

Lucyna Żurawska

THE INJECTIVE DIAGONALIZABLE ALGEBRAS

Dedicated to Professor Tadeusz Traczyk

The notion of a diagonalizable algebra was introduced by Magari ([5]). In that paper the author described some algebraic properties of these algebras.

The aim of this paper is to characterize all injective diagonalizable algebras.

An algebra $\mathbf{A} = \langle A, \vee, \wedge, \neg, \tau, 0, 1 \rangle$ of type $\langle 2, 2, 1, 1, 0, 0 \rangle$ is called a *diagonalizable algebra*, if it satisfies the following axioms:

- A1. $\langle A, \vee, \wedge, \neg, 0, 1 \rangle$ is a Boolean algebra,
- A2. $\tau(x \wedge y) = \tau(x) \wedge \tau(y)$,
- A3. $\tau(\tau(x) \rightarrow x) = \tau(x)$, where the symbol $x \rightarrow y$ denotes $\neg x \vee y$,
- A4. $\tau(1) = 1$.

If \mathbf{A} is a diagonalizable algebra, we write $\mathbf{A} = \langle \underline{A}, \tau \rangle$, where \underline{A} is a Boolean algebra.

Let \underline{A} be a Boolean algebra. We can define τ on A by $\tau(x) = 1$ for each $x \in A$. Then $\langle A, \tau \rangle$ is a diagonalizable algebra. This algebras are call "trivial".

If $\mathbf{A} = \langle \underline{A}, \tau \rangle$ is a diagonalizable algebra such that \underline{A} is a complete Boolean algebra, we say that \mathbf{A} is "complete".

It is known (see [5]) that the following properties hold in every diagonalizable algebra:

- W1. $\tau(x) \leq \tau(\tau(x))$,
- W2. if $x \leq y$ then $\tau(x) \leq \tau(y)$,
- W3. if $\tau(x) = 1$ then $x = 1$,

This paper has been presented at the Conference on Universal Algebra and its Applications, organized by the Institute of Mathematics of Warsaw University of Technology held at Jachranka, Poland, 8–13 June 1993.

W4. $\tau(\neg\tau(0)) = \tau(0)$.

Let \mathbb{K} be a class of algebras of the same type. An algebra \mathbb{C} is *injective* in \mathbb{K} if and only if, for each $\mathbb{A}, \mathbb{B} \in \mathbb{K}$ a monomorphism i from \mathbb{A} into \mathbb{B} and a homomorphism h from \mathbb{A} into \mathbb{C} , there exists a homomorphism φ from \mathbb{B} into \mathbb{C} satisfying $\varphi \circ i = h$.

It is known ([4]) that a Boolean algebra \mathbb{B} is injective in the class of Boolean algebra if and only if \mathbb{B} is complete Boolean algebra (Sikorski's theorem).

Let the symbol \mathbb{D} denotes the class of all diagonalizable algebras.

THEOREM 1. *Each diagonalizable algebra which is complete and trivial is an injective diagonalizable algebra in the class \mathbb{D} .*

Proof. Let $\mathbb{C} = \langle \underline{C}, \tau \rangle$, $\mathbb{C} \in \mathbb{D}$ be trivial and complete, $\mathbb{A} = \langle \underline{A}, \tau \rangle$, $\mathbb{B} = \langle \underline{B}, \tau \rangle$, $\mathbb{A}, \mathbb{B} \in \mathbb{D}$, i a monomorphism from \mathbb{A} into \mathbb{B} , h a homomorphism from \mathbb{A} into \mathbb{C} . Then $h(\tau(x)) = \tau(h(x)) = 1$ for each $x \in A$. An algebra \mathbb{C} is complete, so by Sikorski's theorem \underline{C} is injective in the class of Boolean algebras. Hence there exists a Boolean homomorphism φ from \underline{B} into \underline{C} such that $\varphi(i(x)) = h(x)$ for $x \in A$. We will show, that $\varphi(\tau(x)) = \tau(\varphi(x))$ for $x \in B$. An algebra \mathbb{C} is trivial, so $\tau(\varphi(x)) = 1$ for $x \in B$ and $\varphi(\tau(x)) \geq \varphi(\tau(0)) = \varphi(1(\tau(0)) = h(\tau(0)) = \varphi(h(0)) = 1$. So $\varphi(\tau(x)) = 1$.

An algebra \mathbb{C} is called a *retract* of an algebra \mathbb{B} if and only if there exist a monomorphism f from \mathbb{C} into \mathbb{B} and a homomorphism g from \mathbb{B} into \mathbb{C} such that $g \circ f = \text{id}|_{\mathbb{C}}$.

We say that an algebra \mathbb{C} is an *absolute subretract*, if \mathbb{C} is a retract of every algebra including \mathbb{C} .

