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1. Introduction

In this paper we study varieties of groupoid modes, that is idempotent
entropic algebras that can be defined by a single binary fundamental oper-
ation. For theory of modes and their applications in algebra and geometry
see [33,34] and the references given therein. ’

From the equational point of view, groupoid modes are groupoids satis-
fying laws of idempotency and mediality:

(D 2’ =z,

(M) (zy)(uv) = (zu)(yv).

and hence, they form a variety (equational class) of algebras. JeZek and
Kepka [18] have described all varieties of commutative groupoid modes
(They called them CIA-groupoids). The noncommutative case turn out to
be much more complicated, and therefore other authors have focused at-
tention on subvarieties defined by various simple additional identities like
(zy)y ==z, (zy)y =1y, (zy)z =y, ..., etc. (see e.g., [5, 9, 14, 22, 25, 38, 40]).

In this paper we present more systematic approach to the subject based
on the following classification of polynomials (terms) due to E. Marczewski
(see [21]).

For binary polynomial symbol {-} we define P, = {z,y} and Piy1 =
P, U{fg : f,g € Px}. Then |Jso, Pr is the set of all binary polynomial
symbols over {-}. We say that an identity f = g is of rank k, if f,g € P
and at least one of them is not in Pr_;.

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology
held at Jachranka, Poland, 8-13 June 1993.
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Now, considering subvarieties defined by additional identities it is natural
to start from identities of low rank. In this paper we consider nonregular
identities, that is, having a variable, which occurs only on one side. For these
we have:

THEOREM. If K is a nontrivial subvariety of the variety of groupoid
modes defined by a single nonregular identity of rank 38, then K is one of
the following varieties (up to duality):

R: zy’=u;
RR: (zy)z = yz and z(yz) = y(z=z);

A: (zy)z=z(yz) = zz;
Q: (zy)z=y;

Vi (zy)(yz) = z;

E: (zy)(yz)=1y.

The proof of this theorem is given in Section 3. Then, in subsequent
sections we deal with each variety in more detail. Earlier, for the reader
convenience, we quote the results applied in this paper.

2. Terminology and applied results

In the earlier papers [11] and [12] we propose to classify modes by means
of the number p,(G, -) of essentially binary polynomials in (G, -). As a first
step in this direction we have the following

THEOREM 2.1. Let (G,-) be a proper medial idempotent groupoid, i.e.,
zy is essentially binary. Then we have

(1) p2(G,-) = 1 if and only if (G,-) is either a semilattice or an affine
space over GF(3).

(ii) p2(G,-) = 2 if and only if (G,-) is either a diagonal semigroup or an
n-polynomial groupoid or an affine space over GF(4).

(iii) p2(G,-) =3 if and only if (G,") is either an affine space over GF(5)
or a nontrivial Plonka sum of affine spaces over GF(3) which are not
all singetons.

(iv) p2(G,-) = 5 if and only if (G,-) is either an affine space over GF(7)
or a nontrivial Plonka sum of affine spaces over GF(5) which are not
all one-element.

Note that all the groupoids appearing in this theorem are well-known
and the definitions and the basic characterizations of them are recalled in
[11]. For the definition of the Plonka sum and its properties we refer the
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reader to [28]. Let us add that so far there is no such a description for me-
dial idempotent groupoids (G,-) with p;(G,-) = 4 (comp. Theorem 2.1).
In [12] and also the present paper we give some useful information on such
groupoids. Here, as earlier, polynomially equivalent algebras (i.e., algebras
having the same sets of polynomials) are treated as identical. Our termi-
nology is standard (cf. [15]). Throughout the paper zy™ denotes the poly-
nomial (...(zy)...)y, where y appears n times and dually "yz stands for
y(y(...(yz)...)) (ntimes y). By Q@ » we denote the variety of all groupoids
(G,-) satisfying zy™ = z and "yz = « for fixed nonnegative integers m and
n (see [8]).

