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Introduction

This paper is a sequel to the author’s works [1] and [2]. It is concerned
with the characterisation of finite subdirectly irreducible left normal ban-
doids. In [1] a general structure theorem for left normal bandoids was given.
In [2] a family of subdirectly irreducibles was constructed. In this and in
the next paper we show that this family consists of all finite subdirectly
irreducible left normal bandoids.

The notation and terminology of [1] and [2] will be used without expla-
nation or apology in this paper. Our numbering here begins with Section 7.
References in Sections 1 through 6 are to the relevant parts of [1] and [2].

Recall that by Lemma 5.1, every nontrivial principal congruence of a
finite bandoid B contains a principal congruence generated by pairs of el-
ements a,b of B such that ¢ < b or a and b satisfy the condition 5.1(ii).
Hence we conclude that the monolith of a finite subdirectly irreducible left
normal bandoid B is a principal congruence @(a,b) on B with a < bor a
and b satisfying 5.1(ii). If ©(a, b) with @ < b is the monolith of a subdirectly
irreducible left normal bandoid, then this bandoid is called to be subdirectly
irreducible of the first type. If @(a,b) with a and b satisfying 5.1(i1) is the
monolith of B, then B is called to be subdirectly irreducible of the second
type. Note that the subdirectly irreducible left normal bandoids constructed
in Section 5 are of the first type, and these constructed in Section 6 are of

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology
held at Jachranka, Poland, 8-13 June 1993.



860 E. Zajac

the second type. In this paper we give a necessary condition for a finite left
normal bandoid to be subdirectly irreducible of the first type. A necessary
condition for a finite bandoid to be subdirectly irreducible of the second
type will be given in the last paper of this series.

In this paper our aim is to prove the following theorem:

THEOREM 7.0. If B = (B, ) is a finite subdirectly irreducible left normal
bandoid with a monolith @(a,b) with b < a, then

B = E(Iﬁ R)p

for some finite distributive lattice L with ezactly one coatom, and some
relation R C<y, satisfying the following condition
(i) for each join — irreducible element ¢t in L\ {0} there exist elements ¢t =
X1y L2yeeeyTpyZlyeeeyZn-1,2n = 1 of L such that forall : = 1,2,...,n
and j=1,2,...,n—1

(ziy2i) € Rand 23 < zj41 <L 2;.

7. The proof of the theorem
First we prove some lemmas which are necessary in the proof of the

theorem.
Let B = (B, ") be a finite left normal bandoid.

7.1. LEMMA. Let z,y € B and z,y lie in the same orbit or z,y satisfy
the condition 5.1(it). Then the principal congruence O(z,y) on B is the
equivalence relation on B generated by the set {(az,ay) : « € L(B)}, i.e.
(z,t) € O(z,y) iff
(*) there ezist elements z1,23,...,2n, € B such that z; = z,z, = t and for

everyi < n

zi = ziy1 or {zi,ziy1} = {az, ay} for some a € L(B).

Proof. First note that the relation R defined by
(2,t) € R iff (z,t) satisfy (x)

is exactly the equivalence relation E({(az,ay) : a € L(B)}) generates
by the set {(az,ay) : @ € L(B)}. Indeed, the relation R is contained in
E({(az,ay): a € L(B)}) since E({(az,ay): a € L(B)}) is an equivalence
relation containing the set {(az,ay) : a € L(B)}. It obviously contains
{(az,ay): a € L(B)}. Moreover for every z,t,u € B:

(2,2) € R by the definition of R, via z; = z,

(2,t) € R via 21, 23,..., 2z, implies (¢,z) € R via z,,...,2,

(z,t) € R via z1,22,...,2, and (t,u) € R via #,t2,...,t, imply that
(z,u) € Rvia z1,29,...,2n,t1,t0, 0oy bpse
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Therefore R = E({(az,ay) : a € L(B)}).
Now we will prove that R = O(z,y). Note that it suffices to show that
for every ¢ € B and a € L(B) the following condition hold:

(7.1.1) (caz,cay) = (Bz, By) for some § € L(B),
(7.1.2) ((az)e, (ay)e) = (yz,vy) for some v € L(B) or
(az)e = (ay)e,

Indeed if (z,t) € R via 21,2s,...,2, then by (7.1.1), (cz,ct) € R via
€z1,C22,. ..,z and by (7.1.2) (z¢,tc) € R via z¢, 23¢, ..., 2y¢. This com-
pletes the proof of the fact that R is a congruence on B. Since obviously
R C O(z,y) and (z,y) € R, it follows that O(z,y) = R.

To prove (7.1.1) note that for every ¢ € B and a € L(B), caz = (L(c) o
a)z, cay = (L(c) o a)y and L{c) o @ € L(B).

To prove (7.1.2) let us assume first that o = L(y) o ... 0 L(y,) for
some Y1,...,Yn € B. Then by Proposition 1.2.12 and Remark 1.2.5 we
obtain: (az)c = (az)y1c = (1¢)(az) = (L(y1c) o a)z. Analogously, (ay)c =
(L(y1c)oa)y. Since L(y c)oa € L(B), we have that ((az)e, (ay)c) = (yz,vy)
for some v € L(B).

Now let o = idp, the identity mapping on B. We consider two cases: z,
y are in a common orbit vT'(B) or z,y satisfy 5.1(ii). If z,y € vT(B), then
(az)e = zc = (va)e = (vz)(ve) = (ve)(vz) = (ve)z = L(ve)zx. The third and
fifth equalities hold by Proposition 1.2.12 and the fourth equality holds by
Remark 1.2.5. Analogously we show that (ay)c = L(vc)y. So (7.1.2) holds
in this case.

