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In the years 1980-1990 a number of papers appeared investigating the 
structure, properties and meaning of meet-distributive bisemilattices, in 
which the multiplication distributes over the addition. (See the references 
at the end of the paper.) The algebras were subsequently [RS3] referred to 
as dissemilattices. Among them, those having the most accessible structure 
are the distributive dissemilattices (also called distributive quasilattices), 
in which the addition also distributes over the multiplication. They are all 
Plonka sums of distributive lattices [PI]. This class is now known very well. 
As years of investigation have shown, the structure of dissemilattices is much 
more complicated, and there is no uniform structure theorem for them. How-
ever, we have a quite elegant structural description of free dissemilattices 
over a semilattice, and in particular over a set [R3, RSI, RS3, RS4, RS5]. 
This description is based on some versions of a construction introduced in 
[RS3] under the name of "Lallement sum". The construction is also used 
to describe some other classes of bisemilattices in [R5], [R6] and [R7], and 
involves some intriguing combinatorics. However, there are dissemilattices 
that cannot be described in a simple way as Lallement sums of simpler but 
well-known dissemilattices. Examples are furnished by some dissemilattices 
having at least one semilattice reduct a chain, and by known subdirectly 
irreducible dissemilattices [R2, R4]. In some cases it is however possible to 
describe such algebra in a simple pictorial manner, introducing certain spe-
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dal transformations of the graph of the multiplicative reduct to obtain the 
graph of the additive reduct [R2, R4, R5, RS3, RS5]. In particular this con-
cerns dissemilattices with additive reduct a chain, with both reducts chains, 
and with multiplicative reduct a Boolean lattice [R2]. In this paper we con-
tinue this approach to studying dissemilattices. We recall some descriptions 
of bisemilattices based on graph manipulations, and observe some new prop-
erties for this class. This is done in Section 2, following Section 1, where we 
briefly recall the necessary definitions and notation. In Section 3, we de-
scribe the structure of dissemilattices with multiplicative reduct a chain. 
The intriguing aspect of the main result is the correspondence between the 
meet-distributive identity and geometrical correspondences between the two 
graphs of semilattices. 

Before we present the result, let us mention that during the last ten years, 
dissemilattices have shown to be a very usefull tool in the investigation of 
the structure theory of modals [RS3, RS4, RS5], and have recently attracted 
the serious attention of computer scientists [L], [Pu], [RT]. 

1. Preliminaries 
A bisemilattice is a set Β with two semilattice operations, · of meet and 

+ of join. Each of these operations yields a partial order on Β by setting 

χ <· y iff xy = χ , 
χ <+ y iff χ + y = y. 

Examples are furnished by lattices (Ζ ,ν ,Λ) with the usual meet and join 
operations (for which the two partial orders <Λ and < v coincide with the 
usual order relation) and "stammered" semilattices (5, ·, ·) obtained from a 
semilattice (5, ·) by taking the same underlying set S with the semilattice 
operation considered twice, once as a meet and once as a join. 

Among many classes of bisemilattices investigated in recent years, the 
class of meet-distributive bisemilattices, in which the meet operation · dis-
tributes over the join operation +: 

(· D) x(y + z) = xy + xz, 
plays a quite important rôle. As examples one has distributive lattices, stam-
mered semilattices and distributive bisemilattices, in which also the join op-
eration + distributes over the meet operation · : 

(+£>) x + yz = (x + y)(x + z). 
Distributive bisemilattices are also known under the name of "distributive 
quasilattices" [B], [N], [PI]. 

It is well-known that the distributive bisemilattices are Plonka sums of 
distributive lattices [PI], [RS3], and that in bisemilattices the distributive 
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law (· D) does not imply (+-D) [R2]. As in [RS3], meet-distributive bisemi-
lattices are called dissemilattices in this paper. If both semilattice reducts of 
a dissemilattices 5 = (Β , + , ·) are chains, B_ is called a bichain. If neither of 
the distributive laws (· D) and +D is satisfied in a bisemilattice, it is called 
nondistributive. 

We use notation as in [R4], to which this paper may be considered as 
a sequel. Let o denote · or + . We write χ —<0 y if y covers χ in the reduct 
(Β , o) of 5 . The symbol χ <->0 y means that χ and y are comparable in 
(B, o), and χ || y that they are not. In the pictures, the left hand diagram 

o 
always represents the order < · , and the right hand the order < + of B_. 

