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Introduction 
The class of quasi-topological Boolean algebras (QTBA's) and some of its 

subclasses were investigated in [5], [6]. These algebras appear in the natural 
way in the algebraic semantics of the quasi-topological strengthening of the 
sentential calculus with identity (SCI, cf. [4]). 

Relational and quasi-topological representations of total complete atomic 
QTBA's (TCA-QTBA's) were considered in [6] and [7]. The present paper 
deals with dual spaces of QTBA's which contain both topological Stone 
spaces as well as total quasi-topological ones. Spaces of this sort will be called 
here quasi-topological Stone spaces (QTSS's). The idea of a construction 
of such spaces comes from Suszko and Quackenbush who applied similar 
dual spaces (consisting of two topologies) for topological Boolean algebras 
(TBA's, cf. [2]). The class of QTSS's is a generalization of the Suszko-
Quackenbush spaces (SQS's) in the sense that an additional topological 
space is replaced by a total quasi-topological space. Obviously every SQS is 
a QTSS but not conversely. 

The paper consists of three sections. The first one concerns with ba-
sic properties pertaining to QTSS's and presents some relationships be-
tween QTBA's and QTSS's. The second section investigates relations which 
hold between homomorphisms of QTBA's and two-continuous mappings of 
QTSS's. The third section in turn considers categories of QTBA's, QTSS's 
and some functors between them. It is shown that categories of QTBA's and 
QTSS's are dually equivalent. 

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology 
held at Jachranka, Poland, 8-13 June 1993. 
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The paper uses notation and terminology of [6] and [7]. 

1. Basic properties 
In this section we investigate fundamental properties concerning quasi-

topological Stone's spaces (QTSS's), topological spaces formed on Q-closed 
subbsets and quasi-topological Stone spaces constructed on topologically 
closed subsets of selfconjugate QTSS's. 

An abstract algebra A = (A, —, U, Π, C) is said to be a quasi-topological 
Boolean algebra (QTBA) if (A , —, U, Π) is a Boolean algebra and a C{a) 
is an additional quasi-closure (Q-closure) operation in A. A QTBA A is 
called complete and atomic if its Boolean reduct is complete and atomic (cf. 
[3]). The class of QTBA's contains topological Boolean algebras (TBA's), 
monadic algebras, Henle's algebras and obviously Boolean algebras. A pair 
X = (X,C), where X is a non-empty set and C is a Q-closure operation on 
it is called a quasi-topological space (QTS). If F(X) is a Boolean field of 
subsets of X with respect to the set-theoretical operations —, U, Π and C is a 
Q-closure operation on F(X), then the algebra F(X) = (F(X),— , U , n , C ) 
is said to be a quasi-topological field (QTF). QTF's in QTBA's play sim-
ilar role as the usual field of sets play in the theory of Boolean algebras. 
As it is known ([6]), every QTBA is isomorphic to some QTF. A com-
plete and atomic QTBA A = (A, - , U , n , C ) is called total (TCA-QTBA) 
if C(a) = ( J A { C ( x ) : χ < α, χ e At(A)} for every a G A, where At(A) is 
the set of atoms in A. Analogously, a QTS X = {X, C) is total (TQTS) 
whenever C(Y) = LLey C({î/}) f° r every subset Y Ç X. A structure 
X = (X, B(X),C) will be called a quasi-topological Stone space (QTSS) 
if X is the Stone topological space and its basis B(X) with respect to 
the set-theoretical operations —,ϋ,Π and a Q-closure C is a QTF. Note 
that V(X) = ( P ( X ) , - , U , n , C x ) is a QTF in which ( P ( X ) , - , U , n ) is the 
Boolean field of all subsets of the set X and Cx is a Q-closure operation 
([6]) defined by the formula: 

(1.1) Cx(Y) = f]{C(Z):Y ÇZ,ZeB(X)} 

for every Y CX. Since CX{Y) = C(Y) for every Y G B(X), it follows that 
( £ ( X ) , - , U , n , C ) is a quasi-topological subfield of V(X). The QTF V(X) 
is total because by (1.1), CX(Y) — U¡,ey Cx({y}) for every Y Ç X . It is easy 
to see that if y is a clopen subset in X, then CX(Y) is also clopen. For every 
element y 6 X subsets of the form CT({y}) are always closed since they 
are intersections of clopen subsets belonging to B(X). A straightforward 
calculation shows that if Y is an open subset in X , then CX(Y) is also open. 
Similarly, if Y is a closed subset in X, the IX(Y) is closed, where Ix is a 
Q-interior operation dual to Cx. 
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Let us denote by D(X) the class of all closed subsets in X and by 0(X) 
the class of all open subsets in X . By virtue of the above remarks it is clear 
that V(X) = ( D ( X ) , - , U , n , / x ) and O(X) = {0(X),-,U,C\,Cx} are dis-
tributive quasi-topological lattices with the smallest and greatest elements. 
The function / : O(X) D(X) such that f ( Y ) = —Y for every Y CX is 
a dual isomorphism from O(X) onto V(X). 

