
= zta(uv) by Proposition 1.2.14 
= z(a(uv)t) by Remark 1.2.5. 

Hence by (7.15.5) and Remark 1.2.11 we have zt < zs. On the other hand, 
by Remark 1.2.11, since s < t, we have zs < zt. So zt = zs, contradicting 
the assumption zt φ zs. This contradiction shows that the mapping L(z) : 
((f], ·) —> (zT(B), •); χ i-> zt is one to one. • 

For an element y of a finite subdirectly irreducible left normal ban-
doid Β with monolith Θ(α, b) where b < a, let us consider the set Zy := 
{z G aT(B)\yz — y}. Note that the set Zy is nonempty since by Corollary 
7.6, a G Zy. Since Β is finite there exist the meet Π Zy of all elements 
of the semilattice (aT(B ) , ·) lying in Zy. Moreover, by Proposition 1.2.7, 
ΐ/(Π Zy) = Π { y z \ z G Zy} = y. Obviously \[Zy £ aT(B). So Π Zy G Zy. 
Let us define ya :=\[Zy. 
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7 . 1 6 . L e m m a . For every y 6 Β the left multiplication L(y) : ( ( y a ] , · ) _> 

(yT(B), ·) is an isomorphism. 

P r o o f . By Proposition 1 . 2 . 7 the left multiplication L{y) : ( ( y 0 ] , · ) 
(yT(B), •) is a homomorphism. It remains to show that it is one-to-one and 
onto. 

First we show that this mapping is one-to-one. If the set (ya] has exactly 
one element, then it is obvious. So, we assume that (ya\ has at least two 
elements. We consider the following two cases: 

Case 1. Let ya G JI(aT(B)). Since |(ya]| > 2, there exist a predecessor 
t of ya in (B,<). By definition of ya,yya / yt. Now the proof follows 
immediately by Lemma 7.15. 

Case 2. Let ya g JI(aT(B)). Define A := {x e JI(aT{B))\x < ya}. 
First we show that 

(7.16.1) for every element χ which is maximal in (^4, <) the mapping 
L(y) : ( ( a ] , ·) (yT(B), ·) is o n e t o o n e . 

Let χ be a maximal element in (A, <). Since ya £ JI(aT(B)) there is an 
element t, such that t is a predecessor of ya and χ ^ t. By distributivity of 
the lattice (aT(B ) , + , ·) it follows that xt is a predecessor of xya in (Β , <). 
Since χ € A, clearly, xya = x. To use Lemma 7.15 it suffices to show that 
yx φ yxt. Suppose on the contrary that 

( 7 . 1 6 . 2 ) yx = yxt. 

By Lemma 7.10 we may assume that a is an element of L(B) such that 
ax = a and a(xt) < b. By Lemma 7.11 we have 

(7.16.3) a(xt) = Σ(ν € αΤ(Β)\υχ = xt). 

Since by Remark 1.2.5 tx = xt and t £ aT(B), from (7.16.3) it follows that 
a(xt) > t and consequently, by Remark 1.2.11, yaa(xt) > yat. 

Because t < ya, i.e. yat = t, we have 

(7.16.4) yaa(xt) > t. 

By Remark 7.12, a(xt) > x. Hence we conclude that 

(7.16.5) a(xt) t ya. 

In consequence, since yaa(xt) < ya, we obtain 

( 7 . 1 6 . 6 ) yaa(xt) < ya. 

Indeed, if yaa(xt) = ya, then by Remark 1.2.5, a{xt)ya = ya, i.e. ya < 
a(xt), contradicting (7.16.5). Since t is a predecessor of ya, from (7.16.4) 
and (7.16.6) it follows that 

(7.16.7) yaa(xt) = t. 
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Then we have the following: 
y = yya 

= yyaa 
= yyaax 
= yyaa(yx) 
= yyaa(yxt) 
= yya(xt) 
= yt 

by definition of ya 

by Corollary 7.6 
since ax = a 

by Proposition 1 . 2 .14 
b y ( 7 . 1 6 . 2 ) 

by Proposition 1 . 2 .14 
b y ( 7 . 1 6 . 7 ) . 