Let Β ι and B2 be subsets of B. Let a be in B\ and b in B2. li ά <0 χ 
for all χ in B2, then we write a < 0 B2. If y <0 b for all y in Bi, we write 
Bi <0 b. If χ <0 y for all χ in Bi and all y in B2, we write Βι < 0 B2. 

A subsemilattice A of a semilattice S_ is called Boolean if it is reduct of 
a Boolean lattice. Stammered semilattices are called briefly semilattices. 

A subset C of a bisemilattice B_ is called a convex subalgebra, if C is a 
convex subsemilattice of both semilattice reducts of B_. 

The symbols 2 and 2 denote the two element lattice and two element 
(stammered) semilattice, respectively. 

We refer the reader to the list of references at the end of the paper 
for further information concerning dissemilattices, and other concepts and 
results not recalled here. 

2. Semilattice reducts of some dissemilattices 
We start with some known properties of dissemilattices. 

LEMMA 2 .1 [R2, R4] . Let B_ = ( 2 7 , + , · ) be a bisemilattice. 

(i) Let Β = {a,b,c} and a <· b <. c. If(B,+) is a chain, then (B, <+) 
has one of the following forms: 

a) a < + b < + c, whence B_ is a lattice] 
b) c < + b <+ a, whence B_ is a semilattice; 
c) b < + c <+ a, in which case B_ is distributive; 
d) a < + c < + b, in which case B_ is meet-distributive; 
e) b <+ a <+ c, in which case B_ is join-distributive] 
f ) c <+ a <+ 6, in which case B_ is nondistributive. 

(ii) Let Β = {a,b, c} and let B_ be a dissemilattice, but not a bichain. Then 
either B_ is a semilattice or a <· b <. c and a + c = b, or a <+ b <+ c 
and ac = b. In all these cases B_ is distributive. 

(iii) Let Β — {a,b,c,d} and let B_ be a dissemilattice. If a <. b <. c <. d 
and (Β, +) is Boolean, then d + b = c and a <+ d, b. 
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( i v ) Let Β = {α , 6, c, d}. If (Β,·) is Boolean and (B,-\-) is a chain, then 

B_ is nondistributive or join-distributive. 

( v ) If B_ is a dissemilattice, then for a, b in Β with a—z0b, one has 

a b. 

( v i ) If B_ is a dissemilattice, (B, ·) consists of elements 0, 1, X{ for i = 

1,..., η with 0 —<· Xi —<· 1 and ζ,· || xj for i φ j, then B_ is a semi-

lattice. u 

THEOREM 2 .2 [R4]. Let B_ = ( 5 , + , · ) be a bisemilattice with both semi-

lattice reducts chains. Then B_ is a dissemilattice if and only if one of the 

following holds: 

( i ) B_ is a lattice; 

( i i ) B_ is a semilattice; 

( i i i ) ( 5 , + ) can be divided into two convex intervals B\ and B2 such that 

B\ <+ #2. Moreover, (Βχ, +, ·) forms a lattice and (B2, +, *) a semi-

lattice. m 

THEOREM 2 . 3 [R4]. Let B_ = ( 5 , + , · ) be a bisemilattice with the reduct 

(B, +) a chain. Then B_ is a dissemilattice if and only if either: 

( i ) B_ is a bichain; or 

( i i ) the reduct (Β, ·) is a tree, in which each chain forms a bichain in B_, 

moreover: 

a) if (a,·),·£/ is a family of elements of Β pairwise non-comparable in 

(Β, ·) such that a^aj = b, then I has at most two elements; 

b) if a in Β is meet reducible, then the set A := {χ £ B\a <· χ} is a 

convex subalgebra of B_, and Β — A <+ A or A < + Β — A. m 

THEOREM 2 . 4 [R4]. Let B_ = ( B , + , · ) be a dissemilattice. If the reduct 

(B, ·) is Boolean, and isomorphic to 2n, then the reduct ( - 0 , + ) is also 

Boolean. Moreover, B_ is isomorphic to one of the following distributive dis-

semilattices: 2 " , 2 n _ 1 χ 2, 2 n _ 2 χ 2 2 , . . . , 2 χ 2 n _ 1 , 2 " . • 

LEMMA 2 .5 [ R l ] . The free dissemilattice on two generators χ and y has 

five elements in the form presented in Fig. 1. • 

x+y x+y 

xy xy 

Fig. 1 
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LEMMA 2 . 6 . The free dissemilattice with unity 1 over the meet semilattice 
generated by two elements χ and y has 13 elements in the form presented in 
Fig 2. 