If A' is a given QTSS, then the class C(X) = { y C X : C(Y) = Y} forms 
a total topological space on X. This follows from the fact that 0 , X G C(X) 
and for any indexed family (!i)»e/ of elements of C(X), Uig/^i € C(A') and 
Π i e I Y i G C{X). The subsets of X of the form C°°({a;}) = U~= x C ( n ) ({«}) . 
where = C(C^n-1^{a;}) are open subsets in that topology for 
every χ G X. Moreover, if G(x) is a minimal open subset in C(X) containing 
χ G X , then the following formula holds: 

(1.2) G(x) = C°°({x}) for every χ 6 X. 

To show this, let us assume that y G C°°({x}). Then y G <7<η)(χ) for 
some natural number n. From this, there exist z\ G z-i G 
C ( " - 2 ) ( { * } ) , . . . , zn—\ G ^ ^ ( { x } ) such that y G C({Zl}), Zl G C ( { z 2 » , . . . 
. . . , zn—\ G C({a;}). Since G(x) is open, y G G(x). Hence, C°°({a;}) Ç G(x). 
But G(x) is a minimal open set containing x. Therefore, G(x) Ç C°°({x}). 
Putting these facts together, G(x) = C°°({xj) for every χ G X. Thus we 
see that the topology C(X) is determined by a Q-closure operator C and 
minimal open subsets of elements χ G X. Furthermore it is easy to show 
that Y = U x ç y G ^ ) for every Y G C(X). This means that the family 
B(C(X)) = {G(x) : χ G X} is a basis of that topology C(X). 

Let us recall ([6]) that X = (X,B(X),C) is a self-conjugate QTSS (SC-
QTSS) whenever the following equivalence 

( 1 . 3 ) c(z) ç - y iff c(Y) ç -ζ 

holds for every Y,Z Ç X. Observe that with any SC-QTSS X is associated a 
topological space C(X), whose basis sets satisfy the following two conditions: 

(1.4) a; G G (y) implies y G G(x), 
(1.5) G(x) Π G(y) φ 0 implies G(x) = G(y), 

for every element x,y e X. In fact, making use of (1.2), (1.3) one proves 
(1.4). The property (1.5) follows directly from (1.4). So it is clear that if X 
is a SC-QTSS, then C(X) is a partitional topology on X. 

It turns out that a Q-closure operator C in a SC-QTSS is closely related 
to the Vietoris topology formed on the class of all non-empty topologically 
closed subsets D(X) of X . Let us recall that the Vietoris topology formed 
on D(X) of the Stone space X is the Stone space in which families B(Y) = 
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{D G D(X) : fl Ç 7 } for every Y G generate a basis consisting of 
all clopen subsets of D(X). Since for every y G X the set C({y}) is closed 
in X, one can define a function d : X —> D(X) such that d(y) = C({y}). 
A straightforward calculation shows that ci is a continuous mapping from 
X into D(X). Indeed, d-\-B{-Y)) = {y e X : d(y) <¿ B(-Y)} = {y G 
X : C(y) Π y Φ 0} = L U y C{{z}) = C{Y) and similarly, d~\B{Y)) = 
{y G X : d(y) G B{Y)} = I(Y). But C(Y) as well as I(Y) belong to B(X) 
for every Y G B(X). Thus ci is a topologically continuous mapping from Χ 
into D(X). The basis By{D(X)) of the Vietoris space with respect to the 
set-theoretical operations — , ϋ , Π and with a Q-closure operation Cv such 
that CV(B(Y)) = B{C(Y)) is a QTF. It is easy to see that the function g: 
BV(D(X)) B(X) defined by g(D) = d~\D) for every D G BV{D(X)) is 
a homomorphism from By(D(X)) into B(X). 