THEOREM 2.2. Let (G,-) be a commutative idempotent groupoid. Then
we have

(i) If card G > 1, then the polynomials zy* and y are distinct for all k
(see Theorem 1 of [7]).

(ii) If (G,-) is medial, then we have

(a) (G,-) satisfies zy™ = z for some n > 1 if and only if (G,-) is an
affine module over Zy = ({0,...,d—1},} ), where d is a divisor of
the number 2™ — 1 (Theorem 1 of [8], see also [6]).

(b) (G,-) satisfies zy"*t! = zy for some n > 1 if and only if (G,-) is a
Plonka sum of affine modules Z; with d dividing 2™ — 1 (for details
see Theorems 2, 3 and Corollary from [8]).

(c) (G,-) is an affine space over GF(3) if and only if (G,-) satisfies
zy’z = z (see (i) of Lemma 3.4 in [11]).

(d) (G,-) is an affine space over GF(5) if and only if (G,-) satisfies
zy’z = y (see (ii) of Lemma 3.4 in [11)).

(ii) If (G,-) satisfies zy™ = z for some n > 1, then the clone of (G,") is
minimal if and only if (G,-) is an affine space over GF(p), where p
divides the number 2™ — 1 (see the Proposition in [10]).

THEOREM 2.3. Let (G, -) be an idempotent groupoid. Then we have
(i) If(G,-) is distributive (or medial), then (G, -) is a diagonal semigroup
if and only if (G,-) satisfies (zy)z = z (or dually z(yz) = z) (see
Lemma 4.1 of [11]).
(ii) If (G,) is medial with p;(G,-) = 2, then (G,-) is a nontrivial affine
space over GF(4) if and only if (G, -) satisfies (zy)z = y (see §4.3 of
{11) and (ii) of Theorem 2.1).
(iii) The following are equivalent:
(a) (G, ") satisfies (zy)z = yz and z(yz) = y(zz);
(b) (G,-) is a medial groupoid satisfying zy? = y;
(c) (G,) is a distributive groupoid satisfying zy* = y
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(The dual version is also true, for details see Lemma 3.1 of [12] or Proposition
1.1in [35))

(iv) If(G,-) € Qmn, then (G,-) is a quasigroup (see e.g. in [8]).

(v) If(G,*) € Q2. for some n > 2, then the polynomial z +y = "~lyz
is commutative, z + (n — 1)y = yz, z + ny = z and consequently the
groupoids (G,-) and (G, +) are polynomially equivalent (see the proof
of Theorem 9 of [8]).

3. A characterization
In this section we prove the result quoted in Introduction. We start form

LEMMA 3.1. For a binary (idempotent) polynomial symbol {-} we have,
for a nonregular identity of rank 3 the following posibilities:

D @v)y=2, @) (@yy=y, E)ay)z=2z, “)(sy)z=y,
() z(zy) =z, (6)z(zy) =y, (Nez(yz)==, (8)ax(yz)=y,
(9) (zy)(yz) =2  and  (10)(zy)(yz) = .

Proof. Immediately.

We say that a groupoid (G, o) is dual to the groupoid (G, )if zoy = yz
holds for all z,y € G and in this context e.g., the identities (1) and (6) in
the above lemma are dual. So we have

LEMMA 3.2. The following identities of the preceding lemma are dual:
(1) with (6), (2) with (5), (3) with (7), (4) with (8). We also have that in
any groupoid the identities (zy)z = y, z(yz) = y are equivalent and such a
groupoid (G, -) (satisfying (zy)z = y) is a quasigroup.

Note that as show the examples of [3] the identities (zy)r = = and
z(yz) = z are not equivalent.

According to Lemma 3.2 we shall further consider the following single
identities of rank 3, namely: zy? = z, zy? = y, (zy)z = =z, (zy)z = v,
(zy)(yz) = z and (zy)(yz) = y. It is now easy to see that the proof
of Theorem from Introduction follows from (i), (iii) of Theorem 2.3 and
Lemma 3.2.

