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1. Introduction 
In this paper we study varieties of groupoid modes, that is idempotent 

entropie algebras that can be defined by a single binary fundamental oper-
ation. For theory of modes and their applications in algebra and geometry 
see [33,34] and the references given therein. 

From the equational point of view, groupoid modes are groupoids satis-
fying laws of idempotency and mediality: 

and hence, they form a variety (equational class) of algebras. Jezek and 
Kepka [18] have described all varieties of commutative groupoid modes 
(They called them CIA-groupoids). The noncommutative case turn out to 
be much more complicated, and therefore other authors have focused at-
tention on subvarieties defined by various simple additional identities like 
(xy)y = χ, (xy)y = y, (xy)x = y, . . . , etc. (see e.g., [5, 9, 14, 22, 25, 38, 40]). 

In this paper we present more systematic approach to the subject based 
on the following classification of polynomials (terms) due to E. Marczewski 

For binary polynomial symbol {·} we define Pi = {ζ, y} and Pk+i = 
Pk U { f g : f,g £ Pk}· Then Pk is the set of all binary polynomial 
symbols over {·}. We say that an identity f = g is of rank k, if / , g Ç. Pk 
and at least one of them is not in Pk-i· 

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology 
held at Jachranka, Poland, 8-13 June 1993. 

(I) 
(M) 

χ2 = χ, 

(xy)(uv) = (xu)(yv). 

(see [21]). 
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Now, considering subvarieties defined by additional identities it is natural 
to start from identities of low rank. In this paper we consider nonregular 
identities, that is, having a variable, which occurs only on one side. For these 
we have: 

T H E O R E M . If Κ is a nontrivial subvariety of the variety of groupoid 
modes defined by a single nonregular identity of rank 3, then Κ is one of 
the following varieties (up to duality): 

R xy2 - χ; 
R R (xy)z = yz and x(yz) = y(xz 

Δ (xy)z = x(yz) - xz; 

Q (xy)x = y\ 
V (xy)(yx) = x; 
E (xy){yx) = y. 

The proof of this theorem is given in Section 3. Then, in subsequent 
sections we deal with each variety in more detail. Earlier, for the reader 
convenience, we quote the results applied in this paper. 

2. Terminology and applied results 
In the earlier papers [11] and [12] we propose to classify modes by means 

of the number Pi(G, ·) of essentially binary polynomials in (G, ·). As a first 
step in this direction we have the following 

T H E O R E M 2.1. Let (G,·) be a proper medial idempotent groupoid, i.e., 
xy is essentially binary. Then we have 

(i) p2(G, ·) = 1 if and only if (G, ·) is either a semilattice or an affine 
space over GF(3). 

(ii) PÌ{G, ·) = 2 if and only if(G, ·) is either a diagonal semigroup or an 
n-polynomial groupoid or an affine space over GF(4). 

(ili) Pì(G, ·) = 3 if and only if (G, ·) is either an affine space over GF(5) 
or a nontrivial Plonka sum of affine spaces over GF(3) which are not 
all singetons. 

(iv) p2(G,·) = 5 if and only if(G,·) is either an affine space over GF(7) 
or a nontrivial Plonka sum of affine spaces over GF(5) which are not 
all one-element. 

Note that all the groupoids appearing in this theorem are well-known 
and the definitions and the basic characterizations of them are recalled in 
[11]. For the definition of the Plonka sum and its properties we refer the 
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reader to [28]. Let us add that so far there is no such a description for me-
dial idempotent groupoids (G, ·) with p2(G,·) — 4 (comp. Theorem 2.1). 
In [12] and also the present paper we give some useful information on such 
groupoids. Here, as earlier, polynomially equivalent algebras (i.e., algebras 
having the same sets of polynomials) are treated as identical. Our termi-
nology is standard (cf. [15]). Throughout the paper xyn denotes the poly-
nomial ( . . . (xy).. ,)y, where y appears η times and dually nyx stands for 
y(y(... (yx)...)) (n times y). By QTO)„ we denote the variety of all groupoids 
(G, ·) satisfying xym — χ and nyx = χ for fixed nonnegative integers m and 
η (see [8]). 

T H E O R E M 2 . 2 . Let (G, ·) be a commutative idempotent groupoid. Then 
we have 

(i) If card G > 1, then the polynomials xyk and y are distinct for all k 
(see Theorem 1 of[7]). 

(ii) If (G, ·) is medial, then we have 
(a) (G, ·) satisfies xyn = χ for some η > 1 if and only if (G, ·) is an 

affine module over Zj, — ( {0 , . . . , d — 1},¿ ), where d is a divisor of 
the number 2n — 1 (Theorem 1 of [8], see also [6]). 

(b) (G, ·) satisfies xyn+1 = xy for some τι > 1 if and only if (G, ·) is a 
Plonka sum of affine modules Z¿ with d dividing 2n — 1 (for details 
see Theorems 2, 3 and Corollary from [8]). 

(c) (G , ·) is an affine space over GF(3) if and only if (G, ·) satisfies 
xy2x = χ (see (i) of Lemma 3.4 in [11]). 