A triple X = (X,B(X),C) will be called a Stone space with a total self-
conjugate quasi-topology (SS-TSCQT) if X is the Stone topological space, 
B(X) is its basis and C is a total self-conjugate Q-closure operator on X. 
Clearly X becomes a SC-QTSS if (B(X),C) is a QTF. With the help of 
standard arguments one can show that any SS-TSCQT X = (X, B(X),C) 
is a SC-QTSS iff the sets C({y}) are closed in X and d is a continuous 
mapping from X into D(X). So SC-QTSS's can be characterized by means 
of a continuous topological mapping from the Stone space X into its Vietoris 
topology D(X). 

Now the concept of a 2-continuous mapping between QTSS's will be 
introduced. Let Xx = {Xx, B{Xl),C1) and X2 = (X2, B(X2),C2) be two 
QTSS's. Then any function g : X\ —> X2 is said to be a 2-continuous 
mapping from X\ into X2 if the following two conditions are satisfied: 

(1.6) Γ\Υ') G 5 ( Χ α ) , 

(1.7) r1(C2(Y')) = Cl(r1(Y% 

for every Y' G B(X 2 ) . The first condition means that / is a topological 
continuous mapping from X\ into X2, whereas the second one means that 
/ - 1 is a homomorphism from a QTF B(X2) into a QTF B(Xi). It is not 
hard to verify that the mapping d is an example of a 2-continuous mapping 
from X = (X,B(X),C) into Xv = (D(X), BV(D(X)), Cv)· Note that the 
notion of a 2-continuous mapping coincides with a 2-continuous mapping 
in the sense of Quackenbush-Suszko (cf. [2]) when the structure of a quasi-
topological space is replaced by the McKinsey-Tarski topology. In particular 
if C\ and C2 in X\ and X2, respectively, are identity operators, then X\ and 
X2 become the usual Stone topological spaces and any 2-continuous mapping 
between them passes to the well-known topological condition of continuity. 
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2. Quasi-topological Stone spaces of Q T B A ' s 
This section presents constructions of QTSS's corresponding to QTBA's, 

examines relationships between QTBA's, normal QTBA's and their dual 
counterparts as well as describes connections between homomorphisms of 
QTBA's and 2-continuous mappings of QTSS's. 

Let A = ( A , - , U , n , C U ) be a QTBA. Denote by X(A) the set of 
all ultrafilters in A and by Ηα{Λ) = {/ιλ(ο) : a G A}, where = 
{V € X(A) : α G V}. As it is known ([3], [6]), hA(A) with respect to 
the set-theoretical operations — , ϋ , Π and with a Q-closure C*A defined by 
C¿(hA(a))=hA(CA(a)) for every a G A is a QTF isomorphic to A. The 
family Ha(A) is a basis of the Stone topology on X(A) (cf. [3]). According 
to the extension theorem (cf. [6]), a Q-closure operation C*A on Ιια(Α) one 
can extend to the Q-closure operation C on X{Á) such that 

(2 .1 ) C{Y) = U Π MCx(a)) 
v e v a e v 

for every subset Y of X(.4). 
By virtue of a straightforward verification one shows that C{h,A{a)) = 

CÂ(hA(a)) for every α G A, i.e. the operations C and C^ coincide on the 
quasi-topological subfield Ηα{Α). Moreover, from (2.1) it follows that C is 
a total Q-closure. Thus with every QTBA A is associated a QTSS of the 
form Χα = (Χ(Α),Ηα(Α),0), where C is defined by (2.1). This space will 
be called a QTSS of A. Also to X\ is assigned the QTBA ΑχΛ = hA(A) 
which will be called the dual QTBA of X¿. Obviously A is isomorphic to 
Λχλ. 