The variety R was considered by B. Roszkowska in her Ph.D thesis (see
[38]). She described the lattice of all subvarieties of the variety R. Some of
subvarieties of RR and the variety itself were considered by many authors
e.g., [27, 32, 35, 36, 37]. In [35] and [36] a characterization of groupoids from
the variety RR is given. The most well-known variety is the variety A of
all diagonal semigroups. It appears in many papers and books e.g., in [14,
20, 26, 29, 41, 42).

The identity (zy)z = y can be found e.g., in [5, 22, 25 and 40].
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In [14] T. Evans investigated the variety of all groupoids (G,-) defined
by a single identity (zy)(yz) = y. Obviously any such a groupoid satisfies
(zy)(yz) = y but Evans groupoids are nonmedial and also nonidempotent.
A little is known about the varieties E and V (see Section 5).

4. Medial idempotent groupoids with zy? =z
In this section we deal with the variety R. We start from

THEOREM 4.1. Let (G,-) be a medial idempotent groupoid satisfying
zy? = z. Then we have

(1) p2(G,-) =1 iff (G,-) is a nontrivial affine space over GF(3).
(it) p2(G,-) =2 iff (G,-) is a proper groupoid satisfying z(yz) = zy and
(zy)z = (z2)y.
(iii) p2(G,-) = 3 iff (G,") is a nontrivial affine space over GF(5).
(iv) There ezist groupoids (G,-) with po(G,-) = 4.
(v) p2(G,-) =5 iff (G,-) is a nontrivial affine space over GF(7).

Proof. The condition (i) follows from (i) of Theorem 2.1.

(ii) If (G,-) is a proper groupoid satisfying z(yz) = zy and (zy)z =
(zz)y, then one can check that p;(G,-) = 2. To prove the converse we
consider the polynomial z(zy). Using zy?> = z we see that (G,-) is right
cancellative and hence z(zy) # zy. If z(zy) = yz, then (yz)y = (z(zy))y =
(zy)((zy)y) = (zy)z which proves that (zy)z is commutative and hence
p2(G,+) > 3, a contradiction. If z(zy) = y, then y(zy) = z(zy)? = z and
hence yz = (z(zy))z = zy which proves that (G,-) is a Steiner quasigroup
which contradicts py(G,-) = 2. If z(zy) = z, then we apply the dual version
of (iii) of Theorem 2.3 to get our requirement.

(iii) First observe that an affine space (G, -) over GF(5) satisfies zy% = z.
Indeed, we have (G, ) = (G,3z + 3y) = (G, 4z + 2y), where (G,+) is an
abelian group of exponent 5. We see that the groupoid (G,4z + 2y) is a
medial idempotent groupoid satisfying xy?> = z. Further the proof follows
from (iii) of Theorem 2.1 and the fact that zy? = z is a nonregular identity
but Plonka’s sums preserve only regular identities (see [28]).

(iv) Let G; be a nontrivial affine space over GF(3) and G, a non-one—
element semigroup with zy = z. Take G = G; X G3. Then the groupoid
(G,-) is medial, idempotent, satisfying zy? = z, z(yz) = z(2y), (zy)z =
z(zy), z(z(zy)) = zy and consequently ps(G,-) = 4.

(v) Observe that if (G,-) is an affine space over GF(7), then (G,-) =
(G,4z +4y) = (G,5z + 3y) = (G, 6z + 2y), where (G, +) is an abelian group
of exponent 7. The last groupoid, i.e., (G, 6z + 2y) satisfies zy* = z and
obviously p2(G,-) = 5. Further, the proof follows from (iv) of Theorem 2.1
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and we use the same arguments as in the proof of (iii) which completes the
proof of the theorem.

THEOREM 4.2. Let (G, ) be a groupoid. Then

(i) If (G,-) € Qmn, then (G,-) is a quasigroup.