(d) (G, ·) is an affine space over GF(5) if and only if (G,·) satisfies 
xy2x = y (see (ii) of Lemma 3.4 in [11]). 

(iii) If (G,·) satisfies xyn = χ for some η > 1, then the clone of (G, ·) is 
minimal if and only if (G, ·) is an affine space over GF(p), where ρ 
divides the number 2n — 1 (see the Proposition in [10]). 

T H E O R E M 2 . 3 . Let ( G , ·) be an idempotent groupoid. Then we have 

(i) If(G, ·) is distributive (or medial), then (G, ·) is a diagonal semigroup 
if and only if (G,·) satisfies (xy)x = χ (or dually x(yx) = x) (see 
Lemma 4.1 of [11]). 

(ii) If (G, ·) is medial with P2(G, •) — 2 , then (G, ·) is a nontrivial affine 
space over GF(4) if and only if (G,·) satisfies (xy)x — y (see §4.3 of 
[11] and (ii) of Theorem 2.1). 

(iii) The following are equivalent: 
(a) (G, ·) satisfies (xy)z = yz and x(yz) = y(xz); 
(b) (G, ·) is a medial groupoid satisfying xy2 = y; 
(c) (G, ·) is a distributive groupoid satisfying xy2 = y 
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(The dual version is also true, for details see Lemma 3.1 of [12] or Proposition 
1.1 in [35]) 

(iv) If(G,·) G Qm,ni then (G,·) is a quasigroup (see e.g. in [8]). 
(v) If {G, ·) G Q2,η for some η > 2, then the polynomial χ + y = n - 1 j / x 

is commutative, χ + (η — 1 )y = yx, χ + ny = χ and consequently the 
groupoids (G, ·) and (G, +) are polynomially equivalent (see the proof 
of Theorem 9 of [8]). 

3. A characterization 
In this section we prove the result quoted in Introduction. We start form 

LEMMA 3 . 1 . For a binary (idempotent) polynomial symbol {·} we have, 
for a nonregular identity of rank 3 the following posibilities: 

(1) (xy)y = χ, (2) (xy)y = y, (3 ) ( xy )x = x, (4) (xy)x = y, 
(5) x(xy) = χ, (6) x(xy) - y, (7) x(yx) = x, (8) x(yx) = y, 

(9) (xy)(yx) = χ and (10)(χι/)(2/ζ) = y. 

P r o o f . Immediately. 

We say that a groupoid (G , o) is dual to the groupoid (G, ·) if χ o y = yx 
holds for all x,y € G and in this context e.g., the identities (1) and (6) in 
the above lemma are dual. So we have 

LEMMA 3 . 2 . The following identities of the preceding lemma are dual: 
(1) with (6), (2) with (5), (3) with (7), (4) with (8). We also have that in 
any groupoid the identities (xy)x = y, x(yx) = y are equivalent and such a 
groupoid (G, ·) (satisfying (xy)x = y) is a quasigroup. 

Note that as show the examples of [3] the identities (xy)x = χ and 
x(yx) = χ are not equivalent. 

According to Lemma 3.2 we shall further consider the following single 
identities of rank 3, namely: xy2 = x, xy2 = y, (xy)x = x, (a:y)x = y, 
(xy)(yx) = χ and (xy)(yx) = y. It is now easy to see that the proof 
of Theorem from Introduction follows from (i), (iii) of Theorem 2.3 and 
Lemma 3.2. 

The variety R was considered by B. Roszkowska in her Ph.D thesis (see 
[38]). She described the lattice of all subvarieties of the variety R . Some of 
subvarieties of R R and the variety itself were considered by many authors 
e.g., [27, 32, 35, 36, 37]. In [35] and [36] a characterization of groupoids from 
the variety R R is given. The most well-known variety is the variety A of 
all diagonal semigroups. It appears in many papers and books e.g., in [14, 
20, 26, 29, 41, 42]. 

The identity (xy)x = y can be found e.g., in [5, 22, 25 and 40]. 
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In [14] T. Evans investigated the variety of all groupoids (G, ·) defined 
by a single identity ( x y ) ( y z ) = y. Obviously any such a groupoid satisfies 
( x y ) ( y x ) = y but Evans groupoids are nonmedial and also nonidempotent. 
A little is known about the varieties E and V (see Section 5). 

4. Medial idempotent groupoids with xy2 = χ 
In this section we deal with the variety R . We start from 

T H E O R E M 4.1. Let (G, ·) be a medial idempotent groupoid satisfying 
xy2 — χ. Then we have 

( i ) P2(G,·) = 1 i f f ( G , · ) is a nontrivial affine space over GF(3). 

( i i ) P 2 { G , · ) = 2 i f f (G,·) is a proper groupoid satisfying x(yz) = xy and 

(;xy)z = (xz)y. 

( i i i ) P 2 ( G , · ) = 3 i f f (G, ·) is a nontrivial affine space over GF(5). 

( i v ) There exist groupoids (G, ·) with Pì(G, · ) = 4 . 