Now let z, y satisfy 5.1(ii). If z¢ < z, then since 2T(B) \ yT(B) = {z},
we have that z¢ < y and moreover, since ({z,y}, ) is a left zero semigroup,
y = yz. Hence, using (B5) (B6) and Corollary 1.2.16 we obtain (ay)c =
ye = (yz)e = (ye)(ze) = (y(zc))e = (zc)e = ze(az)e.

If z¢ = = then yc = y. Indeed, if yc < y then analogously as in the case
zc < z, we show that z¢ = ye and as a consequence of this we obtain yc = z
what implies that z < y, and contradicts the fact that 27(B) \ yT(B) =
{z}. So we have ((az)c,(ay)c = (zc,yc) = (z,y) = (idpz,idgy). Therefore
(7.1.2) holds in this case as well.

For a set X, a relation R C X? and a subset U of X, the symbol Ry
denotes the relation RN U? on X.

7.2. LEMMA. Let z,y,c be elements of B and z,y lie in the same orbit
or x,y satisfy 5.1(it). Then

O(z,¥)|cr(B) = Wer(B)-
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Proof. Let (z,t) € O(z,y)ir(B)- Then (2,t) € O(z,y),z = cz and
= ct. By Lemma 7.1 there exist elements 2y, 27,...,2, of B such that

z=1z,t =z, and forevery ¢t = 1,2,...,n — 1 : 2; = 2;41 or {z;,2i41} =
{az,ay} for some a € L(B). By Proposition 1.2.14 and definition of L(B),
if ez = ¢y then caz = zafcz) = ca(cy) = cay. Hence cz; = cziyy for
every 1 = 1,2,...,n — 1. Consequently 2z = ¢z = ¢z = ¢z, = t. Therefore
O(z,y)|cr(B) € wer(B)- Obviously w.r(py C O(z,¥)r(B) since O(z,y) is a
congruence on B. =

Recall that in this section we consider only finite subdirectly irreducible
left normal bandoids of the first type.

Let B = (B,-) be a finite subdirectly irreducible left normal bandoid.
Let a,b be elements of B such that b < a and O(a,b) is the monolith of B.
Then the following lemmas hold.

7.3. LEMMA. The element a is mazimal in (B, <).

Proof. Suppose on the contrary that z € B and z > a. Then az = aa
and consequently, by Lemma 7.2, O(a, z)|,7(B) = WaT(B)- Since a,b € aT(B)
and a # b it follows that (a,b) € O(a,z). Since O(a,z) # wp, the last
statement gives a contradiction with the fact that ©(a,b) is the monolith
of B.

7.4. LEMMA. The element b is the only predecessor of a in (B, <).

Proof. First we prove that b is a predecessor of a in (B, <). Suppose
on the contrary that there is ¢ in B such that b < ¢ < a. Then O(b,c) =
O(cb,ca) C O(b,a). On the other hand O(a,b) C O(b,c) since O(a,b) is the
monolith of B and @(b,c) # wp. Therefore O(b,c) = O(a,b). Consequently
O(b,c) is the monolith of B. Hence by Lemma 7.3, ¢ is maximal in (B, <),
a contradiction to the fact that ¢ < a. So b is a predecessor of a.

It remains to show that there are no other predecessors of a. Suppose
that d is a predecessor of @ and d # b. Then db # d. Indeed, b,d € aT(B)
and consequently db = bd, so db = d implies that d < b, hence we conclude
that d is not a predecessor of a, a contradiction.

Note that O(db,d) = O(db,da) C O(b,a) = O(a,b). Since O(a,b) is
the monolith of B and ©@(db,d) # wp if follows that O(db,d) = O(a,b).
Consequently @(db, d) is the monolith of B and by Lemma 7.3, d is maximal
in (B, <), contradicting d < a.

7.5. LEMMA. For every x € B the mapping L(a) : (zT(B),:) —
(aT(B),-);y — ay is a semilattice monomorphism.

Proof. Let z € B. By Proposition 1.2.7 it suffices to show that the
mapping is one to one. Let y,z € 2T(B) and y # z. Suppose on the contrary
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that ay = az. Then by Lemma 7.2, O(y, z)|a1(B) = War(B) and consequently
(a,b) € O(y, 2), contradicting the fact that @(a,b) is the monolith of B.

7.6. LEMMA. Let z,,%2s,...,2, € B and i € {1,2,...,n}. Then the
following holds:

T1yeeey) TiQT41...Tp = T122...Tp.

Proof. By Proposition 1.2.14, azy,...z;a%i41...Typ = QT1T2...ZTp.
Hence, by Lemma 7.5 we obtain: zy...2;az;41...2p = Z122...Z,. ®

7.7. LEMMA. Let z,y satisfy the condition 5.1(ii). Then
az # ay.

Proof. Suppose that az = ay. Then by Lemma 7.2, @(:c,y)laT(B) =
wer(B)- Since a,b € aT(B) and a # b, we conclude that (a,b) € w(z,y). By
the assumption that z, y satisfy 5.1(ii) it follows that z # y and consequently
O(z,y) # wp. Therefore (a,b) € O(z,y) gives a contradiction to the fact
that @(a,b) is the monolith of B. So az # ay. =

7.8. LEMMA. Let (z,y) € B%\ {(b,a)} and z < y. Then ay = a implies
ar #b.

Proof. First assume that y = a. Then az = yz = z. Since (z,y) # (b, a)
it follows that az # b.

Now let y # a. Suppose on the contrary that az = b. Using the fact that
z < y and Proposition 1.2.14 we obtain:

(7.8.1) ar = ayxr = ayazr.