1 1+x+y 

Fig. 2 

P r o o f . This follows by the characterization of free dissemilattices over 
semilattices in [RSI] and [RS3]. • 

COROLLARY 2 . 7 . The free dissemilattice with unity 1 over the meet semi-
lattice generated by two elements χ and y with χ, y <+ 1 is a five element 
lattice presented in Fig 3. • 

1 

xy 

Fig. 3 

COROLLARY 2 . 8 . The free dissemilattice with unity 1 over the meet semi-
lattice generated by two elements χ and y with 1 <4. x, y is a semilattice 
presented in Fig 4. • 

1 

st 

Fig. 4 
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LEMMA 2.9. For elements χ, y, α, b of a dissemilattice B_ = (Β, +, ·), the 
following hold: 

(i) if χ, y <· α, then χ + y < · α; 
(ii) ι / δ <+ χ , y, then b <+ xy. 

P r o o f . For (i) see [R4]. To prove (ii), note that by Lemma 2.1(ii), if 
b <4. χ, then b <+ bx <+ x, and if 6 <+ y, then b <+ by <+ y. Hence 
by + xy = (b + x)y = xy and bx + yx = (6 + y)x = xy. Consequently, 
b <+ bx, by <+ xy. m 

COROLLARY 2.10. In a dissemilattice B_ = (Β, +, ·), all intervals of(B, ·) 
and all intervals of (B, +) are subalgebras of B_. m 

3. Dissemilatt ices wi th multipl icative reducts chains 
We now describe a certain family of (join) semilattices that will play 

a special rôle in the main theorem of this section. Each such semilattice 
(S , + ) is a disjoint union of a chain ( Μ , + ) called a mast and family of 

(a) 

M 
ai. 

8m.i 
aik 

Sm-i 

(c) 

chains (5,·, + ) for i in some set / , called stripes. Some elements s¡j of a stripe 
Si may be covered by elements a¿j of the mast. We say that the elements 
a¡j are the points of attachment of 5, , and the elements are attached to 
the mast. If there is a least element mm M with 5¿ <+ m, we usully denote 
the stripe 5,· by Sm and call m the main point of attachment of Sm. 

A single stripe with one or more elements attached to the mast is called a 
simple flag. Examples of simple flags are shown in Fig. 5. Note that a simple 
flag (F, + ) may not be bounded from above. In this case, it has infinitely 
many attachment points, as in Fig. 5(c). 
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A composed flag consists of more than one simple stripe. Moreover, each 
two simple stripes, say Sj and Sk, in a composed flag are related, meaning 
that one of them, say Sk, contains an element that is less than all elements of 
Sj, and all points of attachment of Sk are above and sometimes also below 
all points of attachment of Sj. Examples of composed flags are shown in 
Fig. 6 

(a) (b) 

Fig. 6 

(c) 

A semilattice (S, + ) constructed from a mast (M, + ) and (simple and 
composed) flags (Fj , + ) for j in some set J, is called a flagstaff, if it satisfies 
the following two condition: 

(FS1) If an element m of the mast (M, + ) is join-reducible, and there is 
a family {ak}kei< of pairwise non-comparable elements of S with 
ak + a¡ = m for h φ I, then Κ has exactly two elements. 

(FS2) If ( F i , + ) and ( F 2 , + ) are two flags of ( 5 , + ) , and Αχ and A2 are 
the sets of attachment points of and F2, respectively, then either 
Αι <+ A2, or A2 <+ Ai. 
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If Αι <4. A2, then we say that the flag F\ is below the flag F2. In this case 
we say, that the flags F\ and F2 are attached to the mast in a disjoint way. 
Similarly, if Aj and Ak are the sets of attachment points of stripes Sj and 
Sk, and Aj <+ Ak, then we say that Sj is below Sk• On the other hand, if 
Sj and Sk are situated as in Fig. 6(c), then we say that Sj is inside Sk· 

P r o p o s i t i o n 3 . 1 . Let B_ = ( 5 , + , · ) be a bisemilattice. Let (Β, ·) be 
a chain, and (Β, +) be a flagstaff consisting of a mast (Μ, +) and one 
simple or composed flag (F,+). Assume that (B,+) satisfies the following 
conditions. 