( ν ) P 2 ( G , · ) — 5 i f f (G,·) is a nontrivial affine space over GF( 7 ) . 

P r o o f . The condition (i) follows from (i) of Theorem 2.1. 
(ii) If (G, ·) is a proper groupoid satisfying x(yz) = xy and (xy)z = 

(xz)y, then one can check that P 2 ( G , ·) = 2. To prove the converse we 
consider the polynomial x(xy). Using xy2 = χ we see that (G, ·) is right 
cancellative and hence x(xy) Φ xy. If x(xy) = yx, then ( y x ) y = (x(xy))y = 
(xy)((xy)y) = (xy)x which proves that ( x y ) x is commutative and hence 
P 2 ( G , · ) > 3, a contradiction. If x(xy) = y, then y(xy) = x{xy)2 = x and 
hence yx = (x(xy))x = xy which proves that (G, ·) is a Steiner quasigroup 
which contradicts P2(G, ·) = 2. If x(xy) = x, then we apply the dual version 
of (iii) of Theorem 2.3 to get our requirement. 

(iii) First observe that an affine space (G, ·) over GF(5) satisfies xy2 = x. 
Indeed, we have (G, ·) = (G, 3a; + 3y) = (G,4x + 2y) , where (G, +) is an 
abelian group of exponent 5. We see that the groupoid (G, 4x + 2y ) is a 
medial idempotent groupoid satisfying xy2 = x. Further the proof follows 
from (iii) of Theorem 2.1 and the fact that xy2 = χ is a nonregular identity 
but Plonka's sums preserve only regular identities (see [28]). 

(iv) Let G χ be a nontrivial affine space over GF( 3) and G2 a non-one-
element semigroup with xy = x. Take G = G\ X G2· Then the groupoid 
(G , ·) is medial, idempotent, satisfying xy2 — χ, x(yz) — x(zy), (xy)x — 
x(xy), x(x(xy)) = xy and consequently P 2 ( G , · ) = 4. 

(v) Observe that if (G, •) is an affine space over GF{7), then (G, ·) = 
(G, Ax + Ay) = (G, 5x + 3y) = (G, 6x + 2y) , where (G, +) is an abelian group 
of exponent 7. The last groupoid, i.e., (G, 6x + 2y) satisfies xy2 = χ and 
obviously p2(G,·) = 5. Further, the proof follows from (iv) of Theorem 2.1 
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and we use the same arguments as in the proof of (iii) which completes the 
proof of the theorem. 

T H E O R E M 4.2. Let (G, ·) be a groupoid. Then 

(i) If (G, ·) € Qm,n, then (G, ·) is a quasigroup. 
(ii) If (G,·) G Q2,η with 2 < n, then the polynomial χ + y = n~1yx 

is commutative, χ + (η — l)j/ = yx, χ -f ny = χ and consequently 
(G, +) and (G, ·) are polynomially equivalent. If additionally (G, ·) is 
medial, then also the groupoid (G, +) is medial. 

(iii) Let (G,·) be a medial idempotent groupoid. Then (G, ·) 6 Q2<n for 
some ra > 2 iff (G, ·) is an affine module over Z¿ with d | 2" — 1. 

(iv) If (G, ·) is an idempotent groupoid satisfying xy2 = χ which is left-
sided cancellative, then either (G, ·) € £?2,η for some η > 2 or (G, ·) 
is polynomially infinite, i.e., pm(G, ·) is infinite for all m> 2. 

P r o o f , (i) and the first part of (ii) follow from Theorem 2.3. To com-
plete the proof of (ii) we assume that (G, ·) satisfies y(yx) = χ and xyn = χ 
for some η > 2. (We use the dual version). Suppose that (G, ·) is medial. 
Then we prove that χ + y = xyn~l is also medial. Using the simple induc-
tion we show that ( x y k ) ( u v k ) = (xu)(yv)k holds in any medial groupoid 
(G, ·) for all k. Using this identity we have to compute out the expression 
(x + y) + (u + v) = (xy"-^(OT""1)"-1 = (((xyn-1)(uvn-1))(uvn-1)n~2 = 
(((xuXyr"-1))^"-1))^"-1)'1-3 = ((xu2)(yv2)n~1)(uvn~1)n~3 = ... = 
((xufc)(j/ufc)n-1)(ui;n-1)n-1-fc = ... = (((xun~2)(yvn-2)n-1)(uvn-1) = 
(xun~1)(yvn~1)n~1 = (x + u) + (y + ν), as required. 