By Lemma 7.5 the left multiplication L(a) : (y(T(B),:) — (aT(B),-) is
a monomorphism. So, by (7.8.1), ¢ = yaz. Since az = b it follows that
yb = z. Moreover by Corollary 7.6 we have ya = y. Therefore O(y,z) =
O(ya,yb) C O(a,b). Since O(y,z) # wp and O(a,b) is the monolith of B,
it follows that O(y,z) = O(a,b), i.e. O(y,z) is the monolith of B, it follows
that O(y,z) = O(a,b), i.e. O(y,z) is the monolith of B. So by Lemma 7.5

(7.8.2)  the left multiplication L(y) : (aT(B),-) — (yT(B),-)

is a monomorphism.
Note that the assumptions y # a and ay = a imply that y ¢ oT(B).
Therefore y € yT'(B) \ aT(B) and so yT(B) \ aT(B) # 0.

Let t be a minimal element in (y7T'(B) \ aT(B),<). We want to show
that the elements ¢ and at satisfy the condition 5.1(ii).
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By Corollary 7.6 we have that tat = ¢t = ¢ and by Corollary 1.2.16,
(at)t = at. So

(7.8.3) ({t,at},) is a left zero semigroup.

Now we show that tT(B)\ (at)T(B) = {t}. Obviously t € tT(B)\ (at)T(B).
Indeed, t € (at)T(B) implies that (at)t = t, whence by Corollary 1.2.16,
at = t and consequently ¢ € aT(B), a contradiction. We will show that ¢
is the unique element of tT(B) \ (at)T(B). Suppose on the contrary that
t' € tT(B)\ (at)T(B) and t' # t. Then t' < t. Since t is minimal in (yT'(B)\
aT(B), <), it follows that t' € aT(B) and consequently t' = at’. Using the
fact that ¢’ < t and (B3) we obtain: at’' = att’ = (at)(tt') = (at)(t'). So
t' = (at)t',i.e. t' € (at)T(B), contradicting t' € tT(B)\(at)T(B). Therefore
we have

(7.8.4) tT(B) \ (at)T(B) = {t}.

To prove that t, (at) satisfy 5.1(ii) it remains to show that (at)T(B)\tT(B) =
{at}. Note that at € (at)T(B) \ tT(B) = {at}. Indeed, at € tT(B) im-
plies that at = tat, whence by Corollary 7.6 and (B.1), at = ¢t = t and
consequently t € aT(B), contradicting the fact that ¢ € yT'(B) \ aT(B).
Therefore at € (at)T(B)\ tT(B). Suppose on the contrary that t" # at and
t" € (at)T(B)\tT(B). Then t" < at. So, by (7.8.2), yt" < yat. By Corollary
7.6 yat = yt and consequently, since t € yT'(B), yat = t. Therefore yt" < t.
Hence, because ¢t is minimal in (yT(B)\aT(B), <), we get that yt" € aT(B).
Note that t" € aT'(B) as well and by (B2), yyt"” = yt”. Therefore, by (7.8.2)
we obtain yt" = t". Hence t" € yT'(B), contradicting t" € (at)T(B)\tT(B).
So we have

(7.8.5) (at)T(B)\ tT(B) = {at}.

From (7.8.3)—(7.8.5) it follows that the elements t and at satisfy the condition
5.1(ii). Consequently, by Lemma 7.7, at # aat, contradicting the axiom (B2).
The last contradiction shows that az # b. This completes the proof.

7.9. LEMMA. Let (z,y) € B? \ {(b,a)} and z < y. Then for every a €
L(B)

ay = a implies az # b.

Proof. Let « € L(B) and ay = a. If & = idg then obviously az # b
since (z,y) # (b,a). Let a # idg. Then a = L(z) o L(z3)0...0 L(z2,) for
some 21, 22,...,2, € B. By Corollary 1.2.8, az < ay. So ay, oz € aT(B).
Consequently

(7.9.1) aT = QT = az123 ...2,T
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and
(7.9.2) ay = aqy = azz...2,9.
Let 2;,, 2i,,..., 2, be a subsequence of the sequence zy, 23,..., 2, obtained

by dropping all elements equal to a. By Proposition 1.2.14, from (7.9.1) and
(7.9.2) it follows that

(7.9.3) azT = azi, Ziy ... 2i, T
and
(7.94) Qy = azi, Zi, ... Zi Y-

Note that z;,z;, ...z, # a.Indeed, by Remark 1.2.10, z;, 2, .. .2;, = a im-
plies that a < z;,, and since a # z;, we have a < z;,, contradicting the fact
that, by Lemma 7.3, a is maximal in (B, <). Therefore (2;, zi, . . . 2, 2, 2i, 2,
...z, ¥) # (b,a). Moreover, by Remark 1.2.11 we have that 2;,z;, ... 2;, 2 <
ZiyZiy -2 Y- U 24,24, 00 20,2 = 23,20, ... 2, Y, then by (7.9.3) and (7.9.4),
az = ay and consequently az # b since ay = a. If 2;,2;,...2z5,2 <
Ziy %, - -+ 2i, Y, then by Lemma 7.8, since az;, 2, ... 2;, ¥y = ay = a, we obtain
that az;, 2, ...z, ¢ # b and consequently, by (7.9.3), az #b. =

7.10. LEMMA. Let (z,y) € B?\ {(b,a)} and z < y. Then there ezists
a € L(B) such that ay = a and az < b.

Proof. Clearly, if y = @ then for a := idg we have that ay = a and, by
Lemma 7.4, az < b.