(i) ( M , + , · ) is a semilattice. 
(ii) If (F, + ) consists of stripes (Si, +) for i in I, then each (Si, + , ·) is 

a lattice. 
(iii) If for i, j in I, the stripe (5,·, + ) is below the stripe (Sj, + ) , then 

Sj < · S j. 
(iv) If for i, j in I, the stripe (Si, + ) is inside the stripe (Sj, ·), then all 

attachment points of Sj that are above Si in (B, +), are below Si in (B, ·) 
(Cp. Fig. 7). 

Then B_ is a dissemilattice. 

P r o o f . If (F, + ) consists of one stripe ( 5 , , + ) attached to the mast at 
the point i, then 3.1 follows by Lemma 2.1 and Theorem 2.2. Assume now 
that (5, · ,+) is not necessarily bounded from above, and has at least two 
attachment points s- and s'¡. Then each triple of elements of Β belongs 
either to a subbisemilattice of the type already considered or generates a 
four element subbisemilattice with Boolean additive reduct. The last one is 
meet-distributive by Lemma 2.1(iii). 

Now let (F, + ) be a composed flag. Let a, b, c be elements of B. The 
cases, when a, b, c are all in M U 5,· for some i in I, were considered before. 
Let Si, Sj, Sk be three different stripes of (B, +) . Without loss of generality 
we can assume that (5, · ,+) is below ( 5 j , + ) , that ( S j , + ) is below (Sk ,+) , 
and that the remaining cases are the following depicted in Fig. 8 

Using Lemma 2.1 again, one can easily check that the elements a, b, c, 
j, k or a, b, c, i, j , k form a meet-distributive subbisemilattice in each of 
these cases. • 

C o r o l l a r y 3.2. Let B_ = ( ß , + , · ) be a bisemilattice. Let (B,·) be a 
chain and (B, +) a flagstaff with all flags satisfying conditions (i)-(iv) of 
3.1. If any two flags of(B,+) are attached to the mast in disjoint way, and 
for a flag (-F¿,-(-) below a flag (F2,+), F2 <· F\, then B_ is a dissemilattice. m 
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THEOREM 3 . 3 . Let B_ = ( . 0 , + , · ) be a bisemilattice with the reduct ( 5 , · ) 
being a chain. Then B_ is a dissemilattice if and only if the reduct (Β, +) is 
a flagstaff satisfying all conditions of Corollary 3.2. 

Fig. 7 

Fig. 8 
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P r o o f . Corollary 3.2 provides the proof of the sufficiency. If remains to 
prove the necessity. So let us assume that B_ is a dissemilattice and (B, ·) is 
a chain. 

A . Let a, b, c, d be in Β with a + b = a + d = b + d = c. Then Lemma 2.1 
implies that d, b <· c <· a, whence b <· c <. d and d <· c <· b, or 
a < · c < · 6, d, whence again d <. c <. b and b <. c <. d. This gives a 
contradiction in each case and proves condition (FS1). 

B . Let η be a join-reducible element of B. Suppose Χ , Υ, Ζ are subsets 
of Β with X y Y, moreover Χ, Υ <+ η < + Ζ, and χ + y = η for each 

ι in X and y in Y. Then Lemma 2.1 implies that either X < . η < . Y 
or Y < · ra < . X. Without loss of generality assume Υ < . η < . X. By 
Lemma 2.1 again, one has Y U Ζ <. τι < · X. By Corollary 2.7, (Y U {ra}, 
+, ·) is a lattice, and hence a chain. By Corollary 2.8, (Ζ U {ra}, + , ·) is a 
semilattice and hence a chain. See Fig. 9 

C . In the context of B, let Xn := {χ £ X \ j < + χ for each join-reducible 
element j of X}, Y¿ := {y Ç. F | there is no χ 6 X with y <+ χ} and Zn := Z. 
It follows by B, that Zn forms a semilattice, and Y¿ forms a lattice. Again 
by B, it is clear that if k <+ m < + η are join reducible elements of (Β , +) , 
then Y¿ U Zn <. τι <. Xn UY^<.m <· Xm U Y¿ <· k <· Xk. See Fig. 10. 