(i) If (G,) € Q2 with 2 < n, then the polynomial z + y = "lyz
is commutative, z + (n — 1)y = yz, z + ny = z and consequently
(G,+) and (G, -) are polynomially equivalent. If additionally (G,-) is
medial, then also the groupoid (G, +) is medial.

(iii) Let (G,-) be a medial idempotent groupoid. Then (G,*) € Q,,, for
some n > 2 iff (G,-) is an affine module over Z,4 W1th d|2m -1.

(iv) If (G,-) is an idempotent groupoid satisfying zy* = z which is left—
sided cancellative, then either (G,-) € @, for some n > 2 or (G, )
is polynomially infinite, i.e., p(G,-) is infinite for all m > 2.

Proof. (i) and the first part of (ii) follow from Theorem 2.3. To com-
plete the proof of (ii) we assume that (G, ) satisfies y(yz) = z and zy™ = z
for some n > 2. (We use the dual version). Suppose that (G,-) is medial.
Then we prove that z + y = zy™~! is also medial. Using the simple induc-
tion we show that (zy*)(uv¥) = (zu)(yv)* holds in any medial groupoid
(G,) for all k. Using this identity we have to compute out the expression
(¢ +y) + (u+ ) = (@y™)(wor =) = (((ey” ") (uo™ ")) (uo=1)n=2 =
(((zu)(yo™~ D(wen ) (wen )3 = ((wu )(yo?)r (w3 =
(0¥ (yobyr 1) (uon-T)n-1-k "= ((@u™2)(yom2) 1) (o)
(zu ) (yv" )"l = (2 +u) + (¥ + v) as required.

(iii) Let now (G,-) be a medial idempotent groupoid such that (G,-) €
Q2,n, where n > 2. Using (i) the groupoid (G, -) is polynomially equivalent
with a medial commutative idempotent groupoid (G, +) satisfying z + ny =
z. Now the proof follows from Theorem 2.2 (see (a) of (i)). Suppose that
(G,-) is an affine module over Z;, where d is a divisor of 2" — 1. Then we
have (G,-) = (G, % (z + y)), where (G, +) is an abelian group of exponent
d. (for details see [30]). Take (G,o0), where z oy = (d — 1)z + 2y. We get
(zoy)oy = (d—1)((d - 1)z + 2y) + 2y = z. Obviously (G, o) is medial
and idempotent. Further we have yo (yoz) = 3(d — 1)y + 22z, 3yoz =
(22-1)(d-1)y+23z,...,Fyozx = (2¥-1)(d - 1)y +2Fz, ""lyoz = (271 -
1)(d-1)y+27"1z = 2" 1z +(1-2""1)y and "yoz = (2" —-1)(d-1)y+2"z.
Since 2™ = 1 (mod d) we get "y o z = z. By the same reason we get
"lyogz = %’—l(az + y). Thus the groupoid (G, ) = (G,0) is in @, , which
completes the proof of condition (iii).

(iv) Take the polynomial ¥yz and consider the mapping ¥ — *yz. If this
mapping is one-to—one, then the polynomials ¥y are essentially binary for
all k and by the main result of [19] we infer that (G, -) is polynomially infinite
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which contradicts the assumption. If *yz = ®yz for some a, b such that a > b,
then using the left-hand-side cancellation law we deduce that there exists
an n such that "yz = z which completes the proof of the theorem.

THEOREM 4.3. Let (G, ) € Q2,5 for some n > 2. Then the clone of (G,*)
is minimal if and only if (G, -) is a nontrivial affine space over GF(p), where
p is a prime divisor of 2" — 1.

Proof. The fact that the clone of a nontrivial affine space over GF(p)
is minimal one can find e.g., in [31]. Let (G, ) € Q3,n. Applying (ii) of the
preceding theorem we see that (G,:) = (G, +), where (G,+) is a commu-
tative (and clearly idempotent by the minimality of the clone) groupoid
satisfying z + ny = z. Applying (iii) of Theorem 2.2 we get our requirement,
completing the proof.

