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In the years 1980-1990 a number of papers appeared investigating the
structure, properties and meaning of meet-distributive bisemilattices, in
which the multiplication distributes over the addition. (See the references
at the end of the paper.) The algebras were subsequently [RS3] referred to
as dissemilattices. Among them, those having the most accessible structure
are the distributive dissemilattices (also called distributive quasilattices),
in which the addition also distributes over the multiplication. They are all
Plonka sums of distributive lattices [P1]. This class is now known very well.
As years of investigation have shown, the structure of dissemilattices is much
more complicated, and there is no uniform structure theorem for them. How-
ever, we have a quite elegant structural description of free dissemilattices
over a semilattice, and in particular over a set [R3, RS1, RS3, RS4, RS5].
This description is based on some versions of a construction introduced in
[RS3] under the name of “Lallement sum”. The construction is also used
to describe some other classes of bisemilattices in [R5], [R6] and [R7], and
involves some intriguing combinatorics. However, there are dissemilattices
that cannot be described in a simple way as Lallement sums of simpler but
well-known dissemilattices. Examples are furnished by some dissemilattices
having at least one semilattice reduct a chain, and by known subdirectly
irreducible dissemilattices [R2, R4]. In some cases it is however possible to
describe such algebra in a simple pictorial manner, introducing certain spe-
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cial transformations of the graph of the multiplicative reduct to obtain the
graph of the additive reduct [R2, R4, R5, RS3, RS5]. In particular this con-
cerns dissemilattices with additive reduct a chain, with both reducts chains,
and with multiplicative reduct a Boolean lattice [R2]. In this paper we con-
tinue this approach to studying dissemilattices. We recall some descriptions
of bisemilattices based on graph manipulations, and observe some new prop-
erties for this class. This is done in Section 2, following Section 1, where we
briefly recall the necessary definitions and notation. In Section 3, we de-
scribe the structure of dissemilattices with multiplicative reduct a chain.
The intriguing aspect of the main result is the correspondence between the
meet-distributive identity and geometrical correspondences between the two
graphs of semilattices.

Before we present the result, let us mention that during the last ten years,
dissemilattices have shown to be a very usefull tool in the investigation of
the structure theory of modals [RS3, RS4, RS5], and have recently attracted
the serious attention of computer scientists [L], [Pu], [RT].

1. Preliminaries
A bisemilattice is a set B with two semilattice operations, - of meet and
+ of join. Each of these operations yields a partial order on B by setting
<.y iff zy=12x,
<ty M z+y=y.
Examples are furnished by lattices (L,V,A) with the usual meet and join
operations (for which the two partial orders <, and <y coincide with the
usual order relation) and “stammered” semilattices (S, -, ) obtained from a
semilattice (.5,-) by taking the same underlying set § with the semilattice
operation considered twice, once as a meet and once as a join.
Among many classes of bisemilattices investigated in recent years, the
class of meet-distributive bisemilattices, in which the meet operation - dis-
tributes over the join operation +:

(- D) z(y+z2)=zy+zz,
plays a quite important réle. As examples one has distributive lattices, stam-

mered semilattices and distributive bisemilattices, in which also the join op-
eration + distributes over the meet operation -:

(+D) z+yz=(z+y)(z+2).
Distributive bisemilattices are also known under the name of “distributive
quasilattices” [B], [N], [P1].

It is well-known that the distributive bisemilattices are Plonka sums of
distributive lattices [P1], [RS3], and that in bisemilattices the distributive
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law (- D) does not imply (+D) [R2]. As in [RS3], meet-distributive bisemi-
lattices are called dissemilattices in this paper. If both semilattice reducts of
a dissemilattices B = (B, +, +) are chains, B is called a bichain. If neither of
the distributive laws (- D) and + D is satisfied in a bisemilattice, it is called
nondistributive.
We use notation as in [R4], to which this paper may be considered as
a sequel. Let o denote « or +. We write £ —, v if y covers z in the reduct
(B,o) of B. The symbol z <, y means that z and y are comparable in
(B,0), and z ||y that they are not. In the pictures, the left hand diagram
0

always represents the order <., and the right hand the order <; of B.

Let By and B; be subsets of B. Let a bein B; and bin By. If a <, z
for all z in B, then we write a <, B,. If y <, b for all y in B;, we write
By <o b. If z <, y for all z in B; and all y in B,, we write B; <, B,.

