

M. Żabka

THE GROUP OPERATIONS ON A GROUP
WITH A FREE SUBGROUP

Dedicated to Professor Tadeusz Traczyk

A binary operation of the form $a \circ b = a^{\alpha_1}b^{\beta_1}a^{\alpha_2}b^{\beta_2} \dots a^{\alpha_n}b^{\beta_n}$ on a group G is called a group operation iff a pair (G, \circ) is a group and $a \cdot b = a_o^{\gamma_1} \circ b_o^{\delta_1} \circ a_o^{\gamma_2} \circ b_o^{\delta_2} \circ \dots \circ a_o^{\gamma_n} \circ b_o^{\delta_n}$ for some integers $\gamma_1, \gamma_2, \dots, \gamma_n, \delta_1, \delta_2, \dots, \delta_n$. If there exists a free not cyclic subgroup of the group G then every group operation $a \circ b$ has one of the forms: $a \circ b = a \cdot b$ or $a \circ b = b \cdot a$.

Let G be a group. Let us consider binary operations $\circ : G \times G \rightarrow G$ of the form

$$a \circ b = a^{\alpha_1}b^{\beta_1}a^{\alpha_2}b^{\beta_2} \dots a^{\alpha_n}b^{\beta_n},$$

where $\alpha_1, \alpha_2, \dots, \alpha_n, \beta_1, \beta_2, \dots, \beta_n$ are any integers. We call it a group operation iff the following two conditions are satisfied:

1. The pair $G_o = (G, \circ)$ is a group.
2. The equation:

$$a \cdot b = a_o^{\gamma_1} \circ b_o^{\delta_1} \circ a_o^{\gamma_2} \circ b_o^{\delta_2} \circ \dots \circ a_o^{\gamma_n} \circ b_o^{\delta_n},$$

holds for some integers $\gamma_1, \gamma_2, \dots, \gamma_n, \delta_1, \delta_2, \dots, \delta_n$, where a_o^{γ} means the power of a in sense of the group G_o .

(see [1], [5], [2]).

On each group there are at least two group operations: $a \circ b = a \cdot b$ and $a \circ b = b \cdot a$. These group operations are called trivial (see [2]).

THEOREM 1. *Let G be a group. If there is a free subgroup $F < G$ which is not cyclic, then all group operations on G are trivial.*

This paper has been presented at the Conference on Universal Algebra and its Applications, organized by the Institute of Mathematics of Warsaw University of Technology held at Jachranka, Poland, 8-13 June 1993.

Proof. Let $a \circ b = a^{\alpha_1}b^{\beta_1}a^{\alpha_2}b^{\beta_2} \dots a^{\alpha_n}b^{\beta_n}$, be a group operation on a group G . It is clear that the operation \circ , restricted to the subgroup F , is a group operation on the group F .

It was proved by Hanna Neumann [4] that there are only trivial group operations on a free group. So, for $a, b \in F$ we have $a \circ b = a \cdot b$ or $a \circ b = b \cdot a$. Because the group F is not cyclic, we can put as a and b the different free generators of the group F and hence the equality is the equality of words. But this means that such equality is true on each group, especially on the group G and so the theorem follows. ■

The group $G = Sl(n, \mathbb{Z})$ of matrices with determinant equal to 1 gives an example of such a group containing a free noncyclic subgroup (see [3]).

References

- [1] A. Goetz, *On weak isomorphisms and weak homomorphisms of abstract algebras*, Colloq. Math. 14 (1966), 163–167.
- [2] A. Hulanicki, S. Świerczkowski, *On group operations other than xy or yx* , Publ. Math. Debrecen 9 (1962), 142–148.
- [3] M. Kargapowa, Ju. Merzliakow, *Osnovy teorii grupp*, Moskwa 1982.
- [4] H. Neumann, *On a question of Kertész*, Publ. Math. Debrecen 8 (1961), 75–78.
- [5] A. P. Street, *Subgroup — determining functions on groups*, Illinois J. Math. 12 (1968), 99–120.

INSTITUTE OF MATHEMATICS
SILESIAN TECHNICAL UNIVERSITY
Kaszubska 23
44-100 GLIWICE, POLAND

Received November 12, 1993.