For more information about minimal clones see in [2, 10, 13, 23, 24
and 39].

5. On the identity (zy)z =y
In this section we deal with groupoids (G, -) satisfying (zy)z = y. We
start with easy to prove

LeMMA 5.1. If (G, ) is a distributive cancellative groupoid, then (G,-) is
tdempotent.

LEMMA 5.2. Let (G, +) be a groupoid satisfying (zy)z = y. Then we have
(1) (G,-) satisfies also x(yz) = y and the identities (zy)z = y, z(yz) =y
are equivalent.
(ii) (G, ") is a quasigroup and therefore (G, ) is cancellative.
(iii) For each n > 1 we have p,(G,-) < pn41((G,-).
(iv) If (G,-) is distributive, then (G,-) is in the variety Qs 6.

Proof. We prove only (iv). We have (zy)(yz) = ((zy)y)((zy)z) = zy3
and hence zy* = ((zy)(y2))y = ((zy)y)z = y(yz), zy° = yz and 23° = 2.
Analogously we show that yz = z and therefore (G,).€ Q¢ 6, completing
the proof.

LEMMA 5.3. Let (G,-) be a medial idempotent groupoid satisfying (zy)z
= y. Then (G,-) is an affine space over GF(7) iff (G,-) satisfies zy* = yz?
(or dually *yz = %zy).

Proof. If (G,-) is an affine space over GF(7), then (G,-) = (G,4z +
4y) = (G, 5z + 2y) = (G,6z + 2y), where (G,+) is an abelian group of
exponent 7. We see that the polynomial zy = 5z + 3y satisfies zy? = yz?,
(zy)z = y and obviously (G, zy) is medial and idempotent. Let now zy? =
yz? and put z+y = zy?. Using (iv) of Lemma 5.2 we see that z+3y = z and
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also (z +2y) + z = (zy*)2® = (y(yz))e? = ((yz)(yz*))z = ((yz)(zy*))z =
((y(zy))(zy))z = (z(zy))z = zy and hence (z + 2y) + =z = zy which proves
that (G,-) and (G, +) are polynomially equivalent. It is easy to check that
(G, +) is medial. Applying (a) of (ii) of Theorem 2.2 we deduce that (G,-)
is an affine space over GF(7), completing the proof of the lemma.

THEOREM 5.4. Let (G,-) be a medial idempotent groupoid satisfying
(zy)z = y. Then we have

(i) card G = 1 iff one of the following conditions holds: p,(G,-) = 0 or
zy is a projection or also zy? € {y,zy}.

(ii) The following are equivalent:

(a) (G,-) a nontrivial affine space over GF(3);

(b) p2(G,) =15

(c) zy? = = and cardG > 1.

(iii) The conditions are equivalent;

(a) (G, ") is a nontrivial affine space over GF(4);

(b) p2(G,-)=2.

(c) (G,-) satisfies zy* = yz and cardG > 1.

(iv) There are no groupoids (G,-) with p2(G,-) € {3,4}.

(v) The following conditions are equivalent:

(a) (G,*) is a nontrivial affine space over GF(7);

(b) p2(G’ ) = 5;

(c) (G,") satisfies zy* = yz? and cardG > 1.

Proof. (i) If card G = 1, then obviously each of the conditions is fulfiled.
If p2(G,-) = 0, then zy is a projection and hence zy? = zy. If again (G, )
satisfies zy? = zy or zy? = y, then by (ii) of Lemma 5.2 we get = = y.

(ii) (a)=>(b) is obvious. If p2(G,-) = 1, then (G, ) is commutative and
hence y = (zy)z = yz?. Thus we get (b)=>(c). We prove (c)=(a). If z3? = z,
then using y = (zy)r we get yz = (zy)z? = zy and therefore (G,') is a
medial commutative idempotent groupoid satisfying zy?> = z. Using (a) of
(ii) of Theorem 2.2 we infer that (G, ) is an affine space over GF(3).