Hence, by definition of ya,ya < t, contradicting the assumption t < ya. This 
contradiction shows that yx φ yxt. By Lemma 7.15 this completes the proof 
of ( 7 . 1 6 . 1 ) . 

Now let u, ν G (j/°] and u φ v. There exist t G JI(aT(B)) such that 
t < u and t ^ v, i.e. tu = t and zv < t. Since t G JI(aT(B)) and t < ya, 
there exist an element 2 in A which is maximal in (A, <) and such that 
t < z. Observe that tu, tv G (ζ] and tu φ tv. In consequence, by ( 7 . 1 6 . 1 ) we 
obtain that ytu φ ytv. This implies that yu φ yv. Indeed, if yu = yv then 
by Proposition 1 .2 .14 , ytu = ytyu = ytyv = ytv, contradicting ytu φ ytv. 
In this way we have proved that the left multiplication L(y) : (ι/α] —• yT(B) 
is one-to-one. 

It remains to prove that L(y) maps (ya] onto yT{B). 
Let w G yT(B). Obviously yaw G (y°]. We show that L(y)(yaw) = w. 

Note that 
L(y)(yaw) = yyaw = yyaaw by Corollary 7.6 
L(y)(yaw) = yyaw = (yya)(yaw) by Proposition 1.2.7 
L(y)(yaw) = yyaw = y(yaw) by definition of ya 

L(y)(yaw) = yyaw = yw by B2) and Corollary 7.6 
L(y){yaw) = yyaw = w since w G yT(B). 
This implies that L(y) maps (t/a] onto yT(B), what completes the proof. • 

7 .17 . LEMMA. For every y ζ. Β and for every w G yT(B) 

L(a)w = Σ(ν G (ay]\vya = u), 

where u is the unique element of (ΐ/α] with the property w = L(y)u. 

P r o o f . Let y ξ Β and w G yT(B). By Lemma 7.16 there exists exactly 
one element, say u, in (ΐ/α] such that w = yu. Define Ζ := {ν G (ay]\vya = 
u}. It suffices to show that for every ν G Ζ, ν < L(a)w and L(a)w G Ζ. 

Let ν Ε Ζ. Then vya = u and consequently, by Proposition 1 .2 .14 , 
vayya = vayvya = vayu = vaw = vL(a)w. Since yya — y and ν G (aj/], we 
have that ν = vay — vayya. In consequence ν — vL(a)w and by Remark 
1 .2 .5 , ν = (L(a)w)v, i.e. ν < L(a)w. 

Now we show that L(a)w G Ζ. First note that ( a y ) ( L ( a ) w ) = (ay)(aw) = 
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aw = L(a)w. The second equality follows by Remarks 1.2.10, 1.2.11, and 
the assumption w £ yT(B). So L(a)w G {ay]. It remains to show that 
(L(a)w)ya = u. Using Proposition 1.2.14, definition of ya and Corollary 7.6 
we obtain 

y(L(a)w)ya = a(aw)y" = y(aw)yya = y(aw)y = yaw = yw = yyu = yu. 

Hence, by Lemma 7.16, we have ( L ( a ) w ) y a = u. Therefore L(a)w G Ζ and 
consequently, since ν < L(a)w for all υ € Ζ, 

L(a)w = Σ(υ G (ay]\vya = u). m 

7 .18 . L E M M A . Let χ, y e Β be such that 

L(a){yx') - L(a)(x') and L(a)(xy') = L(a)(y') 

for all x' < x, y' < y. Then χ = y. 

P r o o f . Suppose on the contrary that χ φ y. Then by Remark 1.2.10 
xT(B) \ yT(B) φ 0 or yT(B) \ xT(B) φ 0. Without loss of generality we 
may assume that xT{B) \ yT(B) φ 0. 

Let t be a minimal element in ( x T ( B ) \ yT(B), <) . We will show that 
the elements t and yt satisfy the condition 5.1(ii). By assumption we have 

(7.18.1) L(a)t = L(a){yt) 

and 

(7.18.2) L(a)(ty) = L(a)(yty). 