Let y # a. Suppose on the contrary that for every @ € L(B),ay = a
implies az < b. Then, by Lemma 7.4, for every a € L(B),ay = a implies
az = aor az = b. Consequently, by Corollary 7.9 for every a € L(B),ay = a
implies az = a. On the other hand, by Corollary 1.2.8 for every a € L(B) :
az < ay. Hence by Lemma 7.3, for every a € L(B),ar = a implies ay = a.
So we have

(7.10.1) az=aiffay=a

for every a € L(B). We will show that (a,b) ¢ O(z,y). This will give a
contradiction with the fact that ©(a,b) is the monolith of B. Suppose on the
contrary that (a,b) € O(z,y). Then by Lemma 7.1 there exist elements, say

Z1,22,...,2p such that @ = 2;,b = 2, and foreach ¢ = 1,2,...,n,2; = z;41
or for some a € L(B),{zi,2i+1} = {az,ay}. Hence, by (7.10.1), it follows
that @ = 21 = 290 = ... = z, = b, a contradiction to b < a. Therefore

(a,b) € O(z,y), contradicting the fact that @(a,b) is the monolith of B.
This contradiction completes the proof. w

7.11. LEMMA. Let z,y € aT(B) and z be a predecessor of y in (B, <).
Let a be an element of L(B), such that ay = a and az < b.



866 E. Zajac

Then az is the supremum of the set {v € aT(B)|vy = z} in (B, ).

Proof. Let us denote Z := {v € aT(B)|vy = z}. First we show that az
is an upper bound of Z in (B, <).

Let v € Z. By Proposition 1.2.14, vay = va(vy) and consequently, since
vy = =, we obtain vay = vaz. Because ay = a,v = va = vay = vaz. Since
az and a lie in the same orbit aT'(B), we have that vaz = (az)v. Therefore
v = (az)v, i.e. v < az for all v € Z. Now it suffices to show that az € Z.
By Remark 1.2.5, since z < y, it follows that zy = yz = z. Therefore z € Z
and consequently, as was shown in the first part of the proof z < az. Hence
by Remark 1.2.11, zy < (az)y, i.e. z < (az)y. On the other hand (az)y <y
since by Remark 1.2.5 and Corollary 1.2.16, y(az)y = ((az)y)y = (az)y.
Since z is a predecessor of y, we have the following

(7.11.1) (az)y =y or (az)y = z.

Suppose that (az)y = y. Then a(az)y) = ay. Corollary 1.2.8 and Propo-
sition 1.2.14 it follows that o((az)y) = (a(az))(ay) = (az)(ay). Conse-
quently (az)(ay) = ay. Since ay = a and, by Corollary 1.2.8, az < ay, we
obtain that az = (az)(ay) = (az)a = a, contradicting az < b. Therefore

(7.11.2) (az)y # y.

From (7.11.1) and (7.11.2) it follows that (az)y = z and in consequence
ar € Z, what completes the proof. m

7.12. Remark. Let z,y, a satisfy the hypothesis of Lemma 7.11. Then
y < az.

Proof. This follows immediately from (7.11.2). =

Since B is finite and all orbits of B are semilattices with unit, it follows

that each pair (z,y) of elements of an orbit has a join z + y, the supremum
of {z,y} in (B, <). So for any z in B, the algebra (zT(B),+,-) is a lattice.

7.13. LEMMA. The lattice (aT(B),+, ) is modular.

Proof. Suppose on the contrary that (aT(B), +,-) contains as a subal-
gebra a copy of the lattice N5, say the lattice pictured below.

g
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Additionaly let us assume that d is a predecessor of ¢. By Lemma 7.10 we
may assume that a is an element of L(B) such that az = a and ad < b. By
Lemma 7.11, ad = X(v € aT(B)|vc = d) and consequently, since dc = d we
obtain

(7.13.1) ad > d.

Note that f¢ = fd. Hence by Proposition 1.2.14 and Remark 1.2.5, it follows
that f = fa = fac = fa(fe) = fa(fd) = f(ad) = (ad)f and consequently

(7.13.2) ad > f.

By (7.13.1) and (7.13.2) we obtain that f + d < ad, i.e. ¢ < ad. Hence
¢ < ad. But by Remark 7.12 ¢ < ad, a contradiction. m

7.14. LEMMA. The lattice (aT(B), +,-) is distributive.

Proof. By Lemma 7.13 the lattice (aT(B),+,-) is modular. So it re-
mains to show that it does not contain as a subalgebra a copy of the lattice
M3. Suppose on the contrary that the lattice pictured below is a subalgebra
of (aT(B), +,").

Let z be an element of B such that f is a predecessor of z and z < e. By
Lemma 7.10 there exist an element of L(B), say a, such that az = a and
af < b. By Lemma 7.11, af > ¢+ d since cz = f and de = f. Therefore
af > g and consequently af > 2, contradicting the fact that by Remark
7.12, z £ af. So the proof is complete. m

Recall that for a lattice L the symbol JI(L) denotes the set of all join
— irreducible elements of L. The principal ideal of a lattice, generated by
z is denoted by (z).

7.15. LEMMA. Lett € JI(aT(B)) and s be a predecessor of t in (B, <).
Then for every z € B,zs # zt implies that the left multiplication L(z) :
((t],-) = (2T(B),-) is a monomorphism.

Proof. Let zs # zt. By Proposition 1.2.7 it suffices to show that the
left multiplication L(z): ((t],-) — (zT(B),") is one to one.
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Let u,v € (t] and u # v. Suppose on the contrary that zu = zv. Since
u # v, we have that uv # v or vu # u. Without loss of generality we may
assume that uv # v. By Proposition 1.2.14 and Remark 1.2.5, vuv = vu =
uv, whence uv < v. Therefore uv < v. Let w be a predecessor of v such that

(7.15.1) uww < w.

By Lemma 7.10 we may assume that v = a and aw < b. By Corollary
1.2.8 and (7.15.1) it follows that

(7.15.2) a(uv) < aw.
By Remark 7.12 we have
(7.15.3) v £ aw.