(iii) Let now (G , ·) be a medial idempotent groupoid such that (G, ·) G 
Q2.n1 where η > 2. Using (i) the groupoid (G,·) is polynomially equivalent 
with a medial commutative idempotent groupoid (G, +) satisfying χ + ny = 
x. Now the proof follows from Theorem 2.2 (see (a) of (i)). Suppose that 
(G, •) is an affine module over where ci is a divisor of 2n — 1. Then we 
have (G, ·) = (G, ^-(x + y)), where (G, + ) is an abelian group of exponent 
d. (for details see [30]). Take (G, 0), where χ o y = (d — l )x + 2y. We get 
(x o y) o y = (d — 1 )((d — l)x + 2y) + 2y = x. Obviously (G, o) is medial 
and idempotent. Further we have y o (y ο χ) = 3(d — 1 )y -f 22x, 3y ο x = 
(23-l)(d-l)y + 23x,...,kyox = (2k - l)(d-l)y + 2kx, n~xyox = {2n~l -
l)(d-l)y + 2n-1x = 2n~1x + (l — 2n~1)y and nyox = (2" - l ) ( d - l ) y + 2nx. 
Since 2n = 1 (mod d) we get ny ο χ = x. By the same reason we get 
n_1y ο χ = ^ ^ ( x + y). Thus the groupoid (G, ·) = (G,o) is in which 
completes the proof of condition (iii). 

(iv) Take the polynomial kyx and consider the mapping k kyx. If this 
mapping is one-to-one, then the polynomials kyx are essentially binary for 
all k and by the main result of [19] we infer that (G , ·) is polynomially infinite 
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which contradicts the assumption. If ayx = byx for some a, b such that a > b, 
then using the left-hand-side cancellation law we deduce that there exists 
an η such that nyx = χ which completes the proof of the theorem. 

THEOREM 4 . 3 . Let (G, · ) G Q2,η for some n> 2 . Then the clone of(G, ·) 
is minimal if and only if(G, ·) is a nontrivial affine space over GF(p), where 
ρ is a prime divisor of 2n — 1. 

P r o o f . The fact that the clone of a nontrivial affine space over GF(p) 
is minimal one can find e.g., in [31]. Let (G, ·) € Q2,η· Applying (ii) of the 
preceding theorem we see that (G, ·) = (G, + ) , where ( ( ? ,+ ) is a commu-
tative (and clearly idempotent by the minimality of the clone) groupoid 
satisfying x + ny = x. Applying (¡ii) of Theorem 2.2 we get our requirement, 
completing the proof. 

For more information about minimal clones see in [2, 10, 13, 23, 24 
and 39]. 

5. On the identity (xy)x = y 
In this section we deal with groupoids (G, ·) satisfying (xy)x = y. We 

start with easy to prove 

LEMMA 5 . 1 . If(G, ·) is a distributive cancellative groupoid, then (G, ·) is 
idempotent. 

LEMMA 5 . 2 . Let (G, ·) be a groupoid satisfying (xy)x = y. Then we have 

(i) (G, ·) satisfies also x(yx) = y and the identities (xy)x = y, x(yx) = y 
are equivalent. 

(ii) (G, ·) is a quasigroup and therefore (G, ·) is cancellative. 
(iii) For each η > 1 we have pn(G, ·) < pn+i((G, ·). 
(iv) If (G, ·) is distributive, then (G, ·) is in the variety Qefi-

P r o o f . We prove only (iv). We have (xy)(yx) = ((xy)y)((xy)x) = xy3 

and hence xy4 = ((xy)(yx))y = ((xy)y)x = y(yx), xy5 = yx and xy6 = x. 
Analogously we show that 6yx = χ and therefore (G, ·) € Qβ,β, completing 
the proof. 

LEMMA 5 . 3 . Let (G, ·) be a medial idempotent groupoid satisfying (xy)x 
= y. Then (G, ·) is an affine space over GF(7) iff (G,·) satisfies xy2 = yx2 

(or dually 2yx = 2xy). 

P r o o f . If (G, ·) is an affine space over GF( 7), then (G, ·) = (G, 4x + 
4y) = (G,5x + 2y) = (G, 6x + 2y), where (G, + ) is an abelian group of 
exponent 7. We see that the polynomial xy = 5x + 3y satisfies xy2 = yx2, 
(xy)χ — y and obviously (G,xy ) is medial and idempotent. Let now xy2 = 
yx2 and put x + y — xy2. Using (iv) of Lemma 5.2 we see that χ + 3y = χ and 
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also (x + 2y) + χ = (xyA)x2 = (y(yx))x2 = {{yx)(yx2))x = ((yx)(xy2))x = 
((y(xy))(xy))x = (x(xy))x = xy and hence (x + 2y) + χ = xy which proves 
that (G,·) and (G, +) are polynomially equivalent. It is easy to check that 
(G, -f) is medial. Applying (a) of (ii) of Theorem 2.2 we deduce that (G, •) 
is an affine space over GF( 7), completing the proof of the lemma. 

T H E O R E M 5 . 4 . Let (G, ·) be a medial idempotent groupoid satisfying 
(xy)x = y. Then we have 

(i) card G = 1 i f f one of the following conditions holds: P2(G, ·) = 0 or 
xy is a projection or also xy2 G {y, xy}. 

(ii) The following are equivalent: 
(a) (G, ·) a nontrivial affine space over GF(3); 
(b) 1; 
(c) xy2 = χ and card G > 1. 

(iii) The conditions are equivalent· 
(a) (G, ·) is a nontrivial affine space over GF(4); 
(b) P2(G,-) = 2. 
(c) (G, ·) satisfies xy2 = yx and cardG > 1. 