+ 

Fig. 9 

m 

η 

k 

Fig. 10 
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D. Let us consider the configuration depictured in Fig. 10, where the 
set may be emply. Suppose there is c in Β with c < + Y.^ U { m } and 
c < + Y^. Let xn be in Xn U { m } and yn be in Y¿. Then xn + yn = η, 

and xn, n, yn, c form a Boolean semilattice. By Lemma 2.1(iii) and C, 
c <· yn <. η < . xn. Let := {c G B\c <+ Y¿ and c < + Y^ U { m } for 
m < + n } . Let Yn :— Y^ U Y". Then it is easy to see that Yn < · ra, and by 
Corollary 2.7, ( Y n , + , · ) is a lattice. It follows, that the chains Yn and Ym 

may be placed with respect to each other in three possible ways depicted in 
Fig. 11, Fig. 12 and Fig. 13. 

Y m =0 and yn -<+ m 

Fig. 11 Fig. 12 

Fig. 13 

E. Let J be the set of all join-reducible elements of ( 5 , + ) . Let M' := 
U(Zj I j e J). By Β and C, the set M' forms a semilattice in ( B , + , · ) . If 
there is a subset Xo Ç Β with Xo < + J, then Xo must form a bichain, and 
by Theorem 2.2, (Xo>+) decomposes into two convex intervals X(¡ and XQ 

such that XQ forms a lattice, XQ forms a semilattice and X¿ <+ XQ. We 
define the mast M of (Β, + ) to be M := X$ U M ' . 

F. For j in J, the reducts (Yj , + ) of lattices (Yj , + , ·) are stripes attached 
to the mast (M , + ) at least at points j of M. If there is no element yj of Yj 

with yj <_|_ yk for some yy. in Y,it, where k G J, then (Yj, + ) forms a simple 
flag, not related to others. If a simple flag (F, + ) is not bounded from above, 
then it has infinitely many attachment points and diagrams as in Fig. 14. 
Moreover F = X U F, ( X , + , · ) is a semilattice and (y , + , · ) a lattice. 
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Fig. 14 

G. Now suppose two stripes (Fm,-|-) and (Vnj+)> where τη <+ π in 
(M, +) , form simple flags. Suppose further that am in Ym and bn in Yn are 
attached to M at α and 6, respectively and a < + b < + m. Then obviously, 
o-m + bn = b and by B>, bn <· am <. b. By Lemma 2.1(ii), the elements a m , 
bn and b form a non-distributive triple, contradicting the distributivity of 
(Β, + , ·). The case 6 <+ a gives a similar contradiction. If follows that in 
(B, +) , all points of attachment of Yn are above all points of attachment 
of Ym. Similar result is obtained if at least one of ( Y m , + ) and ( y n , + ) is 
unbounded from above. See Fig. 15. 

Fig. 15 

H . Now suppose m < + η in (M, + ) and the stripes (Ym, +) and (Y n , +) 
are related. An argument similar to that in G shows that in this case, all 
attachment points of Yn are above or above and below all attachment points 
of Ym . In the last case, the attached points of Yn attached to M below all at-
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tachment points of Ym, are all below the whole Ym. Moreover, Lemma 2.1(ii) 
implies that in (Β , ·), all elements of Ym are above all points of attachment 
of Yn that are in X„. See Fig. 16. Each two related flags belong to one 
composed flag. 

α 
Ob 

X»U Ym 
Yn 

Z„UY„ 

Fig. 16 
I. It remains to show that any two flags (F\, +) and (F2, +) are attached 

to the mast in a disjoint way. This follows by G in the case both (F\, +) and 
(-^2>+) are simple flags. So suppose (^2,+) is composed, and let (Vm,+) 
be a stripe in + ), and {Y¡¡, +) and (Yn , +) with k <+ η be two related 

Xk 
* 

YkUXm 
m' 
m 

VmUX„ 

Y„UZ„ 

Vm 

9fn 

Fig. 17 

stripes in (F2,+). Let yn e Yn and ym € Ym with yn < + Yk. See Fig. 17. 
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If k <+ τη' <4. m, then yn + ym - τη' and yn <· ym <· τη', which 
contradicts Lemma 2.1(ii). The case τη' <+ k gives a similar contradiction. 
It follows, that all attachment points of F\ are above or below all attachment 
points of i"2. • 

As an immediate corollary from Theorem 2.3 and 3.3, one obtains the 
following theorem proved directly in [R2]. 

T H E O R E M 3.4. Let ( 5 , + , · ) be a subdirectly irreducible dissemilattice. 
Then the reduct (Β, +) is a chain if and only if the reduct (Β, ·) is a chain 
as well. • 

References 

[B] R. B a l b e s , A representation theorem for distributive quasilattices, Fund. Math. 
68 (1970), 207-214. 