From (7.15.2) and (7.15.3) it follows that v < a(uv) and consequently ¢ £
a(uv), i.e.

(7.15.4) a(uv)t £ t.

Since aw < b < a, from (7.15.2) it follows that a(uv) € aT(B). Hence
by Remark 1.2.5 we conclude that ta(uv) = a(uv)t. So, by Remark 1.2.10,
a(uv)t <t and in consequence, by (7.15.4) we obtain a(uv)t < t. Since s is
a predecessor of t and ¢t € JI(aT(B)), the last inequality implies

(7.15.5) a(uv)t < s.
Note that
zt = zta since t € aT(B)
= ztav since av = a
= zta(zv) since by assumption zu = 2v and consequently, by
Proposition 1.2.7, zuv = (zu)(2v) = (2v)(2v) = 2zv
= zta(uv) by Proposition 1.2.14
= z(a(uv)t) by Remark 1.2.5.

Hence by (7.15.5) and Remark 1.2.11 we have zt < zs. On the other hand,
by Remark 1.2.11, since s < t, we have zs < zt. So 2zt = zs, contradicting
the assumption zt # zs. This contradiction shows that the mapping L(z2) :
((t],-) = (2T(B),-);z — 2t is one to one. =

For an element y of a finite subdirectly irreducible left normal ban-
doid B with monolith ©(a,b) where b < a, let us consider the set Z¥ :=
{z € aT(B)|yz = y}. Note that the set Z¥ is nonempty since by Corollary
7.6, a € ZY. Since B is finite there exist the meet [[ Z¥ of all elements
of the semilattice (aT(B),-) lying in Z¥. Moreover, by Proposition 1.2.7,
y(I12Y) = [I{yz|z € Z¥} = y. Obviously [[ Z¥ € aT(B). So [[ Z¥ € Z¥.
Let us define y°® := [] ZV.
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7.16. LEMMA. For every y € B the left multiplication L(y) : ((y*],:) —
(yT'(B),-) is an isomorphism.

Proof. By Proposition 1.2.7 the left multiplication L(y) : ((y°],:) —
(yT'(B),-) is a homomorphism. It remains to show that it is one-to-one and
onto. _

First we show that this mapping is one-to-one. If the set (y2] has exactly
one element, then it is obvious. So, we assume that (y°] has at least two
elements. We consider the following two cases:

Case 1. Let y* € JI(aT(B)). Since |(y%]| > 2, there exist a predecessor
t of y* in (B, <). By definition of y*,yy* # yt. Now the proof follows
immediately by Lemma 7.15.

Case 2. Let y* ¢ JI(aT(B)). Define A :
First we show that

(7.16.1) for every element z which is maximal in (A, <) the mapping
L(y) : ((z],") = (yT(B),") is one to one.

Let = be a maximal element in (A, <). Since y® € JI(aT(B)) there is an
element ¢, such that ¢ is a predecessor of y* and z £ t. By distributivity of
the lattice (aT'(B), +, ) it follows that zt is a predecessor of zy* in (B, <).
Since z € A, clearly, zy* = z. To use Lemma 7.15 it suffices to show that
yz # yzxt. Suppose on the contrary that

(7.16.2) yz = yxt.

By Lemma 7.10 we may assume that « is an element of L(B) such that
az = a and a(zt) < b. By Lemma 7.11 we have
(7.16.3) a(zt) = Z(v € aT(B)|vz = zt).

Since by Remark 1.2.5 tz = 2zt and t € aT(B), from (7.16.3) it follows that
a(zt) >t and consequently, by Remark 1.2.11, y%a(zt) > y°t.
Because t < y°%, i.e. y*t = ¢, we have

{z € JI(aT(B))|z < y*}.

(7.16.4) yPa(zt) > t.

By Remark 7.12, axt) > z. Hence we conclude that
(7.16.5) a(zt) # y°.

In consequence, since y*a(xt) < y°, we obtain
(7.16.6) yra(zt) < y°.

Indeed, if y®a(xt) = y°, then by Remark 1.2.5, a(zt)y® = y2, ie. y* <
a(zt), contradicting (7.16.5). Since ¢ is a predecessor of y°, from (7.16.4)
and (7.16.6) it follows that

(7.16.7) - yla(zt) =t.
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Then we have the following:

y=yy* by definition of y°
=yy‘a by Corollary 7.6
= yytazx since az = a
= yy®a(yz) by Proposition 1.2.14
= yy°o(yzt) by (7.16.2)
= yy°*(at) by Proposition 1.2.14
=yt by (7.16.7).

Hence, by definition of y*, y* < t, contradicting the assumption t < y®. This
contradiction shows that yz # yzt. By Lemma 7.15 this completes the proof
of (7.16.1).

Now let u,v € (y°?] and u # v. There exist ¢ € JI(aT(B)) such that
t<uandt £ v, ie tu=1¢tand zv < t. Since t € JI(aT(B)) and t < y°,
there exist an element z in A which is maximal in (A, <) and such that
t < z. Observe that tu,tv € (2] and tu # tv. In consequence, by (7.16.1) we
obtain that ytu # ytv. This implies that yu # yv. Indeed, if yu = yv then
by Proposition 1.2.14, ytu = ytyu = ytyv = ytv, contradicting ytu # ytv.
In this way we have proved that the left multiplication L(y) : (y*] — yT(B)
is one-to-one.

It remains to prove that L(y) maps (y°] onto yT'(B).

Let w € yT(B). Obviously y*w € (y?]. We show that L(y)(y*w) = w.
Note that

L(y)(y*w) = yy®w = yy®aw by Corollary 7.6
L(y)(y*w) = yy*w = (yy*)(yaw) by Proposition 1.2.7
L(y)(y*w) = yy°w = y(yaw) by definition of y°
L(y)(y*w) = yy*w = yw by B2) and Corollary 7.6
L(y)(y*w) = yy’w =w since w € yT(B).