In view of Proposition 1.2.14, yty = yt. Therefore, from (7.18.1) and (7.18.2) 
it follows that L(a)t = L(a)(ty). Hence, by Corollary 7.6 we obtain t = ty. 
But by Proposition 1.2.14, tyt = ty, so tyt = t. On the other hand, by 
Corollary 1.2.16, {yt)t — yt. Consequently 

(7.18.3) ({<, yt}, ·) is a left zero semigroup. 

Now we will show that (yt)T(B) \ tT(B) - {yt}. First note that yt <¿ 
tT(B). Indeed, yt Ç tT(B) implies that tyt = (yt)t and consequently, by 
(7.18.3), t = yt, contradicting the fact that t <¿ yT(B). Let ζ e {yt)T(B) \ 
tT(B) and ζ φ yt. Then ζ < yt and in consequence, by Remark 1.2.11, 

(7.18.4) xz < xyt. 

Moreover by Corollary 7.6, ζ < yt implies that az < ayt. Note that since 
ζ < y, axz = az, and since yt < y, axyt = ayt. So we have axz < axyt and 
consequently, by (7.18.4) we obtain 

(7.18.5) xz < xyt. 

Note that 
axyt = ayxyt since xyt < χ 
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axyt = ayxt 
axyt = ayt 
axyt = at 

by Proposit ion 1.2.14 
since t < χ 

since t < χ. 
Hence, by Corollary 7.6, xyt = t and in consequence, by (7.18.5), 

(7.18.6) xz < t. 

Since t is minimal in (xT(B) \ yT(B), < ) (7.18.6) implies x z G yT{B). 
Recall that since ζ < y,az = axz. Consequently, by Corollary 7.6, ζ = xz. 
So, from (7.18.6) it follows that ζ G tT(B). This contradies the assumption 
that ζ G (yT)T(B) \ tT(B). We conclude that (yt)T(B) \ tT(B) = { y t } . 

To prove that t and yt sat is fy 5.1(ii) it remains to show that tT(B) \ 
(yt)T(B) = { f } · First we show that t € tT(B) \ (yt)T(B). Suppose on 
the contrary that t G (yt)T(B). Then by Remark 1.2.5, tyt = (yt)t and 
consequently, by (7.18.3), t = yt contradicting the fact that t $ yT(B). So 
t G tT(B) \ (yt)T(B). Now we show that t is the unique element of tT(B) \ 
(yt)T(B). Suppose on the contrary that u G tT{B) \ (yt)T(B) and u φ t. 
Then u < t and consequently tu = u. Since t is minimal in ( x T ( B ) \ y T ( B ) , < 
) we have that u G yT(B), whence yu — u. By ( B 5 ) , ( y t ) u = (yu)(tu). 
Therefore (yt)u = uu = u, i.e., u G ( y t ) T ( b ) , contradicting the fact that u G 
tT(B)\(yt)T(B). The last contradiction shows that tT(B)\(yt)T(B) = { i } · 
This completes the proof that 

(7.18.7) t and y sat is fy the condition 5.1(ii). 

B y (7.18.7) and L e m m a 7.7, it follows that at φ ayt, a contradiction to 
(7.18.1). This contradiction shows that χ = y. m 

Let L : = ( a T ( B ) , + , ·)· A n immediate consequence of L e m m a s 7.3, 7.4 
and 7.14 is the following 

7.19. COROLLARY The lattice L defined above is a finite distributive lat-
tice with exactly one coatom. 

Let us define 

7.21. LEMMA. The relation R Ç B2 defined by ( 7 . 2 0 ) is contained in <L 
and satisfies the condition 7.0(i). 

P r o o f . First we show that R C < ¿ . Note that the lattice order <χ, is 
exactly the part ia l order < of the bandoid B , restricted to the set a T ( B ) . So 
we have to prove that y a < ay. To do it , it suffices to show that yay = y. But 
this follows immediately from Corollary 7.6 and ( B l ) . Therefore R C < ¿ . 

In the next par t of the proof we show that R satisfies the condition 7.0(i). 
Let t G J I ( L ) \ { 0 } . If t is the unit of the lattice L, i.e. t = a , then it suffices 
to put η : = l , « i : = a , z\ : = a . Obviously (a, a) G R, since a = a a = aa. 