A subsemilattice A of a semilattice S is called Boolean if it is reduct of
a Boolean lattice. Stammered semilattices are called briefly semilattices.

A subset C of a bisemilattice B is called a convez subalgebra, if C is a
convex subsemilattice of both semilattice reducts of B.

The symbols 2 and 2 denote the two element lattice and two element
(stammered) semilattice, respectively.

We refer the reader to the list of references at the end of the paper
for further information concerning dissemilattices, and other concepts and
results not recalled here.

2. Semilattice reducts of some dissemilattices
We start with some known properties of dissemilattices.

LEMMA 2.1 [R2, R4]. Let B = (B, +,+) be a bisemilattice.

(i) Let B = {a,b,c} anda <. b <. c. If (B,+) is a chain, then (B,<,)
has one of the following forms:

a) a <4 b <4 ¢, whence B is a lattice;

b) ¢ <4 b <4 a, whence B is a semilattice;

¢) b <4 ¢ <4 a, in which case B is distributive;

d) a <4 ¢ <4 b, in which case B is meet-distributive;
e) b <4 a <4 ¢, in which case B is join-distributive;
f) ¢ <4 a <4 b, in which case B is nondistributive.

(ii)) LetB = {a,b,c} and let B be a dissemilattice, but not a bichain. Then
either B is a semilattice ora <. b<.canda+c=b,ora<; b< ¢
and ac = b. In all these cases B is distributive.

(i) Let B = {a,b,c,d} and let B be a dissemilattice. If a <. b <.c <. d
and (B, +) is Boolean, then d +b=c and a <4 d, b.
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(iv) Let B = {a,b,c,d}. If (B,*) is Boolean and (B,+) is a chain, then
B is nondistributive or join-distributive.

(v) If B is a dissemilattice, then for a, b in B with a —<, b, one has
a <, b.

(vi)  If B is a dissemilattice, (B,+) consists of elements 0, 1, z; for i =
1,...,n with 0 —<.z; —<.1 and z; || z; for ¢ # j, then B is a semi-

lattice. m

THEOREM 2.2 [R4]. Let B = (B, +,+) be a bisemilattice with both semi-
lattice reducts chains. Then B is a dissemilattice if and only if one of the
following holds:

(i) B is a lattice;
(ii) B is a semilattice;
(iii) (B,+) can be divided into two convez intervals By and B, such that
By <4 B,. Moreover, (B, +,") forms a lattice and (B,, +, ) a semi-
lattice. m

THEOREM 2.3 [R4]. Let B = (B, +,-) be a bisemilattice with the reduct
(B,+) a chain. Then B is a dissemilattice if and only if either:

(i) B is a bichain; or
(ii) the reduct (B,-) is a tree, in which each chain forms a bichain in B,
moreover:
a) if (a;)ier is a family of elements of B pairwise non-comparable in
(B,+) such that a;a; = b, then I has at most two elements;
b) if a in B is meet reducible, then the set A := {z € Bla <.z} isa
convez subalgebra of B,and B— A<y Aor A<y B—A. m

THEOREM 2.4 [R4]. Let B = (B, +,*) be a dissemilattice. If the reduct
(B,-) is Boolean, and isomorphic to 2", then the reduct (B,+) is also
Boolean. Moreover, B is isomorphic to one of the following distributive dis-
semilattices: 2", 2" "1 x 2,272 x 2%,...,2x 2", 2" =

LEMMA 2.5 [R1]. The free dissemilattice on two generators z and y has
five elements in the form presented in Fig. 1. m

z+y z+y
r Yy
z+zy y+zy
-ty y+zxy
zy T Ty y

Fig. 1
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LEMMA 2.6. The free dissemilattice with unity 1 over the meet semilattice
generated by two elements x and y has 13 elements in the form presented in
Fig 2.

l4+z+y

Fig. 2
Proof. This follows by the characterization of free dissemilattices over
semilattices in [RS1] and [RS3]. =

COROLLARY 2.7. The free dissemilattice with unity 1 over the meet semi-
lattice generated by two elements x and y with z, y <4+ 1 is a five element
lattice presented in Fig 3. m

1

x+y

zy
Fig. 3

COROLLARY 2.8. The free dissemilattice with unity 1 over the meet semi-
lattice generated by two elements z and y with 1 <4 z, y is a semilattice
presented in Fig 4. m

1
st

Fig. 4
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LEMMA 2.9. For elements z, y, a, b of a dissemilattice B = (B, +,+), the
following hold:

(i) ifz, y <. a, thenz + y <. g;
(i) if b <4 =z, y, then b <4 zy.