This implies that L(y) maps (y*] onto yT'(B), what completes the proof. m
7.17. LEMMA. For every y € B and for every w € yT(B)
L(a)w = X(v € (ay]|vy® = u),
where u is the unique element of (y°] with the property w = L(y)u.

Proof. Let y € B and w € yT(B). By Lemma 7.16 there exists exactly
one element, say u, in (y°] such that w = yu. Define Z := {v € (ay]|vy® =
u}. It suffices to show that for every v € Z,v < L(a)w and L(a)w € Z.

Let v € Z. Then vy* = u and consequently, by Proposition 1.2.14,
vayy® = vayvy® = vayu = vaw = vL(a)w. Since yy* = y and v € (ay], we
have that v = vay = vayy®. In consequence v = vL(a)w and by Remark
1.2.5, v = (L(a)w)v, i.e. v < L(a)w.

Now we show that L(a)w € Z. First note that (ay)(L(a)w) = (ay)(aw) =
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aw = L(a)w. The second equality follows by Remarks 1.2.10, 1.2.11, and
the assumption w € yT'(B). So L(a)w € (ay]. It remains to show that
(L(a)w)y* = u. Using Proposition 1.2.14, definition of y* and Corollary 7.6
we obtain

y(L(a)w)y® = a(aw)y® = y(aw)yy® = y(aw)y = yaw = yw = yyu = yu.
Hence, by Lemma 7.16, we have (L(a)w)y® = u. Therefore L(a)w € Z and
consequently, since v < L(a)w for all v € Z,

L(a)w = X(v € (ay]|vy® = u). .

7.18. LEMMA. Let 2,y € B be such that
L(a)(yz") = L(a)(z") and L(a)(zy") = L(a)(¥')
forallz' <z,y' <y. Thenz =y.
Proof. Suppose on the contrary that z # y. Then by Remark 1.2.10
¢T(B) \ yT'(B) # 0 or yT(B) \ «T(B) # 0. Without loss of generality we
may assume that z7(B) \ yT(B) # 0.

Let ¢ be a minimal element in (z7(B) \ yT(B), <). We will show that
the elements ¢ and yt satisfy the condition 5.1(ii). By assumption we have

(7.18.1) L(a)t = L(a)(yt)
and
(7.18.2) L(a)(ty) = L(a)(yty).

In view of Proposition 1.2.14, yty = yt. Therefore, from (7.18.1) and (7.18.2)
it follows that L(a)t = L(a)(ty). Hence, by Corollary 7.6 we obtain t = ty.
But by Proposition 1.2.14, tyt = ty, so tyt = t. On the other hand, by
Corollary 1.2.16, (yt)t = yt. Consequently

(7.18.3) ({t,yt},*) is a left zero semigroup.

Now we will show that (yt)T(B) \ tT(B) = {yt}. First note that yt ¢
tT'(B). Indeed, yt € tT(B) implies that tyt = (yt)t and consequently, by
(7.18.3), t = yt, contradicting the fact that t ¢ yT'(B). Let z € (yt)T(B) \
tT(B) and z # yt. Then z < yt and in consequence, by Remark 1.2.11,
(7.18.4) zz < zyt.

Moreover by Corollary 7.6, z < yt implies that az < ayt. Note that since
z L y,axz = az, and since yt < y,axyt = ayt. So we have arz < azyt and
consequently, by (7.18.4) we obtain

(7.18.5) zz < zyt.

Note that
azyt = ayzyt since zyt < z
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aryt = ayrt by Proposition 1.2.14
azyt = ayt since t < z
azyt = at since ¢ < z.
Hence, by Corollary 7.6, zyt = t and in consequence, by (7.18.5),

(7.18.6) zz <t

Since ¢ is minimal in (27(B) \ yT'(B),<) (7.18.6) implies zz € yT(B).
Recall that since z < y,az = azz. Consequently, by Corollary 7.6, z = zz.
So, from (7.18.6) it follows that z € tT(B). This contradies the assumption
that z € (yT)T(B) \ tT(B). We conclude that (y¢)T(B) \ tT(B) = {yt}.

To prove that ¢ and yt satisfy 5.1(ii) it remains to show that tT'(B) \
(yt)T(B) = {t}. First we show that ¢ € tT(B) \ (y¢)T(B). Suppose on
the contrary that ¢t € (yt)T(B). Then by Remark 1.2.5, tyt = (yt)t and
consequently, by (7.18.3), t = yt contradicting the fact that t ¢ yT(B). So
t € tT(B) \ (yt)T(B). Now we show that ¢ is the unique element of tT'(B) \
(yt)T(B). Suppose on the contrary that » € tT(B) \ (yt)T(B) and u # t.
Then u < t and consequently tu = u. Since ¢ is minimal in (z7'(B)\yT(B), <
) we have that u € yT(B), whence yu = u. By (B5), (yt)u = (yu)(tu).
Therefore (yt)u = uu = u, i.e., u € (y2)T(b), contradicting the fact that u €
tT(B)\ (yt)T(B). The last contradiction shows that tT(B)\(yt)T(B) = {t}.
This completes the proof that

(7.18.7) t and y satisfy the condition 5.1(ii).

By (7.18.7) and Lemma 7.7, it follows that at # ayt, a contradiction to
(7.18.1). This contradiction shows that z = y. =

Let L := (aT(B),+,*). An immediate consequence of Lemmas 7.3, 7.4
and 7.14 is the following

7.19. COROLLARY The lattice L defined above is a finite distributive lat-
tice with exactly one coatom.
Let us define

(7.20) R := {(y*,ay)|y € B}.