(7.20) R:= { { y a , a y ) \ y e B } . 
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Now we consider the case t φ a. Let s be a predecessor of t in (Β , <). 
By Lemma 7.10 there exist a € L(B) such that 

(7.21.1) at = a and as < b. 

Note that since t φ α, α φ id#. So we may assume that for some yi,y2, · • •, yn 

€ Β 

(7.21.2) α = L(yn) o £ (y n _ i ) o ... o L(yx) 

Let us define 

(7.21.3) Xi := (î/tî/t—i •••yit)a and Z{ := aj/.-y,·-1 ...yit 

for ail ¿G {1 ,2 , . . . , ra}. 
Obviously (xityi) € R for every i = 1,2,...,ra. By (7.21.1), (7.21.2) 

and (7.21.3) zn = a. So, it remains to show that t = χ ι and for every 
j = 1 , 2 , . . . , η - 1,ari < Xj+1 < Zj-

First we show that t = x\. Suppose on the contrary that x\ φ t, i.e. 

(7.21.4) (yit)a φ t. 

Note that t e aT(B) and by Corollary 1.2.16, {yxt)t = yYt. Hence (yit)a < t 
and consequently, by (7.21.4), ( y \ t ) a < t. Since s is the only predecessor of t 
in ( 5 , <), the last inequality implies that (yit)a < s. So, by Remark 1.2.11, 
we have: y\t = (yit)(yit)a < (yit)s < (y\t)t = y\t. In consequence 

(7.21.5) (yit)s = yit. 

On the other hand, by Propositions 1.2.12 and 1.2.7, we get 

(7 .21 .6 ) (yit)s = (yit)(yis) = yi(ts) = yis. 

From (7.21.5) and (7.21.6) it follows that y\t = y\S and consequently, by 
(7.21.2) at = as, contradicting (7.21.1). Therefore 

(7.21.7) Χι = t. 

Now we prove that x\ < for every i = 1 ,2 , . . . , ra . Suppose on the 
contrary that > χχ for some i G {1,2, . . . , ra}. Then, by (7.21.3) and 
(7.21.7), (yiyi-i . . .yit)a > t. Consequently 

(7.21.8) 

By Proposition 1.2.14 and Remark 1.2.5 we have that 

Kytyi-1 · · · 2/10°* = Kvivt-i • • • yit)a = (vivi-1 · --yityt· 

So {yiyi-i.. - y\t)a < t and in consequence, by (7.21.8), {yiyi-1.. - y\i)a < t. 
Since s is the only predecessor of t we have ...y\t)at < s. Hence 
{yiyi-i... yit)at = s(y¿2/ t_i... y\t)at = fay,-1 . . . yit)ats and consequently 

ViVi-i •••2/i(í /¿í/«-i •••yit)at = yw-1.. .yi(yiy¡-i...yit)ats 
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By Proposition 1.2.7, it follows that 

(yiVi-i •••yiivivi-i •••yit)a)(yiyi-i ...yit) 

= (yiyi-1 •••yi(yiyi-i •••yit)a)(yiyi-i •••yit)(yiyi-i ...y\s). 

Hence, by Remark 1.2.5, we obtain 

(yiVi-i •••y\t){yiyi-i ...yi(yiyi-i ···yit)a) 

= ((vivi-1 •••yit){yiyi~i •••í/i(y¿j/«-i · · .yiOa)(í/¿í/¿-i •••yis) 

and in consequence, by Proposition 1.2.14 

(yiyi-χ ...yit)(yiyi-i · · · t/i (í/¿2/¿-i.·-2/i*)(2/í2/í—ι ···yit)a) 

= ((yiVi-i • • • y i f y i y i - i . . .yi(yiVi-i ••.yit){yiyi-x . . .j/ii)a)(2/»y»-i · · -2/i-s) 

But (î/iî/j-i. ..yit){yiyi-i. ..y\t)a = ...2/i<, so 

(yiVi-i ...yit)(yiyi~i ...yiyiyi-i ...yit) 

= ((yiVi-i •••yit)yiyi-i ...ymyi-i • ..y\t){yiyi-\ .-.y\s). 