Proof. For (i) see [R4]. To prove (ii), note that by Lemma 2.1(ii), if
b <4 z, then b < bz <4 z, and if b <4 y, then b <; by <4 y. Hence
by + zy = (b+ z)y = zy and bz 4+ yz = (b + y)z = zy. Consequently,
b<ibz,by<; zy. w

COROLLARY 2.10. In a dissemilattice B = (B, +,+), all intervals of (B, )
and all intervals of (B, +) are subalgebras of B. m

3. Dissemilattices with multiplicative reducts chains

We now describe a certain family of (join) semilattices that will play
a special réle in the main theorem of this section. Each such semilattice
(S,+) is a disjoint union of a chain (M,+) called a mast and family of

]
1
M M M |
m m \ ai, <>\< Sm
Sim
Sm Om; \ Sm a <5\J
Smy 84
Am; \ ai, <\
1 [y Sm.i Siy
1 \
' l
[} ]
1 ]
(a) (b) ()
Fig. 5

chains (S;, 4) for ¢ in some set I, called stripes. Some elements s;; of a stripe
S; may be covered by elements a;; of the mast. We say that the elements
a;; are the points of attachment of §;, and the elements s;; are attached to
the mast. If there is a least element m in M with §; <4 m, we usully denote
the stripe S; by S, and call m the main point of attachment of S,,.

A single stripe with one or more elements attached to the mast is called a
simple flag. Examples of simple flags are shown in Fig. 5. Note that a simple
flag (F,+) may not be bounded from above. In this case, it has infinitely
many attachment points, as in Fig. 5(c).



Dissemilattices with multiplicative reducts chains 849

A composed flag consists of more than one simple stripe. Moreover, each
two simple stripes, say §; and Sk, in a composed flag are related, meaning
that one of them, say S, contains an element that is less than all elements of
S, and all points of attachment of S; are above and sometimes also below
all points of attachment of §;. Examples of composed flags are shown in
Fig. 6

M M
k k
Ck, ak, Sk
Ak, Gk,
J Sk,
aj'l skm
Ajm
85n
) Sjm
]
\
Ak,
] akl’
[l ' \
¢
(a) (b) (c)

Fig. 6

A semilattice (5,+) constructed from a mast (M,+) and (simple and
composed) flags (F}, +) for j in some set J, is called a flagstaff, if it satisfies
the following two condition:

(FS1) If an element m of the mast (M,+) is join-reducible, and there is
a family {ar}rex of pairwise non-comparable elements of § with
ax +a; = m for k # 1, then K has exactly two elements.

(FS2) If (F1,+) and (Fy,+) are two flags of (S,+), and A; and A, are
the sets of attachment points of F; and F;, respectively, then either
Ay <+ As, or Ay <+ Aj.
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If A <4 Ao, then we say that the flag Fy is below the flag F,. In this case
we say, that the flags F} and F, are attached to the mast in a disjoint way.
Similarly, if A; and Aj are the sets of attachment points of stripes §; and
Sk, and Aj <4 Ak, then we say that S; is below Si. On the other hand, if
S; and Sy are situated as in Fig. 6(c), then we say that S; is inside S.

ProrosiTION 3.1. Let B = (B, +,*) be a bisemilattice. Let (B,-) be
a chain, and (B,+) be a flagstaff consisting of a mast (M,+) and one
simple or composed flag (F,+). Assume that (B,+) satisfies the following
conditions.

(i) (M, +,-) is a semilattice.

(ii) If (F, +) consists of stripes (S;,+) for i in I, then each (Si, +,*) is
a lattice.

(iii) If for ¢, j in I, the stripe (Si,+) is below the stripe (S;,+), then
Sj <. 855

(iv) If for i, j in I, the stripe (S;,+) is inside the stripe (S;,+), then all
attachment points of S; that are above S; in (B, +), are below S; in (B,-)
(Cp. Fig. 7).

Then B is a dissemilattice.

Proof. If (F,+) consists of one stripe (5;,+) attached to the mast at
the point ¢, then 3.1 follows by Lemma 2.1 and Theorem 2.2. Assume now
that (S;,+) is not necessarily bounded from above, and has at least two
attachment points s} and s!. Then each triple of elements of B belongs
either to a subbisemilattice of the type already considered or generates a
four element subbisemilattice with Boolean additive reduct. The last one is
meet-distributive by Lemma 2.1(iii).