[GR] G. G i e r z and A. R o m a n o w s k a , Duality for distributive bisemilattices, J. Aus-
tral. Math. Soc. 51 (1991), 247-275. 

[G] G. G r ä t z e r , Lattice Theorey: First concepts and distributive lattices, San Fran-
cisco, CA, 1971. 

[Η] Κ. H a l k o w s k a , O pewnej równowartosciowo definiowalnej klasie algebr, Zeszyty 
Nauk. Wyz. Szkoly Ped. w Opolu, Mat. 19 (1976), 127-136. 

[Ka] J. A. K a i m a n , Subdirect decomposition of distributive quasilattices, Fund. Math. 
71 (1971), 161-163. 

[Kn] A. K n o e b e l , A comment on Balbes representation theorem for distributive quasi-
lattices, Fund. Math. 90 (1976), 187-188. 

[LPP] H. L a k s e r , R. P a d m a n a b h a n and C. R. P i a t t , Subdirect decomposition of 
Plonka sums, Duke Math. J. 39 (1972), 485-488. 

[L] L. L i b k i n , Algebraic characterization of edible powerdomains, preprint 1993. 
[MR] R. Mc K e n z i e and A. R o m a n o w s k a , Varieties of •-distributive bisemilattices, 

Contributions to General Algebra 1 (1979), 213-218. 
[N] J. N i e m i n e n , Ideals in distributive quasi-lattices, Studia Univ. Bales-Bolyai 

Math. 22 (1977), 6-11. 
[PI] J. P l o n k a , On distributive quasi-lattices, Fund. Math. 60 (1967), 191-200. 

[Pu] H. P u h l m a n n , The snack powerdomain for database semantics, preprint 1993. 
[Rl] A. R o m a n o w s k a , On distributivity of bisemilattices with one distributive law, 

Coll. Math. Soc. Janos Bolyai 29 (1982), 653-661. 
[R2] A. R o m a n o w s k a , On bisemilattices with one distributive law, Algebra Univer-

salis 10 (1980), 36-47. 
[R3] A. R o m a n o w s k a , Free bisemilattices with one distributive law, Demonstratio 

Math. 13 (1980), 565-572. 
[R4] A. R o m a n o w s k a , Subdirectly irreducible ·-distributive bisemilattices, I, Demon-

stratio Math. 13 (1980), 767-785. 
[R5] A. R o m a n o w s k a , Algebras of functions from partially ordered sets into distribu-

tive lattices, Springer Lecture Notes in Mathematics 1004 (1983), 245-256. 
[R6] A. R o m a n o w s k a , Building bisemilattices from lattices and semilattices, Contri-

butions to General Algebra 2 (1983), 343-358. 



Dissemilattices with multiplicative reducts chains 857 

[R7] A. R o m a n o w s k a , On some constructions of bisemilattices, Demonstratio Math. 
17 (1984), 1011-1021. 

[RSI] A. R o m a n o w s k a and J. D. H. S m i t h , Bisemilattices of subsemilattices, J. Al-
gebra 70 (1981), 78-88. 

[RS2] A. R o m a n o w s k a and J. D. H. S m i t h , Distributive lattices, generalisations and 
related non-associative structures, Houston J. Math. 11 (1985), 367-384. 

[RS3] A. R o m a n o w s k a and J. D. H. S m i t h , Modal Theory, an algebraic approach to 
order, geometry and convexity, Heldermann Verlag, Berlin, 1985. 

[RS4] A. R o m a n o w s k a and J. D. H. S m i t h , Subalgebra systems of idempotent entropie 
algebras, J. Algebra 120 (1989), 247-262. 

[RS5] A. R o m a n o w s k a and J. D. H. S m i t h , On the structure of subalgebra systems 
of idempotent entropie algebras, J. Algebra 120 (1989), 263-283. 

[RT] A. R o m a n o w s k a and A. T r a k u l , On the structure of some bilattices, Universal 
and Applied Algebra (eds. K. Halkowska, B. Stawski), World Scientific, Singapore, 
1989, pp. 235-253. 

INSTITUTE OF MATHEMATICS 
WARSAW UNIVERSITY OF TECHNOLOGY 
Pl. Politechniki 1 
00-661 WARSZAWA, POLAND 

Received December Π, 1993. 