By Proposition 1.2.14 

(yiyi-i ...yi)(yiyi-i ...yit) 

= (yiyi-1 ...yit){yiyi-i ...yit)(yiyi-i ...yis) 

whence, by Proposition 1.2.14 again 

yiyi-1 ...yit = {yiyi-1 ...yi)(yiyi-i ...yis). 

By Proposition 1.2.7 and since s < t we have 

(yiyi-1 · .-yit)(yiyi-i . ..yis) = yiyi-i. ..y\ts = y{yi-i. ..yis. 

Therefore yiyi-1 . . .yit = yiyi-1 . . .yis and consequently, by (7.21.2), at = 

as , a contradition to (7.21.1). This contradiction shows that χχ < z¿ for all 
i — 1 , 2 , . . . , η. 

Now let i G { 1 , 2 , . . . , η — 1} . To prove that x t + i < z¿, we note first the 
following: 
yi+iyi-.-yit = (yi+m . . .yit)(yi+\yi.. .yit) b y ( B l ) 

Vi+lVi •••yit = (y,+Μ • ..yit)(yi+iayi ...yit) by Corollary 7.6 
y i+ iy i - . -y i t = ( y i + m . . .yit) (yi+izi) by (7.21.3) 
Vi+M ...yit = (yi+m . ..y\t)zi by Proposition 1.2.12. 
Hence, by definition of ya, we have ( y ^ y i . . .yit)a < Z{, i.e. Xi+1 < Zj. This 
completes the proof of the fact that the relation R satisfy the condition 
7.0(i) • 

For the lattice L = ( a T ( B ) , + , ·) and the relation R defined by (7.20) we 
consider the bandoid B(L, R) defined in Section 5. Let Ψ be the mapping 
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defined as follows 

(7.22) Ψ : B(L, R) Β 

and for every xzt G B(L, R) 

\Pxzt = c x i f f z = ca a n d t = ac. 

7 . 2 3 . L E M M A . The mapping Ψ defined by ( 7 . 2 2 ) is a homomorphism 

from (B(L,R),·) to ( Β , · ) . 

P r o o f . Let uxy,wzt G B(L, R). By definition of R there exist elements, 
say c,d, in Β such that χ = ca, y = ac, ζ = da, t = ad. 

Then the following hold 

&(uxywzt) = y(uXy<f>2tXyWzt) by Definition 1.2 
= Φ(ηχν(χΣ(ν e {t\\vz = w ) ) x y ) b y ( 2 . 3 ) 

= Ψ(ιιχυ(χΣ(ν e (ad]\vda = w ) ) r ! / ) 

- ψ(uXy(xadw)Xy) since by Lemma 7.17, Σ(ν € (ad]\vda = w) = adw 

= 9{uxadw)xy 

= cuxadw by (7.22) 
= c(ux)adw since u,x, adw € aT(B) and ( a T ( B ) , ·) is a seniilattioc 
= cuadw since u < χ 

= (cu)(cadw) by Proposition 1.2.7, since u,adw G aT(B) 

= (cu)(cdw) by Corollary 7.6 
= (cu)(dw) by Proposition 1.2.12 
= VuxyVwzt by (7.22). • 

7 . 2 4 . L E M M A . The mapping Φ defined by ( 7 . 2 2 ) is onto. 

P r o o f . Let χ G Β. Let u = xa,w = ax. Obviously (u,w) € R and 
Uuw G B(L, R). Note that Ψuuw — xu = xxa = x. So Ψ is onto. • 

7 . 2 5 . L E M M A . The kernel kerW of the mapping Ψ is exactly the relation 

pCB(L,R)2 defined by ( 4 . I ) . 

P r o o f . First we show that ρ Ç kerW. Let uxy,wzt Ç. B(L,R) and 
( u x y , w z t ) G p. By definition of Ä, we may choose c,d G Β such that 
χ = c a , y = ac, ζ = da,t = ad. By definition of p, since ( u x y , w z t ) G pwe 

have 

(7.25.1) auxyw'xy = au'xy for every u' < u. 