7.21. LEMMA. The relation R C B? defined by (7.20) is contained in <r,
and satisfies the condition 7.0(1).

Proof. First we show that R C<;. Note that the lattice order < is
exactly the partial order < of the bandoid B, restricted to the set aT'(B). So
we have to prove that y* < ay. To do it, it suffices to show that yay = y. But
this follows immediately from Corollary 7.6 and (B1). Therefore R C<.

In the next part of the proof we show that R satisfies the condition 7.0(i).
Let t € JI(L)\ {0}. If t is the unit of the lattice L, i.e. t = a, then it suffices
to put n:=1,z; := a,2 := a. Obviously (a,a) € R, since a = a® = aa.
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Now we consider the case t # a. Let s be a predecessor of ¢ in (B, <).
By Lemma 7.10 there exist « € L(B) such that

(7.21.1) at =a and as < b.

Note that since ¢ # a, @ # idg. So we may assume that for some y1,92,...,9n
€B

(7.21.2) a= L(yn) o L(yn-1)0...0 L(%1)
Let us define
(7.21.3) z; := (YiYi-1---1t)* and z; := ay;Yi—1 ... N1t

for all 7 € {1,2,...,n}.

Obviously (z;,y;) € R for every i = 1,2,...,n. By (7.21.1), (7.21.2)
and (7.21.3) z, = a. So, it remains to show that ¢ = z; and for every
;i=142,...,n-1,2;y < zj41 < 2.

First we show that ¢t = z;. Suppose on the contrary that z; # t, i.e.

(7.21.4) (1t)" # t.

Note that ¢ € aT'(B) and by Corollary 1.2.16, (y1t)t = y;t. Hence (y11)* < 't
and consequently, by (7.21.4), (y1t)* < t. Since s is the only predecessor of ¢
in (B, <), the last inequality implies that (y;t)* < s. So, by Remark 1.2.11,
we have: g1t = (y1t)(11t)* < (nit)s < (y1t)t = yit. In consequence

(7.21.5) (11t)s = yit.
On the other hand, by Propositions 1.2.12 and 1.2.7, we get
(7.21.6) (nit)s = (nt)(m1s) = ni(ts) = yis.

From (7.21.5) and (7.21.6) it follows that y;¢ = y;5 and consequently, by
(7.21.2) at = as, contradicting (7.21.1). Therefore

(7.21.7) zy = 1.

Now we prove that z; < z; for every ¢ = 1,2,...,n. Suppose on the
contrary that z; > =z, for some i € {1,2,...,n}. Then, by (7.21.3) and
(7.21.7), (yi¥i-1 . - - v1t)* > t. Consequently

(7.21.8) (YiYio1 - .. t)%t £ t.
By Proposition 1.2.14 and Remark 1.2.5 we have that
HyiYio1 .- - nt)t = H(Yivi-1 - .. 1t)* = (YiYi-1 ... 91 t)%.
So (yiyi=1...y1t)* < t and in consequence, by (7.21.8), (¥;yi-1..-%11)* < t.

Since s is the only predecessor of t we have (y;yi—1...%11)%t < s. Hence
(YiYie1 ... 1t)%t = s(yi%i=1 .- - 111)%t = (YiYi—1 - - - y1t)*ts and consequently

YiYi-1 - - N(Yiio1 .- 1t) %t = yivicr ... (Yivior - 91t) s
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By Proposition 1.2.7, it follows that
(yivi-1 - (WiYi-1 - .11 ))(WiYiz1 . .. 91 t)

= (Yi¥i-1 - - (WiYi-1 - - 0 ) Wi%i-1 - - - Nnt)(Yivi-1 . .. N1 8).
Hence, by Remark 1.2.5, we obtain
(yivie1 - - n)(Wivio1 - (WiYio1 - .. 01t)%)

= ((¥i%i-1- - - nO@ivi-1 - - 1 (Yvi-1 .. . 01 Wi%i-1-. . 115)
and in consequence, by Proposition 1.2.14
(yiyi1 - . n)(wivio1 - - - (Wi%i-1 - - ) (Yii-1 . .. 01t)")
= ((Yivi-1 - - nt)itdizr - N Wivio1 - ) WiYi-1 - - ) ) Wivi-1 .. . 119)
But (yiyi-1...918)(¥i¥i-1 ... 011)* = ¥i¥i-1...%1t, s0
(yivi-1 - - ) (WiYio1 - - - N1 YiYi-1 .- - %1t)

= ((gi¥hi-1 - - - ) YiYio1 - Y1 Yilie1 - - V1N YiYio1 - - - Y18)-
By Proposition 1.2.14
(vivi-1 - - 11)(Wivi-1-. - 91t)
= (yiyi—l cee ylt)(yiyi—l . -ylt)(yiyi-—l .. y18)
whence, by Proposition 1.2.14 again
YiYi-1---nt = (Yivi-1 .- v1)(WiYi-1- .- %1 8)-
By Proposition 1.2.7 and since s < t we have
(yiyi—l .- -ylt)(yiyi—l ---yls) =YiYi-1---Nnls = YiYi-1..- 18-

Therefore ¥;y;—1...¥1t = ¥;i¥i-1 - ..¥1$ and consequently, by (7.21.2), at =
as, a contradition to (7.21.1). This contradiction shows that z; < z; for all
t=1,2,...,n

Now let 7 € {1,2,...,n — 1}. To prove that ;41 < z;, we note first the
following;:

Yivr¥i - -t = (Yit1¥i - 1)W1 ¥i - . . 01 t) by (B1)
Yiyr¥i - - -1t = (Yi1¥i - - ) (Wir10%i . . .1 t) by Corollary 7.6
Yit1¥i -1t = (Yigr¥i - - 918 (Yig12i) by (7.21.3)
YVivr1Yi-. -t = (Yix1¥%i ... 1)z by Proposition 1.2.12.