(iv) There are no groupoids (G, ·) with p2{G,·) G {3,4}. 
(ν) The following conditions are equivalent: 
(a) (G, ·) is a nontrivial affine space over GF(7); 
(b) P2(G,-) = 5; 
(c) (G, ·) satisfies xy2 — yx2 and cardG > 1. 

Ρ r o o f. (i) If card G = 1, then obviously each of the conditions is fulfiled. 
If P2{G, ·) = 0, then xy is a projection and hence xy2 = xy. If again (G, ·) 
satisfies xy2 = xy or xy2 = y, then by (ii) of Lemma 5.2 we get χ = y. 

(ii) (a)=í>(b) is obvious. If p2(G,·) = 1, then (G, ·) is commutative and 
hence y = (xy)x = yx2. Thus we get (b)=î>(c). We prove (c)=>(a). If xy2 = x, 
then using y = (xy)x we get yx = (xy)x2 = xy and therefore (G, ·) is a 
medial commutative idempotent groupoid satisfying xy2 = x. Using (a) of 
(ii) of Theorem 2.2 we infer that (G , ·) is an affine space over GF(3). 

(iii) First we prove (a)=^(b). If (G, ·) is an affine space over GF(4), then 
(G, ·) = (G, ax + by) where G is a vector space over a four-element field 
Κ = {0,1,α,ό}. If cardG > 1, then it is easy to check that (G, ·) = 2. 

(b)=>(c). If (G, ·) is a medial idempotent groupoid satisfying (xy)x = y, 
then using (ii) of Lemma 5.2 we see that xy2 £ {y,yx}. By (c) of (ii) (see 
above) we get xy2 φ χ. Since P2(G, ·) = 2 we infer that xy2 = yx, as 
required. 

(c)=>(a). If (c) holds, then one shows that xy, yx are the only essentially 
binary polynomials over (G, ·). Applying (ii) of Theorem 2.3 we get (a). 
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(iv) Let P2 ( (? , · ) = 3. Using (iii) of Theorem 2.1 we infer that (G, ·) 
is either a nontrivial Plonka sum of affine spaces over GF(3) being not 
all one-element or a nontrivial affine space over GF(5). Since (G, ·) satisfies 
(xy)x = y we infer that the first case cannot happen (Plonka's sums preserve 
only regular identities, see [28]). If (G, ·) is an affine space over GF(5), then 
(G, ·) = ( G , 3 x + 3y) = ( G , 4 x + 2 y ) , where (G, + ) is an abelian group of 
exponent 5. We see that none of the polynomials 3a; + 3y , 4x + 1y satisfies 
the identity (xy)x = y. 

Now we prove that there is no medial idempotent groupoid (G, ·) sat-
isfying ( x y ) x — y and p2(G,·) = 4. Assume that such a groupoid (G,·) 
there exists. Consider xy2. By (i), (c) of (ii) and (c) of (iii) of this theo-
rem we infer that xy2 £ {x,y,xy,yx}. If xy2 = yx2, then applying Lemma 
5.3 we see that (G, ·) is an affine space over GF{1). It is clear that in this 
case P2(G,·) φ 4. Since in a nontrivial affine space over GF(7) the poly-
nomials 2x + 6y , 2y + 6x, 3x + 5y , 3y + 5x and Ax + 4y are the only 
essentially binary polynomials over (G, ·) = (G, 4x + 4y) (see e.g., in [1]). 
Thus further we may assume that the polynomials xy, yx, xy2, yx2 are 
the only essentially binary polynomials in (G, ·). By the same arguments as 
above (using the dual versions of the results) we infer that xy, yx, 2xy and 
2yx are essentially binary and pairwise distinct. Assume that (G, ·) satis-
fies (xy)y = y(yx)· Then we obtain ( x y ) z = (xz)(yz) = ((xz)y)((xz)z) = 
((;xz)y){z{zx)) = {(xz)z){y{zx)) = (z{zx)){y(zx)) = (zy)(zx) = z(yx). 
Thus we get ( x y ) z = z(yx) which proves that ( G , ·) is commutative, a 
contradiction. Suppose that ( x y ) y = x(xy) holds. Then xy = (x(xy))x = 
((xy)y)x = ((xy)x)(yx) = y(yx), a contradiction (in this case, applying (c) 
of (iii) (the dual version) we see that (G, ·) is an affine space over G F ( 4 ) 
which contradicts the assumption p2 (G, ·) = 4) , completing the proof of (iv). 

(v) The implication (a)=>(b) is obvious. 
(b)=^(c). Since P 2 ( G , · ) = 5 and (G, ·) satisfies a nonregular identity 

(xy)x = y we infer, applying (iv) of Theorem 2.1 that (G, ·) is a nontrivial 
affine space over G F ( 7 ) and therefore (G, •) satisfies the condition (c) (see 
the begining of the proof of Lemma 5.3). 

(c)=^(a) follows from Lemma 5.3. This completes the proof of the 
theorem. 