We want to show that \Puxy = $wzt, i.e. cu = dw. Let v' < cu. By Lemma 
7.16 the left multiplication L(c) : ((»], ·) —> (cT(B), ·) is an isomorphism. So 
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υ' = cu' for some u' < u. Note that 

a(dw)v' = a(dw)(cu') 
= WaWwzt9u'xy by (7.22) 
= )P(awztu'xy) since Ψ : B(L, R) —* (Β , ·) is a homomorphism 
= 9(au'xy) by definition (4.1) of p, since uxypwzt 

and u'xy < uxy 

= ΨαΨη'χυ since Ψ : B(L, R) —• (Β , ·) is a homomorphism 
= a(cu') by (7.22) 
= av'. 

So we have 

(7.25.3) a(dw)v' = av' for every v' < cu. 
Analogously we show that 
(7.25.4) a(cu)v" = av" for every v" < dw. 
By Lemma 7.18, (7.25.3) and (7.25.4) it follows that cu = dw. Therefore 
H?uXy = $wzt and consequently (u x y ,w z t ) G ker$. So ρ Ç kerlP. 

Before showing the inverse inclusion, we prove that 

(7.25.5) for all uxy,wzt G B(L,R) if 9uxy = 9wzt, then auxy = awzt. 

Let uxy,wzt G B(L, R),Wuxy = 9wzt and c,d be such that χ = ca, y = 
ac,z = da,t = ad. Then 9uxy = cu and Wwzt = dw. Since \Puxy = Ψwzt, we 
have that cu = dw and consequently, acu = adw. Note that 
acu = Σ(ν € (2/]|v£ = u) by Lemma 7.17 
= <j>xyaaV-xy by (2.3), since a plays the role of unit in L 
= auxy by Definition 1.2 and since α is the unit in L. 
Analogously we show that adw = awzt. Therefore auxy = awzt, what com-
pletes the proof of (7.25.5). 

Now we show that keriP Ç p. Let uxy,wzt G B(L,R) and Wuxy = $wzt. 
We want to show that uxypwzt. Let u' < u. Then 

$(wztluxy) = ^wzt9u'xy since Φ : B(L, R) Β is a homomorphism 
= 9uxy9uxy since 9uxy = Ψwzt 
= \P(uxyuxy) since Ψ : B(L, R) —> Β is a homomorphism 
= &u'xy since u'xy < uxy. 
Hence, by (7.25.5), we have 

(7.25.6) awztu'xy = au'xy for every u' < u. 
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Analogously we show that 

(7.25.7) auxyw'zt = aw'zt for every w' < w. 
By definition of p, from (7.25.6) and (7.25.7) it follows that ( u x y , w z t ) € p. 
Therefore kerîP = p. m 

Proo f of T h e o r e m 7.0: Corollary 7.19, and Lemmas 7.21 through 7.25. 
The following corollary will be useful in the next paper. 

7 . 2 6 . COROLLARY Let Β be a finite subdirectly irreducible left normal 
bandoid with a monolith Θ(α, b), where b < a. Let L = (aT(i?) ,+, ·) and 
R := {(χα,αχ)|χ 6 Β}. Then the mapping Φ : Β B(L,R) such that for 
every χ ζ Β,Φχ = i f f u = xa,w = ax, is an isomorphism. 

P r o o f . Let χ G B, u = xa and w = ax. By (7.22), Wxuw — xx = x. 
Hence, using Lemmas 7.23 through 7.25 we conclude that Φ is an isomor-
phism from Β to B(L, R). • 

References 

[1] E. Z a j a c : Constructions of left normal bandoids, Demonstrat io Math. 24 (1991), 
191-206. 

[2] E. Z a j ^ c : Subdirectly irreducible left normal bandoids, I , Demonstrat io Math. 25 
(1992), 927-946. 

INSTITUTE OF MATHEMATICS, 
PEDAGOGICAL UNIVERSITY OF KIELCE 
ul. M. Konopnickiej 21, 
25-406 KIELCE, POLAND 

Received June 20, 1994. 