Now let X = (X,B(X),C) be any QTSS. Then Αχ = B{X) is its 
dual QTBA. This algebra determines in turn the QTSS XAx = (X(B(X)), 
h(B(X)),C), where X{B{X)) is the set of all ultrafilters in the QTF B(X), 
h(B(X)) consists of elements of the form h(Y) for Y G B(X) and C* is a Q-
closure on X(B(X)) which extends of C*B defined by C%(h(Y)) = h(C(Y)) 
for every Y G B(X). Observe that a mapping g : X —> X(B(X)) such that 
g(x) = V x for every χ G X (where V^ is an ultrafilter in B(X) determined 
by a point χ G X ) is a bijective 2-continuous mapping (2-homeomorphism) 
from X onto Xax. In fact, if χ φ y, then there exists a clopen subset Y G 
B(X) such that y G Y and χ g Y. Hence, Y G V^ and Y £ V x . This implies 
that Vχ φ Vy which means that g(x) φ g(y)· So g is 1 — 1. To prove the 
property "onto", let V be any ultrafilter in X(B(X)). Since B(X) is a perfect 
QTF, it follows that there exists χ G X such that V = V r . Hence, there 
exists χ G X for which g(x) = V x = V. Thus g is an epifunction. Moreover, 
for every χ £ X and every Y G h(B(X)) the following equivalences hold: χ G 
g-^hÇY)) iff g(x) = V x G h(Y) iff Y G V x iff χ G Y a n d χ G g'^C^hiY)) 
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iff V x G h(C(Y)) iff C(Y) G V x iff χ G C(Y) = Cig-^hiY))). Thus we 
have shown that g is a bijective 2-continuous mapping (2-homeomorphism) 
from X onto Xax- Putting these facts together we receive the following 
theorem. 

THEOREM 2 .1 . There exists a one-to-one correspondence between the 
classes of QTBA's and QTSS's. 

Let us confine ourselves to the subclass of normal QTBA's. Recall that a 
QTBA A = (A, —, U, Π, Ca) is normal if there exists a normal ultrafilter in 
A. As it is known (cf. [5]), any Boolean ultrafilter V is normal if Ca(o·) G V 
iff α φ 0 for every a G A. It will be shown that dual spaces corresponding to 
normal QTBA's are strongly compact QTSS's. A QTSS X = (X,B(X),C) 
is said to be strongly compact if C(yi) φ 0 for every indexed family 
(Yi)iez of non-empty subsets of A' (cf. [6]). 

LEMMA 2 . 1 . Let A = (A,-,U, C\,CA) be a normal QTBA. Then X¿ = 
(X(A),h(Á),C) is a strongly compact QTSS such that its dual QTBA ΑχΑ 

is isomorphic to A. 

P r o o f . If A = (A, — ,U, C\,Ca) is normal, then there exists a normal 
ultrafilter V in A. The corresponding to A a QTSS is of the form Xa = 
(Χ(Λ), h(A), C). Let f i . e / hA{CA{ai) = 0. Then V £ fiiez M < ^ ( a ¿ ) ) . This 
implies that there exists i G I such that / ΐ / ΐ ( ^ (α , · ) ) ^ V. By normality of V, 
hA(ai) = 0 for some i G I. Thus the set D(h(A)) = {hA(CA(a)) • hA(a) φ 
0} has the intersection property (intersections are non-empty). Hence, for 
every element a G V G X(A) we have f l a e v ^ ( ^ ( a ) ) = C ( v ) Φ N o t e 

that f l i e / = D i e / U a e v ¡ hA{CA{a)) is not empty, because α φ 0. 
Finally a simple calculation shows that f l i e / ^ ( ^ ' ) = Hie / 
U^eJ ] y¡ f i iez ^ ( α ( 0 ) Φ 0 f ° r every indexed family ( l i ) i e / of non-empty 

subsets in X(A). So X¿ is a strongly compact QTSS. This space determines 
the dual QTBA ΑχΛ = h(A) that is isomorphic to A. 

Now if we start with any strongly compact QTSS, then we get the fol-
lowing lemma. 

LEMMA 2 . 2 . Let X = (X,B(X),C} be a strongly compact QTSS. Then 
it determines a normal QTBA Αχ — B(X) which determines in turn a 
strongly compact QTSS Xax that is 2-homeomorphic to X. 

P r o o f . If A" is a strongly compact QTSS, then in B(X) the set D(B(X)) 
= {C(Y) : Υ φ 0} has FIP (finite intersection property). Hence, the set 
D(B(X)) generates a filter which can be extended to an ultrafilter V(D). 
Observe that V(£)) is a normal ultrafilter in B(X). Thus Αχ = B(X) is a 
normal QTBA. By Theorem 2.1, ΧΛχ = (X(B(X)),h(B(X)),C) is a QTSS 
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of Αχ. According to Lemma 2.1, Xax is a strongly compact QTSS of Αχ. As 
it was shown above the function g : X —• X(B(X)) defined by g(x) = V x 

for every χ € X is a bijective 2-continuous mapping (2-homeomorphism) 
from X onto Xa x · 

The next theorem presents main relationships between the subclass of 
normal QTBA's and the subclass of strongly compact QTSS's. 