We also have 

T h e o r e m 5.5. Affine spaces over GF(q) with q G {3 , 4 , 7 } are medial 
idempotent groupoids (G, ·) satisfying the identity (xy)x = y. Moreover there 
exist medial idempotent groupoids (G, ·) satisfying (xy)x = y which are not 
such affine spaces. 



824 J. D u d e k 

P r o o f . The first part easily follws from the preceding theorem. To prove 
the last statement we take two groupoids G χ = ({0,1,2}, 2x^2y), G2 — 
({0,Ι,α,ό}, ·), where xy = ax + by and Κ = {0,1, a, 6} is a four-element 
field. Then we check that the Cartesian product G = G\ χ G2 is a proper 
medial noncommutative idempotent groupoid satisfying (xy)x = y, xyk are 
essentially binary for k = 1 , . . . , 5, xy2 is noncommutative and different from 
xy, yx (see the preceding theorem), completing the proof. 

Further let (G, ·) be a medial idempotent groupoid. We define a binary 
relations q in (G, ·) as follows: if a, b € G, then aqb (ab)a = b <f_ (ba)b = a. 
Then we have 

T H E O R E M 5 . 6 . If(G, ·) is a medial idempotent groupoid, then the relation 
q in (G,·) is a congruence relation and consequently G = U t g T ^ t ' w^ere 

Gt is a subgroupoid of G which t E Τ is a quasigroup and Gt Π Gt' = 0 for 
t φ t' (t,t' G Τ). 

Ρ r o o f . If α, ò,c € G and aqb, bqc, then we have (ac)a = (ac)((ba)b) = 
(a(ba))(cb) = b(cb) = c. Analogously we get (ca)c = a. If aiqbi and 02^62, 
then ((αια2)(&ι&2))(αια2) = ((αι&ι)(α2&2))(αια2) = ((αι&ι)αι)((α2&2)α2) = 
6162. Similarly we prove ((6ιί»2)(αια2))(6ι02) = αια2 . Further the proof fol-
lows from Lemma 5.2. 

Note that we have also a similar result for medial commutative idempo-
tent groupoids, namely we have. 

T H E O R E M 5 . 7 . If (G, ·) is a medial commutative idempotent groupoid, 
then for any positive integer the relation qn defined as follows: if a,b (Ξ G, 
then aqnb <=>· abn = a <£ ban = b is a congruance relation in (G, ·) and then 
G = UteT , where Gt Π Gt> = 0 for t φ t' and each subgroupoid Gt (t € Τ) 
is an affine module over Z¿ with d dividing the number 2n — 1. 

P r o o f . The second fact follows from (a) of (ii) of Theorem 2.2. To get 
the first statement we use repeatedly the medial and the distributive laws 
and we omit the proof. 

6. On the varieties R R , Δ, V and E 
In this section we deal with the remaining varieties appearing in Theorem 

of Section 1. First we prove 

T H E O R E M 6 . 1 . Let (G, ·) be an idempotent groupoid. Then we have 

(a) The following are equivalent: 
(i) (G, ·) satisfies (xy)z = yz and x(yz) = y(xz) i.e., (G, ·) € R R ; 

(ii) (G, ·) is medial and xy2 = y; 
(iii) (G, ·) is distributive and xy2 = y 
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(b ) If (G, ·) € R R , then p2(G, ·) is even or infinite. 

(c ) Let ( G , · ) be in R R . Then P2(G,·) = 4 iff (G,·) satisfies either 

x(x(xy)) = y or x(x(xy)) = xy or x(x(xy)) = x(xy) (and in each case 

the polynomial x(xy) is essentially binary and different from xy). 

P r o o f , (a ) follows from (iii) of Theorem 2.3. 
(b ) If (G, · ) G R R , then using the identities of the variety R R we see 

that 

{x, y, xy, yx, x(xy), y(yx),..., kxy, kyx,...} 

is the set A ^ ( G , · ) of all binary polynomials over (G, ·). So every binary 
polynomial into two variables x,y is of the form kxy and it depends on 
y (if card G > 1). Using the identity (xy)z — yz we infer that none of 
the polynomials kxy is commutative and therefore if p2(G, ·) is finite, then 
p2(G, ·) is even. 

(c) Let (G, ·) e R R and p2(G,·) = 4. Then p2(G,·) = 4 implies that 
x(xy) is essentially binary, noncommutative and x(xy) is different from 
xy,yx. Thus xy,yx,x(xy) and y(yx) are the only essentially binary polyno-
mials over (G, ·). Consider the polynomial x(x(xy)). Using (xy)z = yz we 
infer that 3xy is different from yx,y(yx) and depends on y and therefore 
3xy € {y,xy,x(xy)}. To prove the converse we use the formula of a descrip-
tion of the set A ( 2 \ G , ·) of all binary polynomials over (G, ·), the fact that 
x(xy) is essentially binary and different form xy, completing the proof. 