It is known:

- P1. (see [4]) Each algebra, which is a retract of a complete Boolean algebra, is a complete algebra.
- P2. (see [2]) For each diagonalizable algebra \mathbb{C} , there exists an embedding from \mathbb{C} into a complete, atomic diagonalizable algebra.

It is easy to see, that:

- P3. Each injective algebra in a class of algebras \mathbb{K} is an absolute subretract.
- P4. A retract of a complete diagonalizable algebra is a complete diagonalizable algebra.

The following theorem is a consequence of P1–P4.

THEOREM 2. *Every injective diagonalizable algebra is a complete diagonalizable algebra.*

THEOREM 3. *Every injective diagonalizable algebra is trivial.*

Proof. Let $\mathbb{C} = \langle \underline{C}, \tau \rangle$ be an injective diagonalizable algebra. Let us suppose, that \mathbb{C} is not trivial, that means $\tau(0) \neq 1$.

We consider two cases:

I. $\tau^{n+1}(0) = 1$ for some $n \in N$, $n \geq 1$.

Let $\tau(0) = a_1, \tau^2(0) = a_2, \dots, \tau^n(0) = a_n, \tau^{n+1}(0) = 1$.

Now, let \underline{A} be a Boolean subalgebra of \underline{C} generated by $\{a_1, \dots, a_n\}$. It is obvious that $\text{card}(A) = 2^{n+1}$. Let a_n, b_1, \dots, b_n are co-atoms of \underline{A} such that $a_n \wedge b_1 = a_{n-1}, a_n \wedge b_1 \wedge b_2 = a_{n-2}, \dots, a_n \wedge b_2 \wedge \dots \wedge b_{n-1} = a_1, b_n = a'_1$.

We will show, that $\tau(x) \in A$ for $x \in A$. We have $\tau(a_n) = 1, \tau(a_{n-1}) = a_n$ and $a_n \wedge b_i = a_{n-i}$, so $\tau(b_1) = a_n$. Because $a_{n-2} = a_n \wedge b_1 \wedge b_2$ so $\tau(a_{n-2}) = \tau(a_n) \wedge \tau(b_1) \wedge \tau(b_2)$ and $a_{n-1} = a_n \wedge \tau(b_2)$. Therefore $\tau(b_2) \geq a_{n-1}$ and it is not true that $\tau(b_2) \geq a_n$. So $\tau(b_2) = a_{n-1}$ or $\tau(b_2) = b_1$. Let $\tau(b_2) = b_1$. Then $\tau(b_2) \leq \tau(\tau(b_2)) = \tau(b_1) = a_n$ it is impossible. Hence $\tau(b_2) = a_{n-1}$ and if $a_{n-2} \leq x \leq b_2$ then $\tau(x) = a_{n-1}$ for $x \in A$. If we suppose for $k \leq n-2$ $\tau(b_k) = \tau(a_{n-k}) = a_{n-k+1}$, we obtain $a_{n-k} = \tau(a_{n-k-1}) = \tau(b_{k+1}) \wedge a_{n-k+1}$ so $\tau(b_{k+1}) \geq a_{n-k}$ and it is not true, that $\tau(b_{k+1}) \geq a_{n-k+1}$ and $\tau(b_{k+1}) \leq \tau(\tau(b_{k+1})) = a_{n-k+1}, \tau(b_{k+1}) = a_{n-k}$.

Hence for each $1 \leq k \leq n, \tau(b_k) = a_{n-k+1}$.

We proved, that:

1°. $\langle \underline{A}, \tau \rangle$ is a subalgebra of \underline{C} .

2°. τ on A satisfies the following condition:

$$\tau(x) = \begin{cases} a_i & \text{if } x \geq a_{i-1} \text{ and } x \not\geq a_i \text{ for } i = 1, \dots, n+1, \\ 1 & \text{if } x = 1. \end{cases}$$

Now, we construct Boolean algebra $\underline{B} = 2^{\underline{C}}$. In \underline{B} we take the chain $\underline{L} = \{a_0 = 0, a_1, \dots, a_n, a_{n+1} = 1\}$, where a_n is a co-atom in \underline{B} . On B we describe operation τ by the following condition:

$$\tau(x) = \begin{cases} a_i & \text{if } x \geq a_{i-1} \text{ and } x \not\geq a_i \text{ for } i = 1, \dots, n+1 \\ 1 & \text{if } x = 1. \end{cases}$$

It is easy to prove, that $\mathbb{B} = \langle \underline{B}, \tau \rangle$ is a diagonalizable algebra. Let $[\underline{L}]$ denotes Boolean subalgebra of \underline{B} generated by \underline{L} . It is obvious that $\langle [\underline{L}], \tau \rangle$ is a subalgebra of $\langle \underline{B}, \tau \rangle$ and there is an isomorphism f from $\langle \underline{A}, \tau \rangle$ into $\langle [\underline{L}], \tau \rangle$ such that $f(a_i) = a_i$ for $i = 1, \dots, n$. An algebra \mathbb{C} is injective, so there exists a homomorphism φ from \mathbb{B} into \mathbb{C} such that $(*)\varphi \circ f = \text{id}|_A$ and $(**)\varphi(\tau(x)) = \tau(\varphi(x))$ for $x \in B$. We will prove, that $\ker \varphi = \{0\}$.