(iii) First we prove (a)=(b). If (G, ) is an affine space over GF(4), then
(G,-) = (G,az + by) where G is a vector space over a four—element field
K = {0,1,a,b}. If card G > 1, then it is easy to check that (G, ) = 2.

(b)=(c). If (G,-) is a medial idempotent groupoid satisfying (zy)z = y,
then using (ii) of Lemma 5.2 we see that zy? ¢ {y,yz}. By (c) of (ii) (see
above) we get zy?> # z. Since po(G,-) = 2 we infer that zy? = yz, as
required.

(c)=>(a). If (c) holds, then one shows that 2y, yz are the only essentially
binary polynomials over (G, -). Applying (ii) of Theorem 2.3 we get (a).
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(iv) Let pa(G,-) = 3. Using (iit) of Theorem 2.1 we infer that (G,-)
is either a nontrivial Plonka sum of affine spaces over GF(3) being not
all one-element or a nontrivial affine space over GF(5). Since (G, -) satisfies
(zy)z = y we infer that the first case cannot happen (Plonka’s sums preserve
only regular identities, see [28]). If (G, -) is an affine space over GF(5), then
(G,-) = (G,3z + 3y) = (G,4z + 2y), where (G, +) is an abelian group of
exponent 5. We see that none of the polynomials 3z + 3y, 4z + 2y satisfies
the identity (zy)z = y.

Now we prove that there is no medial idempotent groupoid (G, -) sat-
isfying (zy)z = y and p2(G,:) = 4. Assume that such a groupoid (G,-)
there exists. Consider zy%. By (i), (c) of (ii) and (c) of (iii) of this theo-
rem we infer that zy? ¢ {z,y,zy,yz}. If 2y? = yz?, then applying Lemma
5.3 we see that (G, -) is an affine space over GF(7). It is clear that in this
case p3(G,-) # 4. Since in a nontrivial affine space over GF(7) the poly-
nomials 2z + 6y, 2y + 6z, 3z + 5y, 3y + 5z and 4z + 4y are the only
essentially binary polynomials over (G,-) = (G, 4z + 4y) (see e.g., in [1]).
Thus further we may assume that the polynomials zy, yz, zy?, yz? are
the only essentially binary polynomials in (G, ). By the same arguments as
above (using the dual versions of the results) we infer that zy, yz, 2zy and
2yz are essentially binary and pairwise distinct. Assume that (G, -) satis-
fies (zy)y = y(yz). Then we obtain (zy)z = (z22)(yz) = ((z2)y)((z2)z) =
((z2)y)(2(22)) = ((22)2)(y(22)) = (2(22))(y(22)) = (29)(22) = 2(y=).
Thus we get (zy)z = 2(yx) which proves that (G,-) is commutative, a
contradiction. Suppose that (2y)y = z(zy) holds. Then zy = (z(zy))z =
((zy)y)z = ((zy)z)(yz) = y(yz), a contradiction (in this case, applying (c)
of (iii) (the dual version) we see that (G,-) is an affine space over GF(4)
which contradicts the assumption p2(G, -) = 4), completing the proof of (iv).

(v) The implication (a)=>(b) is obvious.

(b)=(c). Since p2(G,-) = 5 and (G,-) satisfies a nonregular identity
(zy)z = y we infer, applying (iv) of Theorem 2.1 that (G,-) is a nontrivial
affine space over GF(7) and therefore (G, -) satisfies the condition (c) (see
the begining of the proof of Lemma 5.3).

(c)=(a) follows from Lemma 5.3. This completes the proof of the
theorem.