Now let (F,+) be a composed flag. Let a, b, ¢ be elements of B. The
cases, when a, b, ¢ are all in M U S; for some 7 in I, were considered before.
Let S, Sj, Sk be three different stripes of (B, +). Without loss of generality
we can assume that (S;,+) is below (S;,+), that (S5;,+) is below (Sk,+),
and that the remaining cases are the following depicted in Fig. 8

Using Lemma 2.1 again, one can easily check that the elements a, b, c,
j, kora,b,e, i, j, k form a meet-distributive subbisemilattice in each of
these cases. w

COROLLARY 3.2. Let B = (B,+,*) be a bisemilattice. Let (B,-) be a
chain and (B, +) a flagstaff with all flags satisfying conditions (i)~(iv) of
3.1. If any two flags of (B, +) are attached to the mast in disjoint way, and
for a flag (F;,+) below a flag (Fy,+), F2 <. F1, then B is a dissemilattice. m
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THEOREM 3.3. Let B = (B, +,*) be a bisemilattice with the reduct (B,*)
being a chain. Then B is a dissemilattice if and only if the reduct (B, +) is
a flagstaff satisfying all conditions of Corollary 3.2.

1
M aj
Zi
a;
i
//J p \ S
a' 2 1
Xi p a‘! a‘]{I
' S; '
% \ a5
X.'J a]’ p J
7 o .\S‘J S]
Z;iUS; " a,,:'
8 '
) L1 A
' k
ZUSk
n
85
]
1
Fig. 7
a k k k k
k k
a c J 2 2
J J ed I b
ao b a b a i bo co i co i b
b a a a
b i
c

Fig. 8
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Proof. Corollary 3.2 provides the proof of the sufficiency. If remains to
prove the necessity. So let us assume that B is a dissemilattice and (B, *) is
a chain.

A.Leta,b,c,dbein Bwitha+b=a+d=>b+d = c. Then Lemma 2.1
implies that d, b <. ¢ <. a, whence b <. ¢ <. d and d <. ¢ <. b, or
a <. c <. b,d, whence again d <. ¢ <. b and b <. ¢ <. d. This gives a
contradiction in each case and proves condition (FS1).

B. Let n be a join-reducible element of B. Suppose X, Y, Z are subsets
of B with X ||Y, moreover X,Y <4 n <4 Z, and 2+ y = n for each

+

z in X and y in Y. Then Lemma 2.1 implies that either X <. n <. Y
or Y <. n <. X. Without loss of generality assume ¥ <. n <. X. By
Lemma 2.1 again, one has Y U Z <. n <. X. By Corollary 2.7, (Y U {n},
+, +) is a lattice, and hence a chain. By Corollary 2.8, (ZU {n}, +, ) is a
semilattice and hence a chain. See Fig. 9

X A
no n
Yuz Y
Fig. 9

C. In the context of B, let X,, := {z € X | j <4 = for each join-reducible
element j of X},Y,! := {y € Y| thereisnoz € X withy <4 z} and Z, := Z.
It follows by B, that Z, forms a semilattice, and Y,! forms a lattice. Again
by B, it is clear that if k¥ <4 m <4 n are join reducible elements of (B, +),
thenY UZ, <. n<. X, UY] <. m <. X, UY]! <. k <. X. See Fig. 10.

Xk Zn

k n Y,
XmUYy Xn \

m m Yy,
XnUY,, Xm F\

no k Y
Z,VY, Xk »\

Fig. 10
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D. Let us consider the configuration depictured in Fig. 10, where the
set Y,! may be emply. Suppose there is ¢ in B with ¢ <4 Y, U {m} and
¢ <4 Y!. Let z, be in X,, U {m} and y, be in Y,). Then z, + y, = n,
and z,, n, Yn, ¢ form a Boolean semilattice. By Lemma 2.1(iii) and C,
€< Yo <. 0 <.z, LetY) := {c € Ble <4 Y, and ¢ <4 Y, U {m} for
m <4 n}. Let Y, := Y, UY,”. Then it is easy to see that Y,, <. n, and by
Corollary 2.7, (Yn,+, ) is a lattice. It follows, that the chains Y, and Y,,
may be placed with respect to each other in three possible ways depicted in
Fig. 11, Fig. 12 and Fig. 13.