Hence, by definition of y*, we have (yi11¥: ... 71t)* < z;,i.e. zi41 < z;. This
completes the proof of the fact that the relation R satisfy the condition
7.0(i) =

For the lattice L = (aT(B),+,-) and the relation R defined by (7.20) we
consider the bandoid B(L, R) defined in Section 5. Let ¥ be the mapping
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defined as follows
(7.22) w:B(L,R)— B
and for every z,: € B(L, R)
Uz, =cxif fz=c*and t = ac.
7.23. LEMMA. The mapping ¥ defined by (7.22) is a homomorphism
from (B(L, R),") to (B,").

Proof. Let ugy, w,: € B(L, R). By definition of R there exist elements,
say c,d, in B such that z = ¢*, y = ac, z = d*, t = ad.
Then the following hold

V(tgywst) = ¥ (UoyPrtayWst) by Definition 1.2
= V(ugy(zX(v € (t])|vz = w))zy) by (2.3)
= V(ugy(zX(v € (ad]lvd® = w))zy)
= V(uzy(zadw) ) since by Lemma 7.17, X (v € (ad]|vd® = w) = adw
= V(uzadw)gy
= cuzadw by (7.22)
= c(uz)adw since u,z,adw € aT(B) and (aT(B),-) is a semilattice
= cuadw since u <z
= (cu)(cadw) by Proposition 1.2.7, since u, adw € aT(B)
= (cu)(cdw) by Corollary 7.6
= (cu)(dw) by Proposition 1.2.12
= Vg, Pw,, by (7.22). m

7.24. LEMMA. The mapping ¥ defined by (7.22) is onto.

Proof. Let z € B. Let v = 2%, w = az. Obviously (u,w) € R and
Uyw € B(L, R). Note that ¥u,, = zu = zz® = z. So ¥ is onto. m

7.25. LEMMA. The kernel kerW of the mapping ¥ is exactly the relation
p C B(L,R)? defined by (4.1).

Proof. First we show that p C ker¥. Let ugy,w,; € B(L,R) and
(Ugy,w;t) € p. By definition of R, we may choose ¢,d € B such that
T = c%y = ac,z = d*,t = ad. By definition of p, since (uzy,w,t) € pwe
have
(7.25.1) AUz Wy, = auy, for every u' < u.

We want to show that Yuz, = Yw,,, i.e. cu = dw. Let v’ < cu. By Lemma
7.16 the left multiplication L{c) : ((z],:) — (¢T'(B),-) is an isomorphism. So
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v' = cu' for some u' < u. Note that
a(dw)v' = a(dw)(cu')

= Valw,;Yuy, by (7.22)
= ¥(aw,uy,) since ¥ : B(L, R) — (B, ") is a homomorphism
= ¥(auy,) by definition (4.1) of p, since ugzypw,;
and u;y < Ugy

= ValPuy, since ¥ : B(L, R) — (B,-) is a homomorphism
= a(cu') by (7.22)
= av'.

So we have

(7.25.3) a(dw)v’ = av' for every v’ < cu.

Analogously we show that
(7.25.4) a(cu)v” = av"” for every v" < dw.

By Lemma 7.18, (7.25.3) and (7.25.4) it follows that cu = dw. Therefore
Vuzy = Yw,; and consequently (ugy,w,:) € ker?. So p C ker¥.
Before showing the inverse inclusion, we prove that

(7.25.5) for all ugy,w,: € B(L, R) if $ugzy = Yw,, then augy = aw,y.

Let ugy,w,: € B(L,R),Yu,y = Yw,; and c,d be such that z = ¢%,y =
ac,z = d*,t = ad. Then Yu,y, = cu and Yw,; = dw. Since Yuz, = Vw,,, we
have that cu = dw and consequently, acu = adw. Note that

acu = X(v € (y]lvz = v) by Lemma 7.17
= Pryaalizy by (2.3), since a plays the role of unit in L
= QUgy by Definition 1.2 and since a is the unit in L.

Analogously we show that adw = aw,;. Therefore au,, = aw,;, what com-
pletes the proof of (7.25.5).

Now we show that ker¥ C p. Let ugy,w,¢ € B(L, R) and Vuzy = Vw,;.
We want to show that u ,pw,,. Let u' < u. Then

U(wee, Uzy) = Yw o Puy, since ¥ : B(L, R) — B is a homomorphism
=Vuz Vg, since Yuzy = Yw,;
= U(uzyuy,) since ¥ : B(L,R) — B is a homomorphism
=Vu,, since ul, < Ugy.
Hence, by (7.25.5), we have

(7.25.6) aw ey, = aug, for every u' < u.
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Analogously we show that
(7.25.7) augyw,, = aw), for every w’' < w.

By definition of p, from (7.25.6) and (7.25.7) it follows that (uzy,w;:) € p.
Therefore ker¥ = p. =

Proof of Theorem 7.0: Corollary 7.19, and Lemmas 7.21 through 7.25.
The following corollary will be useful in the next paper.

7.26. COROLLARY Let B be a finite subdirectly irreducible left normal
bandoid with a monolith @(a,b), where b < a. Let L = (aT(B),+,) and
R := {(z*,az)|z € B}. Then the mapping # : B — B(L, R) such that for
every z € B,dx = z£,, iff u = 2%, w = az, is an isomorphism.

Proof. Let z € B, u = z2* and w = az. By (7.22), ¥z, = zz = .
Hence, using Lemmas 7.23 through 7.25 we conclude that & is an isomor-
phism from B to B(L,R). =
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