Now we present some well-known facts on the variety A. We have 

THEOREM 6.2. Let (G, •) be a proper idempotent groupoid. Then the fol-

lowing conditions are equivalent: 

( i ) (G, ·) is a diagonal semigroup, i.e., (G, ·) is an idempotent semigroup 

satisfying xyz = xz] 

(ii) G = A χ Β for some non-one-element sets A, B, where the funda-

mental operation on G is defined as follows: if (a,b),(c,d) € G, then 

(a,b)(c,d) = (a,d); 

(iii) {G, ·) is a semigroup with xyx = x; 

( iv ) (G, ·) is medial and (G, ·) satisfies (xy)x = x; 

(v) (G, ·) is distributive and (G, ·) satisfies (xy)χ = χ; 

(v i ) For some η > 3, the following polynomials (... (x\x2 ) ·•• xn-\)xn and 

Ζιί^ί· · •(χη-\χη) · · ·)) are n°t essentially n-ary, 

(vii ) pm(G, ·) = 0 for some m > 3; 
(viii) (G, ·) is a noncommutative groupoid with Pk(G, ·) < k for some k > 3. 

The proof of this theorem can be deduced from the results of [4,9,20] 
and Theorem 2.3 (i). See also [17]. 
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Now we deal with medial idempotent groupoids (G, ·) satisfying (xy)(yx) 
= χ i.e., we consider the variety V. It is clear that any diagonal semigroup 
(G, ·) is in V and therefore A C V. Further observe that any affine space 
over GF(A) is also in V. Indeed, if (G , ·) is such an affine space, then (G, ·) 
satisfies ( x y ) x = y and ( x y ) z = (zy)x. Using these identities we get the 
medial law and (xy)(yx) = ((yx)y)x = x. 

Now we give some examples from V. 

EXAMPLE 6.3. Let (G, + ) be an abelian group of exponent 4. Putting 
xy = 2x + 3y . Then we check that (G, ·) is a medial idempotent groupoid 
satisfying (xy)(yx) = x. 

EXAMPLE 6.4. Consider the variety Δ and the variety A f f ( 4 ) of all affine 
spaces over GF(4) and take the direct product of these varieties, i.e., Δ χ Ä f f 
(4). According to the above remarks we see that Δ X AfF (4) is a subclass 
of V. Using Theorem 1 of [16] we infer that this class is a subvariety of V . 
The required binary polynomial needed in [16] is simply ( x y ) x . In the first 
variety Δ we have (xy)x = χ and in A f f (4) we have (xy)x = y. 

We have the following easy to prove 

THEOREM 6.5. Let (G, ·) E V. Then we have 

(i) (G, ·) is a diagonal semigroup iff(G,·) satisfies (xy)x = x. 
(ii) (G, ·) is affine space over GF(4) iff (xy)x = y, i.e., (G, ·) G Q. 

EXAMPLE 6.6. Let C be the complex field. Take (C, · ) , where xy = 
— - f ^^-y / ï i . Then the groupoid (C, ·) is a medial idempotent groupoid 
satisfying (xy)x = y i.e., (G, ·) € Q, the polynomial ( x y ) ( y x ) is essentially 
binary, noncommutative and different from xy, yx. 

Now we give two examples of medial idempotent groupoids (G, ·) satis-
fying the identity (xy)(yx) = y, i.e., (G, ·) G E. 

EXAMPLE 6.7. Let (G, + ) be an abelian group of exponent 5. Take (G, ·), 
where xy = 4x + 2y i.e., (G, ·) is an affine space over GF(5). Then the 
groupoid (G, ·) is medial, idempotent, (G, ·) satisfies (xy)(yx) = y and the 
polynomial ( x y ) x is commutative. 

This example shows that the variety AfF (5) of all affine spaces over 
GF(5) is a subvariety of the variety Ε. The next example shows that AfF 
(5) is properly contained in E. 

EXAMPLE 6.8. Let C be the complex field. Then the groupoid ( C , · ) , 
where xy = χ -f (x — y)i is a proper noncommutative medial idempotent 
groupoid satisfying (xy)(yx) = y in which ( x y ) x is essentially binary, non-
commutative and different form xy and yx. 