THEOREM 2 . 2 . The classes of normal QTBA's and strongly compact 
QTSS's are in a one-to-one correspondence. 

P r o o f . By Lemmas 2.1 and 2.2. 

For every QTBA A = {A, —, U, Π, CA) one can construct a normal QTBA 
A* = A ® 2 = (A X {0,1},— ,U,n ,C*) , in which the Boolean operations 
are defined componentwise and a Q-closure C* is defined by the formula 
C*(a,x) = (CA(a), 1) whenever (α,χ) φ (0,0) and C*(a,x) = (0,0) when-
ever (a, x) = (0,0) for every (α,χ) £ A X {0,1} (cf. [5]). By virtue of 
Theorem 2.2, corresponding to A* the QTSS XA- = {X(A*),h(A*),C*} is 
strongly compact. The dual counterpart of the algebraic construction of nor-
mal QTBA's is a quasi-topological construction of strongly compact QTSS's. 
Namely, if X = (X, B(X), C) is a QTSS, then X* = (X*, B(X*), C*), where 
X* = X U {a;*}, χ* £ X , B(X*) = B(X) U P({x*}) and 

for every Y Ç Xm, is a strongly compact QTSS obtained from X. A QTSS X* 
constructed from X will be called a 1-point strong compactification (1-PSC) 

Let us apply now the 1-PSC to Xa of A. Then we get a strongly compact 
QTSS of the form X} = (X*(A), h*(A),C*), where X*(A) = X(A) U {1}, 
k*(A) = hA(A) U P({1}) = { /u (a ) U h2(x) : a G A, χ G {0,1}} and hA, 
h,2 are the Stone isomorphisms of A and 2, respectively. With the help of 
standard calculations one shows that the function / : X(.4*) —* X*(A) such 
that / ( V , {1}) = {V} U {1} for every V ζ X(A) is a 2-homeomorphism from 
A'a- onto X¿ . Thus for every QTBA A one can construct a strongly compact 
QTSS X¿ using 1-PSC as well as a strongly compact QTSS Xa using the 
algebraic normal construction. These two spaces up to 2-homeomorphism 
can be treated as identical. 

Connections between homomorphisms of QTBA's and 2-continuous map-
pings of QTSS's are described int the following two theorems. 

ÍC(Y)U{x*} , 0 φ 
1 0 , Y = 

YCX* 
0 

o f * . 

THEOREM 2 . 3 . Let h : A\ —> Ai be a homomorphism from a QTBA Ai = 
( j 4 i , - , U , n , C i ) into a QTBA A2 = ( ^ 2 ) —, U, Π, C2). Then the mapping 
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g : Χ(A2) —•• -X"(«4i) defined by the formula: 

(2.2) fif(V') = Ä _ 1 ( V ' ) /or evert/ V ' € X(A2) 

is a 2-continuous mapping from a QTSS Xa2 = (X(A2),h,2(A2),C2) into a 
QTSS XAl = (JTMi),äiMi),Ci). 

P r o o f . We have to show two conditions: <7 - 1 (F) G Λ2Μ2) a n d 
g-^CiiY)) = C2{g-l(Y)) for every Y G M ^ i ) · Since Y G Λ1Μ1), there 
exists α £ j4 i such that y = hi(a). Hence, <7_1(/ΐχ(α)) = { V ' G -ΧΧΛ2) : 
5 ( V ) € Λχ(α)} = { V G Χ ( Λ 2 ) : h(a) G V ' } = Λ2(Λ(α)) G h2(A2). 
This means that g~l(Y) G h2{A2) for every Y G Λι(-4ι). Note that for 
every V G X(A2) and every α G Αχ the following equivalences hold: 
V ' G a r ^ C i i M « ) ) ) iff <7(V) e Ci(M<*)) iff C ^ a ) G <7(V) = /i-HV') 
iff hiC^a)) = C2(h{a)) G V ' iff V G h2(C2(h(a))) = C2(h2(h(a))) = 
C2(£r -1(/ii(a))). So the second condition is satisfied. 

T H E O R E M 2.4. If g : X\ —> X2 is a 2-continuous mapping from a QTSS 
Χι = (X1,B(X1),C1) into a QTSS X2 = {X2, B(X2),C2), then the mapping 
h : B(X2) -* B(X 1) such that 

(2.3) h(Y') = g~1(Y') for every Y' G B(X2) 

is a homomorphism from a QTF B{X2) into a QTF B(X 1). 