We also have

THEOREM 5.5. Affine spaces over GF(q) with ¢ € {3,4,7} are medial
idempotent groupoids (G, -) satisfying the identity (zy)z = y. Moreover there
erist medial idempotent groupoids (G, -) satisfying (zy)z = y which are not
such affine spaces.
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Proof. The first part easily follws from the preceding theorem. To prove
the last statement we take two groupoids G; = ({0, 1,2}, 2z7 2y), G2 =
({0,1,a,b},-), where zy = az + by and K = {0,1,a,b} is a four-element
field. Then we check that the Cartesian product G = Gy X G2 is a proper
medial noncommutative idempotent groupoid satisfying (zy)z = y, zy* are
essentially binary for k = 1,...,5, zy? is noncommutative and different from
zy, yz (see the preceding theorem), completing the proof.

Further let (G,-) be a medial idempotent groupoid. We define a binary
relations ¢ in (G, -) as follows: if a,b € G, then agb < (ab)a = b ¢ (ba)b = a.
Then we have

THEOREM 5.6. If (G, -) is a medial idempotent groupoid, then the relation
q in (G,-) is a congruence relation and consequently G = ), G, where
G is a subgroupoid of G which t € T is a quasigroup and G; N\ Gy = § for
t#¢t (t,t' eT).

Proof. If a,b,c € G and agb, bgc, then we have (ac)a = (ac)((ba)b) =
(a(ba))(eb) = b(cb) = c. Analogously we get (ca)c = a. If a;¢by and ayqb,,
then ((a1a2)(b1dz))(a162) = ((aab1)(az2d2))(a1a2) = ((a1b1)a1)((azb2)az) =
b1by. Similarly we prove ((b1b2)(a1a2))(b1b2) = ayaz. Further the proof fol-
lows from Lemma 5.2.

Note that we have also a similar result for medial commutative idempo-
tent groupoids, namely we have.

THEOREM 5.7. If (G,-) is a medial commutative idempotent groupoid,
then for any positive integer the relation q, defined as follows: if a,b € G,
then aq,b <> ab™ = a ¢ ba™ = b is a congruance relation in (G,-) and then
G = U,er Gt, where GiNGy = 0 for t # t' and each subgroupoid G, (t € T')
is an affine module over Z, with d dividing the number 2™ — 1.

Proof. The second fact follows from (a) of (ii) of Theorem 2.2. To get
the first statement we use repeatedly the medial and the distributive laws
and we omit the proof.

6. On the varieties RR, A, V and E
In this section we deal with the remaining varieties appearing in Theorem
of Section 1. First we prove

THEOREM 6.1. Let (G,-) be an idempotent groupoid. Then we have

(a) The following are equivalent:

(1) (G,-) satisfies (zy)z = yz and z(yz) = y(z=z) t.e., (G,-) € RR;
(i) (G,-) is medial and zy? = y;
(iii) (G,-) is distributive and zy? =y
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(b) If (G,-) € RR, then py(G,-) is even or infinite.

(c) Let (G,) be in RR. Then py(G,:) = 4 iff (G,-) satisfies either
z(z(zy)) = y or z(z(zy)) = zy or z(z(zy)) = z(zy) (and in each case
the polynomial z(zy) is essentially binary and different from zy).

Proof. (a) follows from (iii) of Theorem 2.3.
(b) If (G,-) € RR, then using the identities of the variety RR we see
that

{z,9,2y,y2,2(zy), y(y2), ..., “zy, *yz,...}
is the set A(®(G,") of all binary polynomials over (G,-). So every binary
polynomial into two variables z,y is of the form *zy and it depends on
y (if card G > 1). Using the identity (zy)z = yz we infer that none of
the polynomials ¥zy is commutative and therefore if p;(G,-) is finite, then
p2(G, ) is even.

(c) Let (G,-) € RR and p2(G,-) = 4. Then p;(G,-) = 4 implies that
z(zy) is essentially binary, noncommutative and z(zy) is different from
zy, yz. Thus zy, yz,z(zy) and y(yz) are the only essentially binary polyno-
mials over (G, -). Consider the polynomial z(z(zy)). Using (zy)z = yz we
infer that 3zy is different from yz,y(yz) and depends on y and therefore
32y € {y,ry,z(zy)}. To prove the converse we use the formula of a descrip-
tion of the set A(?)(G,-) of all binary polynomials over (G, -), the fact that
z(zy) is essentially binary and different form zy, completing the proof.