On varieties of groupoid modes 827 

References 

B. C s á k á n y , On affine spaces over prime fields, Acta Sei. Math., 37 (1975), 33-36. 
B. C s á k á n y , All minimal clones on the three-element set, Acta Cybernetica 6 
(1983), 227-238. 
S. C r v e n k o w i c and J. D u d e k , Rectangular groupoids, Czechoslowak Math.J. , 35 
(1985), 405-414. 
J. D u d e k , Number of algebraic operations in idempotent groupoids, Colloq. Math., 
21 (1970), 169-177. 
J. D u d e k , Some remarks on distributive groupoids, Czechoslovak Math. J., 31 
(1981), 58-64. 
J. D u d e k , Medial groupoids and Mersenne's numbers, Fund. Math., 114 (1981), 
109-112. 
J. D u d e k , On binary polynomials in idempotent commutative groupoids, Fund. 
Math., 120 (1984), 187-191. 
J. D u d e k , Varieties of idempotent commutative groupoids, Fund. Math., 120 
(1984), 193-204. 
J. D u d e k , Polynomial characterization of some idempotent algebras, Acta Sci. 
Math., 50 (1986), 39-49. 
J. D u d e k , The unique minimal clone with three essentially binary operations, Al-
gebra Universalis, 27 (1990), 2101-209. 
J. D u d e k , Medial idempotent groupoids I, Czechoslowak Math. J., 41 (1991), 249-
259. 
J. D u d e k , Medial idempotent groupoids II, to appear. 
J. D u d e k , Another unique minimal clone, to appear 
T. E v a n s , Products of points-some simple algebras and their identities, American 
Mathematical Monthly, Vol.74, No.4, April 1967, 362-372. 
G. G r ä t z e r , Universal Algebra, Van Nostrand, Princeton, 2 nd ed., 1979. 
G. G r ä t z e r , H. L a k s e r and J. P l o n k a , Joins and direct products of equational 
classes, Canad. Math. Bull., 12 (1969), 741-744. 
G. G r â t z e r a n d A. K i s i e l e wicz , A survey of some open problems on pn -sequences 
and free spectra of algebras and varieties, in "Universal Algebra and Quasigroup 
Theory", A. Romanowska and J. D. H. Smith (eds.), Helderman Verlag, (Berlin), 
1992, 57-88. 
J. J e z e k and T. K e p k a , The lattice of varieties of commutative abelian distributive 
groupoids. Algebra Universalis, 5 (1975), 225-237. 
A. K i s i e l e w i c z , The pn-sequences of idempotent algebras are strictly increasing, 
Algebra Universalis 13 (1981) 233-252. 
E. S. L i a p i n , Semigroups (Moscow, 1960) (in Russian). 
E. M a r c z e w s k i , Independence and homomorphisms in abstract algebras, Fund. 
Math., 50 (1961), 45-61. 
A. M i t s c h k e and H. W e r n e r , On groupoids representable by vector spaces over 
finite fields, Archiv. Math. 24 (1973), 14-20. 
P. P. P á l f y , Minimal clones, Preprint No. 27/1984, Budapest, May 1984, Math. 
Inst, of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13-
15. Hungary. 
P. P. P á l f y , The arity of minimal clones, Acta Sei. Math., 50 (1986), 331-333. 



828 J. D u d e k 

[25] R. P a d m a n a b h a n , Characterization of a class of groupoids, Algebra Universalis 
1 (1971), 374-384. 
M. P e t r i c h , Lectures Notes in Semigroups, Acad-Verlag (Berlin) 1977. 
J. P l o n k a, On algebras with at most η distinct essentially n-ary operations, Algebra 
Universalis 1 (1971), 80-85. 
J. P l o n k a , On equational classes of abstract algebras defined by regular equations, 
Fund. Math. 64 (1964), 241-247. 
J. P l o n k a , Diagonal algebras, Fund. Math., 58 (1966), 309-321. 
J. P l o n k a , On the arity of idempotent reducts of groups, Colloq. Math., 21 (1970), 
35-37. 
J. P l o n k a , R-prime idempotent reduct of groups, Archiv, der Math. 24 (1973), 
129-132. 
J. P l o n k a , On k-cyclic groupoids, Math. Japónica 30, 3 (1985), 371-382. 
A. R o m a n o w s k a , Mal'cev Modes, Affine spaces and Barycentric Algebras, In: 
Universal Algebra and Quasigroup Theory (A. Romanowska and J. D. H. Smith, 
eds.) Helderman Verlag, Berlin 1992, 173-199. 
A. R o m a n o w s k a and J. D. H. S m i t h , Model theory - an algebraic approach to 
order, geometry and convexity, Heldermann-Verlag Berlin (1985). 
A. R o m a n o w s k a and B. R o s z k o w s k a , On some groupoid modes, Demonstratio 
Math. 20 (1987), 207-290. 
A. R o m a n o w s k a and B. R o s z k o w s k a , Representations of η-cyclic groupoids, 
Algebra Universalis, 26 (1989), 7-15. 
A. R o m a n o w s k a and J. D. H. S m i t h , Differencial groupoids, Contributions to 
General Algebra 7, Verlag Hölder-Pichler, Wien 1991-Verlag B.G. Teubner, 
Stuttgart , 283-290. 
B. R o s z k o w s k a , Ph.D. Thesis, Institute of Mathematics, Warsaw Technical Uni-
versity. 
J. G. R o s e n b e r g , Minimal clones I, the five types, in: I.Szebó and A.Szendrci 
(eds) Lecture in Universal Algebra Colloq. Math. Soc. J. Bolyai 41. North-Holland, 
Amsterdam, 1986, 405-427. 
S. K. S t e i n , Homogeneous quasigroups, Pac. J. Math. 14 (1964), 1091-1102. 
W. T a y l o r , Some interesting identities, An. Inst. Math. Univ. Nac. Autónoma 
México, 20 (1980), 127-156. 

[42] Κ. U r b a n i k , On algebraic operations in idempotent algebras, Colloq. Math., 13 
(1965), 129-157. 

INSTITUTE OF MATHEMATICS 
UNIVERSITY OF WROCLAW 
pi. Grunwaldzki 2/4 
50-384 WROCLAW, POLAND 

Received November 26, 1993 