P r o o f . Standard calculations show that h preserves Boolean opera-
tions in B(X2) and B(X 1). Moreover, for every Y' G B(X2),h(C2(Y')) = 
g-HCiOT')) = C.ig-^Y')) = Ci{h(Y')). 

Thus we see that dual counterparts of homomorphisms in QTBA's are 
2-continuous mappings of QTSS's. By virtue of Theorems 2.1, 2.2 and simple 
calculations one can show that dual counterparts of isomorphisms between 
QTBA's are 2-homeomorphisms between QTSS's. 

If Λ is a monomorphism from Ai = (A\, —, U, Π, C\) into A2 = 
{A2, — ,U,n ,C2) , then the corresponding 2-continuous mapping g : X(Ä2)—> 
Χ(Αι) defined by (2.2) is a surjection. Indeed, if h is a monomorphism, then 
Λ(ν) G X(A2) for every V G X{A\). From this, for every V G X{Ai) there 
exists /i(V) G X{A2) such that g(h(V)) = h - ^ h f V ) ) = V. 

If h is an epimorphism from A\ onto A2, then the function g is an 
injective 2-continuous mapping from X^2 into XA1. In fact, let us assume 
that g(V') = g(V") for any V ' , V " G X(A2). Hence, by (2.2), J r ^ V ' ) = 
/ i - 1 (V" ) which implies that /ι(/ι"2(ν') = /i(/i_1(V")). By hypothesis that 
h is an epimorphism we get V ' = V " . From this and from Theorem 2.3 it 
follows that g is an injective 2-continuous mapping. 

By the above remarks it is seen that to monomorphisms (epimorphisms) 
of QTBA's correspond surjective (injective) 2-continuous mappings of 
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QTSS's. Similarly it may be shown tha t if g is a surjective (injective) 2-
continuous mapping from a QTSS X\ = (Χι, B(Xi), C\) onto (into) a QTSS 
Χι = {X2, B(X2),C2), then the corresponding dual mapping h : B(X2) - > 
B{X1) defined by (2.3) is a monomorphism (epimorphism) from B{X2) into 
(onto) B(X 1). 

As it is known for every QTBA A = (A, —, U, Π, CA) one can construct a 
normal QTBA A* = (A*, - , U, Π, C*). Since the mapping Π : A* A such 
tha t Π (a, x) = a for every (α, χ) G A* is an epimorphism from A* onto A, it 
follows tha t the mapping g : X{A) X(A*) defined by g(V) = Π_1(V) for 
every V G X(A) is the corresponding injective 2-continuous mapping f rom 
XA = (X(A),h(A),C) into XA = {X*(A),h*(A),C*). In fact , the mapping 
h : A* —>• h*(A) such tha t h(a,x) = U ^2(2;) for every ( o , z ) G A* is 
an isomorphism from A* onto h*(A). Furthermore, V G ¿ f _ 1 ( / i^ (a) U/i2(x)) 
iff g(V) e h(a,x) iff (a,x) e 7 7 _ 1 ( V ) iff α G V iff V G hA(a) as well as 
V G g-\C*{hA(a)Uh2{x)) iff <7(V) G (hA(CA(a), {1}) = h(CA(a), 1) iff 
(CA(a), 1) G n - \ V ) iff CA(a) G V iff V G hA(CA(a)) = C(hA(a)) = 
C(g~1(hA(a) U h2(x)) for every V G X(A) and every a G A, χ G {0,1}. But 
g is an injection. Therefore g is an injective 2-continuous mapping from XA 

into Χ*Λ. 
Let us take now any QTSS X = ( X , B(X),C). Then X* = (X*, B(X*), 

C*) is a strongly compact QTSS such tha t the identity function g(x) = χ for 
every χ G X is a bijective 2-continuous mapping (2-embedding) from X into 
X*. This mapping determines in turn an epimorphism Π : B(X*) —• B(X) 
such tha t Π(Ζ) = g~l(Z) for every Ζ G B(X'). 