Xm Zn
Xm ZnJ \ m n
n
> m
Yn Xn Xn Yn
XnUYm Xn \ on m
om
Y ZpoUYy Xm Yn
ZnUY, X \
Ym=0 and yp <4+ m
Fig. 11 Fig. 12
Xm Zn
> m n
XnUYm Xﬂ
n m Y.
Z,UYy, Xm| Ym
Fig. 13

E. Let J be the set of all join-reducible elements of (B, +). Let M’ :=
U(Z; | j € J). By B and C, the set M’ forms a semilattice in (B, +,-). If
there is a subset Xo C B with Xy <4 J, then X, must form a bichain, and
by Theorem 2.2, (Xo,+) decomposes into two convex intervals X} and X¢
such that X} forms a lattice, X¢ forms a semilattice and X} <, XZ. We
define the mast M of (B,+) tobe M := X2 U M'.

F. For j in J, the reducts (Yj, +) of lattices (Yj, +, +) are stripes attached
to the mast (M, +) at least at points j of M. If there is no element y; of Y;
with y; <4 yx for some y; in Y}, where k£ € J, then (Y}, +) forms a simple
flag, not related to others. If a simple flag (F, +) is not bounded from above,
then it has infinitely many attachment points and diagrams as in Fig. 14.
Moreover F'= X U F, (X, +,-) is a semilattice and (Y, +,+) a lattice.
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X ™ Y
ol
\: ;
al -
Y RN "
¥i—<4ai
Fig. 14

G. Now suppose two stripes (Yp,,+) and (Y,,+), where m <4 =n in
(M, +), form simple flags. Suppose further that a,, in Y;, and b, in Y, are
attached to M at a and b, respectively and a <4 b <4 m. Then obviously,
am + b, =band by D, b, <. ap, <. b. By Lemma 2.1(ii), the elements an,,
b, and b form a non-distributive triple, contradicting the distributivity of
(B,+,+). The case b <4 a gives a similar contradiction. If follows that in
(B,+), all points of attachment of Y, are above all points of attachment
of Y. Similar result is obtained if at least one of (Yz,+) and (Y,,+) is
unbounded from above. See Fig. 15.

Xm Zn .
f
m n X /
XaUY b
n bn X / Y
Z,UY, m
]

am

Ym

Xm

x P
v —|x

Fig. 15

H. Now suppose m <4 n in (M, +) and the stripes (Yo, +) and (Y, +)
are related. An argument similar to that in G shows that in this case, all
attachment points of Y,, are above or above and below all attachment points
of Y,,,. In the last case, the attached points of Y,, attached to M below all at-



Dissemilattices with multiplicative reducts chains 855

tachment points of Y;,, are all below the whole Y,,. Moreover, Lemma 2.1(ii)
implies that in (B, +), all elements of Y,, are above all points of attachment
of Y, that are in X,. See Fig. 16. Each two related flags belong to one
composed flag.

Zn
Ia n
b a’
Xm Xn o
!
om ay,
"
m a
Ym "
b Y
XnUYnm "
Xom bm | Ya
!
n ac
ZnUYn \ an
Fig. 16

I. It remains to show that any two flags (F1, +) and (F3, +) are attached
to the mast in a disjoint way. This follows by G in the case both (Fy,+) and
(F2,+) are simple flags. So suppose (F3,+) is composed, and let (Yr,,+)
be a stripe in (F1,+), and (Yi,+) and (Y, +) with £ <4 n be two related

Xk Zn
k n
YiUX Xn

m' m
!

m m

YmUXn Y
Ym kq

Ym \
Ym Yk
n
YaUZn Xk
Q Yn

In

Fig. 17
stripes in (F3,+). Let y, € Y, and y,, € ¥, with y, <4 Yi. See Fig. 17.
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If £k <4 m' <4 m, then y, + ym = m' and y, <. ym <. m', which
contradicts Lemma 2.1(ii). The case m’ <4 k gives a similar contradiction.
It follows, that all attachment points of F; are above or below all attachment
points of F3. =

As an immediate corollary from Theorem 2.3 and 3.3, one obtains the
following theorem proved directly in [R2].

THEOREM 3.4. Let (B,+,-) be a subdirectly irreducible dissemilattice.
Then the reduct (B,+) is a chain if and only if the reduct (B,-) is a chain
as well. m
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