Now we present some well-known facts on the variety A. We have

THEOREM 6.2. Let (G, -) be a proper idempotent groupoid. Then the fol-
lowing conditions are equivalent:

(i) (G,-) is a diagonal semigroup, i.e., (G,-) is an idempotent semigroup
satisfying ryz = z2;

(ii) G = A x B for some non-one-element sets A, B, where the funda-
mental operation on G is defined as follows: if (a,b),(c,d) € G, then
(a,d)(c,d) = (a,d);

(iii) (G, ) is a semigroup with zyz = z;

(iv) (G,") is medial and (G,) satisfies (zy)z = z;

(v) (G,-) is distributive and (G, -) satisfies (zy)z = z;

(vi) For somen > 3, the following polynomials (. ..(z122)...Zn-1)Z, and
z1(z2(...(Zn-12n)...)) are not essentially n-ary;

(vii) pm(G,-) = 0 for some m > 3;
(viii) (G, ) is @ noncommutative groupoid with px(G,-) < k for some k > 3.

The proof of this theorem can be deduced from the results of [4,9,20]
and Theorem 2.3 (i). See also [17].
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Now we deal with medial idempotent groupoids (G, -) satisfying (zy)(yz)
= z i.e., we consider the variety V. It is clear that any diagonal semigroup
(G,-) is in V and therefore A C V. Further observe that any affine space
over GF(4) is also in V. Indeed, if (G, -) is such an affine space, then (G, -)
satisfies (zy)z = y and (zy)z = (2y)z. Using these identities we get the
medial law and (zy)(yz) = ((y2)y)z = z.

Now we give some examples from V.

EXAMPLE 6.3. Let (G,+) be an abelian group of exponent 4. Putting
zy = 2z + 3y. Then we check that (G,-) is a medial idempotent groupoid
satisfying (zy)(yz) = z.

EXAMPLE 6.4. Consider the variety A and the variety Aff(4) of all affine
spaces over GF(4) and take the direct product of these varieties, i.e., Ax Aff
(4). According to the above remarks we see that' A x Aff (4) is a subclass
of V. Using Theorem 1 of [16] we infer that this class is a subvariety of V.
The required binary polynomial needed in [16] is simply (zy)z. In the first
variety A we have (zy)z = z and in AfF (4) we have (zy)z = y.

We have the following easy to prove

THEOREM 6.5. Let (G,:) € V. Then we have

() (G,-) is a diagonal semigroup iff (G,-) satisfies (zy)z = z.

(ii) (G,-) is affine space over GF(4) iff (zy)z =y, i.e., (G,-) € Q.

EXAMPLE 6.6. Let C be the complex field. Take (C,-), where zy =
3?—1 + ’—;3\/52 Then the groupoid (C,-) is a medial idempotent groupoid
satisfying (zy)z = y i.e., (G,-) € @, the polynomial (zy)(yz) is essentially
binary, noncommutative and different from zy, yz.

Now we give two examples of medial idempotent groupoids (G, -) satis-
fying the identity (zy)(yz) = ¥, i.e., (G,-) € E.

EXAMPLE 6.7. Let (G, +) be an abelian group of exponent 5. Take (G, -),
where zy = 4z + 2y i.e., (G,-) is an affine space over GF(5). Then the
groupoid (G, -) is medial, idempotent, (G, -) satisfies (zy)(yz) = y and the
polynomial (zy)z is commutative.

This example shows that the variety Aff (5) of all affine spaces over

GF(5) is a subvariety of the variety E. The next example shows that Aff
(5) is properly contained in E.

EXAMPLE 6.8. Let C be the complex field. Then the groupoid (C,-),
where zy = z + (z — y)i is a proper noncommutative medial idempotent
groupoid satisfying (zy)(yz) = y in which (zy)z is essentially binary, non-
commutative and different form zy and yz.
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