It is worth to note tha t not every subclass of QTSS's is closed un-
der the operation of taking the 1-PSC. For instance if in X = (X,B(X), 
C) a Q-closure operator satisfies the following condition: 

(2.4) C(Y) Π C(-C(Y)) = 0 for every Y ÇX, 

then the strongly compact QTSS X* = (X*, B(X*),C*} does not satisfy 
(2.4). Indeed, C*(Y U {χ*}) Π C\-C*{Y U {z*})) = ( C ( Y ) U {χ*}) Π 
C*(-(C(Y) Π {χ*}) = ( C { Y ) Π C(-C(Y)) U {χ*} = {χ*}. Hence Χ* does 
not belong to the subclass of QTSS's satisfying (2.4). Moreover, this result 
implies t ha t the corresponding subclass of QTBA's is not closed under the 
construction of normal QTBA's . Let us add tha t if a subclass of QTBA's 
is closed under the operation of taking algebras of the form A*, then free 
algebras are normal. This fact is important in the Boolean strangthening of 
the sentential calculus with identity since normal algebras are just models 
of tha t logic ([4], [5]). 
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3. Connections between categories of QTBA's and QTSS's 
The goal of this section is to describe some relationships between QTBA's 

and their QTSS's in terms of categories and functors. 
Let K(QTBA) be a category of QTBA's. Objects are QTBA's and mor-

phisms are homomorphisms between QTBA's. The dual counterpart of this 
category is a category K(QTSS) of QTSS's the objects of which are QTSS's 
and morphisms are 2-continuous mappings between QTSS's. Making use 
of Theorem 2.3 and applying standard calculations one shows that F : 
Κ (QTBA) Κ (QTSS) such that F(A) = Xa and F(g)(V) = g-^V') 
for any QTBA A and every V G X(A2) is a contravariant functor from 
K(QTBA) into K(QTSS), where g is a homomorphism from a QTBA Αχ 
into a QTBA A2(g G H o m ^ i , ^ ) and F(g) is a 2-continuous mapping 
from XA, into XaAf(9) € C o n t 2 ( ^ 2 , X A l ) . 

Since the restriction of F to Hom(,4i,«42) is an injective mapping for 
every QTBA Ai,A2, it follows that F is a faithful functor. Furthermore, F 
transforms injective (surjective) homomorphisms of QTBA's into surjective 
(injective) 2-continuous mappings of QTSS's. In particular, F transforms 
isomorphisms between QTBA's into 2-homeomorphisms between QTSS's. 

Let A* be the normal algebra constructed from a QTBA A. Then the 
function Π : A* A such that Π (a, χ) = a for every (a, x) G A* is an 
epimorphism from A* onto A. Hence F(H) is an injective 2-continuous 
mapping from Xa into Xa*· But up to isomorphism Xa* = Xa· There-
fore, F(A*) = F(AY for every QTBA A. Note that if h G Hom(^x,^2), 
where Αχ,Αζ are normal QTBA's and V is a normal ultrafilter in A2, then 
F(h)(V) does not have to be a normal ultrafilter in Αχ. This means that 
F{h) does not preserve normality of ultrafilters. It can be shown that F(h) 
preserves the normal property of ultrafilters iff h is a monomorphism. 

Let us take now under consideration a function G : K(QTSS) —»· 
K(QTBA) such that G{X) = B(X) for every QTSS X = (X,B(X),C). 
Moreover, if / is any 2-continuous mapping from a QTSS X\ = (Xi, B(X 1), 
C\) into a QTSS X2 = (X2, B(X2),C2), then G ( f ) G H o r n ( B ( X 2 ) , B(X1)) 
is defined by the formula G(f)(Y') = f~l{Y') for every Y' G B(X2). Ob-
serve that G is a contravariant functor from Κ (QTSS) into Κ (QTBA). This 
functor transforms injective (surjective) 2-continuous mappings into surjec-
tive (injective) homomorphisms. Since every TQTSS X is 2-embedded in 
the strongly compact QTSS X*, it follows that G is commutative with the 
operation "*", i.e. G(X*) = G(X)* (up to isomorphism). Furthermore, if 
g is a 2-embedding from X into X*, then G(g) is the corresponding epi-
morphism from B(X*) onto B(X) such that G(g)(Y) = g-1(Y) for every 
Y G B(X*). Also it is easy to see that if / is a 2-homeomorphism from 
Xi = (X1,B(Xl),Cl) onto X2 = (X2, B(X2),C2), then G ( f ) is the corre-
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sponding isomorphism from B(X2) onto B(X 1). 
Denote by FG a covariant functor which is the composition of F and G. 

We will show that FG is naturally equivalent to the identity functor on the 
category of QTSS's. 