Suppose, that $x \in B - \{1\}$ and $\varphi(x) = 1$. Then $\tau(\varphi(x)) = 1$ and by $(**)\varphi(\tau(x)) = \varphi(\tau(x)) = \varphi(f(\tau(x')))$ where $\tau(x) = f(\tau(x'))$ for some $x' \in A$. By $(*)\varphi(f(\tau(x'))) = \tau(x')$, so $\tau(x') = 1$ and $\tau(x) = f(1) = 1$. Therefore $x = a_n$. But $a_n = f(a_n)$ and $1 = \varphi(x) = \varphi(a_n) = \varphi(f(a_n)) = a_n$. It is a contradiction. So $\{x \in B : \varphi(x) = 1\} = \{1\}$ and $\ker \varphi = \{0\}$. We obtained that φ is a monomorphism from \mathbb{B} into \mathbb{C} and $\text{card}(B) > \text{card}(\mathbb{C})$. What is impossible.

II. Let $\tau^n(0) \neq 1$ for each $n \in N$.

Now, let $\mathbf{A} = \langle \underline{A}, \tau \rangle$ be the subalgebra of \underline{C} generated by $\{\tau(0)\}$. It is known (see [1], [5]) that each element $x \in A$ can be written by the following form:

$$x = (a_{i1} \wedge \neg a_{j1}) \vee \dots \vee (a_{ik} \wedge \neg a_{jk}) \text{ or } x = (a_{s1} \vee \neg a_{k1}) \wedge \dots \wedge (a_{sl} \vee \neg a_{kl})$$

$$\text{and } \tau((a_{i1} \wedge \neg a_{j1}) \vee \dots \vee (a_{ik} \wedge \neg a_{jk})) = \tau(0)$$

$$\tau((a_{s1} \vee \neg a_{k1}) \wedge \dots \wedge (a_{sl} \vee \neg a_{kl})) = a_{n+1},$$

where $a_n = \min\{a_{s1}, \dots, a_{sl}\}$.

It is easy to see, that τ satisfies condition:

$$\tau(x) = \begin{cases} a_i & \text{if } x \geq a_{i-1} \text{ and } x \not\geq a_i \text{ for } i \in N, \\ i & \text{if } x = 1. \end{cases}$$

We construct a Boolean algebra \underline{B} such that $\text{card}(B) > \text{card}(C)$ and \underline{A} is a subalgebra of \underline{B} . Such an algebra exists. It suffices to take a Boolean product of algebras \underline{A} and $2^{\underline{C}}$. The operation τ define as follows:

$$\tau(x) = \begin{cases} a_i & \text{if } x \geq a_{i-1} \text{ and } x \not\geq a_i \text{ for } i \in N, \\ 1 & \text{if } x = 1. \end{cases}$$

Of course $\underline{B} = \langle \underline{B}, \tau \rangle$ is a diagonalizable algebra and analogously to I. we obtain, that there is not a homomorphism φ from \underline{B} into \underline{C} such that $\varphi|_A = \text{id}$.

COROLLARY 1. *An algebra \underline{C} is injective in the class of all diagonalizable algebras if and only if \underline{C} is a complete and trivial.*

We say, that the class \mathbb{K} of algebras of the same type is *enough injective*, if every algebra of \mathbb{K} can be embedded into an injective algebra in \mathbb{K} .

COROLLARY 2. *The class of diagonalizable algebras is not enough injective.*

References

- [1] C. Bernardi: *The fixed-point theorem for the diagonalizable algebras*, Studia Logica, 34 (1975), 239–251.
- [2] W. Buszkowski and T. Prucnal: *Topological representation of co-diagonalizable algebras*, 2ns. Frege Conference Schwerin (GDR), 1984.
- [3] B. Davey: *Weak injectivity and congruence extension in congruence-distributive equational classes*, Canad. J. Math. 29 (1977) 449–559.
- [4] P. R. Halmos: *Lectures on Boolean algebras*. Math. Studies No. 1, Van Nostrand Princeton 1963.
- [5] R. Magari: *The diagonalizable algebra*, Boll. Un. Mat. Ital. (4). 12-Suppl. Fasc. 3(1975) 117–125.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY
Konopnickiej 21,
25-406 KIELCE, POLAND

Received November 23, 1993.