LEMMA 3.1 . Let f be a 2-continuous mapping from a QTSS Χχ = 
(X1,B(X1),C1) into a QTSS X2 = (X2,B(X2),C2). Then there are 2-
homeomorphisms G I : Χχ —• FG(X1) and. g2 : X2 —• FG(X2) such that 
g2of = F G ( f ) o g i . 

P r o o f . Let us consider the function g\ : Χχ —• FG(Xi) = (X(B(Xi)), 
B f g ( X i ) , C f g ) defined by the formula <7i(a;i) = VXl for every x\ G ΧΧ, 
where VXl is a principal ultrafilter generated by χχ G Χχ. The function 
<7i is an injection since the field BFg(X 1) is irreducible. But BFG(Xι) 
is also perfect. Therefore g\ is an epimorphism. It remains to be shown 
yet that <71 is a 2-continuous mapping. Elements of BFG(X 1) will be de-
noted by h(Y) = { V e X(5(Xi ) ) : Y G V} for every Y G B(X 1). Then, 
9iHKY)) = e Χχ : ffi(zi) = VXl G /i(F)} = {«1 G Χχ : Y G V X l } = 
{χχ G Χχ : x i G Y ) = F G Β(Χχ) a n d g^(CFG(h(Y))) = g^(h(Cx(Y))) = 
Cx(Y) G B(X 1). Thus gx is a 2-homeomorphism. Making use similar reason-
ings one shows that the function g2 : X2 = {X2,B{X2),C2) FG(X2) = 
{X(B(X2)),BFG(X2),CFG) such that g2(x2) = V l 2 for every x2 G X2 

is a 2-homeomorphism. Moreover, (g2 ο / ) ( χ χ ) = ^ ( / ( ^ 1)) = V / ( X l ) = 
G V ) - 1 ^ ^ ) = FG(f)(gx(xx)) for every χχ G Χχ. Thus, g2of = F G ( f ) o g i . 

It turns out that the covariant functor GF is also naturally equivalent 
to the identity functor on the category K(QTBA). This is shown in the 
following lemma. 

LEMMA 3.2 . Let h be a homomorphism from a QTBA Αχ = 
(Ai,-,U,n,Ci) into a QTBA A2 = (A2,-,\J,C\,C2). Then there exist 
isomorphisms fx : Αχ -* GF(Ax) and f2 : A2 GF(A2) such that 
f2oh = GF(h)o f x . 

P r o o f . If h G Hom(.4i,.42)> then by Theorem 2.3 the function F(h) : 
XA2 = (X(A2),h2(A2),GA2) XAl = (X(Ax),hi(Ai),CAl) such that 
F(h)(V') = for every V' G X(A2) is a 2-continuous mapping. Let 
us define fx : Αχ —• GF(Ax) = hx(Ax) by fx(a) = hx(a) for every α (Ε Αχ 
and define f2 : A2 GF(A2) = Ä2M2) by f2(a') = h2(a') for every 
a' G A2. Then fx as well as /2 are isomorphisms. Furthermore, (/2 o h)(a) = 
f2(h(a)) = h2{h{a)) = { V ' G X(A2) : h(a) G V ' } = { V ' G X(A2) : 
F(h)(V') G hx(a)} = F(h)-\hx(a)) = GF(h)(hx(a)) = GF(h)(fx(a)) f o r 
every a G Αχ. Hence, f2 0 h = GF(h) 0 /x. 

From above two lemmas we get the following theorem. 
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T H E O R E M 3 . 1 . Categories K(QTBA) and K(QTSS) are dually equiva-
lent. 

Ρ r o o f. By Lemma 3.1, FG is naturally equivalent to the identity functor 
IK(QTSS)· By Lemma 3.2, GF is naturally equivalent to the identity functor 
IK(QTBA)· From these facts it follows that K(QTBA) is dually equivalent 
to K(QTSS). 

Let us note finally that if A = {A, —, U, Π, CA) is a total complete and 
atomic QTBA (TCA-QTBA), then the corresponding QTSS XA becomes a 
total quasi-topological space (TQTS). As it is known (cf. [7]), TCA-QTBA's 
form a category K(TCA-QTBA) which is a full subcategory of K(TQTBA). 
Also TQTS's constitute a full subcategory of K(QTSS). Thus confining our-
selves to the subclasses of TCA-QTBA's and TQTS's Theorem 3.1 passes to 
the dual equivalence between subcategories K(TCA-QTBA) and K(TQTS). 
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