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Introduction

The class of quasi-topological Boolean algebras (QTBA’s) and some of its
subclasses were investigated in [5], [6]. These algebras appear in the natural
way in the algebraic semantics of the quasi-topological strengthening of the
sentential calculus with identity (SCI, cf. [4]).

Relational and quasi-topological representations of total complete atomic
QTBA’s (TCA-QTBA’s) were considered in [6] and [7]. The present paper
deals with dual spaces of QTBA’s which contain both topological Stone
spaces as well as total quasi-topological ones. Spaces of this sort will be called
here quasi-topological Stone spaces (QTSS’s). The idea of a construction
of such spaces comes from Suszko and Quackenbush who applied similar
dual spaces (consisting of two topologies) for topological Boolean algebras
(TBA’s, cf. [2]). The class of QTSS’s is a generalization of the Suszko-
Quackenbush spaces (SQS’s) in the sense that an additional topological
space is replaced by a total quasi-topological space. Obviously every SQS is
a QTSS but not conversely.

The paper consists of three sections. The first one concerns with ba-
sic properties pertaining to QTSS’s and presents some relationships be-
tween QTBA’s and QTSS’s. The second section investigates relations which
hold between homomorphisms of QTBA’s and two-continuous mappings of
QTSS’s. The third section in turn considers categories of QTBA’s, QTSS’s
and some functors between them. It is shown that categories of QTBA’s and
QTSS’s are dually equivalent.

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology
held at Jachranka, Poland, 8-13 June 1993.
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The paper uses notation and terminology of [6] and [7].

1. Basic properties

In this section we investigate fundamental properties concerning quasi-
topological Stone’s spaces (QTSS’s), topological spaces formed on Q-closed
subbsets and quasi-topological Stone spaces constructed on topologically
closed subsets of selfconjugate QTSS’s.

An abstract algebra A = (4, —,U,N,C) is said to be a quasi-topological
Boolean algebra (QTBA) if (A, —,U,N) is a Boolean algebra and a — C(a)
is an additional quasi-closure (Q-closure) operation in A. A QTBA A is
called complete and atomic if its Boolean reduct is complete and atomic (cf.
[3]). The class of QTBA’s contains topological Boolean algebras (TBA’s),
monadic algebras, Henle’s algebras and obviously Boolean algebras. A pair
X =(X,C), where X is a non-empty set and C is a Q-closure operation on
it is called a quasi-topological space (QTS). If F(X) is a Boolean field of
subsets of X with respect to the set-theoretical operations —,U,N and C is a
Q-closure operation on F(X), then the algebra F(X) = (F(X),-,u,n,C)
is said to be a quasi-topological field (QTF). QTF’s in QTBA’s play sim-
ilar role as the usual field of sets play in the theory of Boolean algebras.
As it is known ([6]), every QTBA is isomorphic to some QTF. A com-
plete and atomic QTBA A = (4,—,U,N,C) is called total (TCA-QTBA)
if C(a) = U*{C(z) : z < a,z € At(A)} for every a € A, where At(A) is
the set of atoms in A. Analogously, a QTS X = (X,C) is total (TQTS)
whenever C(Y) = [,y C({y}) for every subset Y C X. A structure
X = (X,B(X),C) will be called a quasi-topological Stone space (QTSS)
if X is the Stone topological space and its basis B(X) with respect to
the set-theoretical operations —,U,N and a Q-closure C is a QTF. Note
that P(X) = (P(X),-,U,n,C,) is a QTF in which (P(X),—,U,N) is the
Boolean field of all subsets of the set X and C, is a Q-closure operation
([6]) defined by the formula:

(1.1) C(Y)=({C(2):Y C Z,Z € B(X)}

for every Y C X. Since C,(Y) = C(Y) for every Y € B(X), it follows that
(B(X),—-,U,n,C) is a quasi-topological subfield of P(X). The QTF P(X)
is total because by (1.1), Co(Y) = U,cy Co({y}) forevery Y C X. Tt is easy
to see that if Y is a clopen subset in X, then C(Y') is also clopen. For every
element y € X subsets of the form C;({y}) are always closed since they
are intersections of clopen subsets belonging to B(X). A straightforward
calculation shows that if Y is an open subset in X, then C(Y) is also open.
Similarly, if Y is a closed subset in X, the I(Y) is closed, where I, is a
Q-interior operation dual to C,.
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Let us denote by D(X) the class of all closed subsets in X and by O(X)
the class of all open subsets in X. By virtue of the above remarks it is clear
that D(X) = (D(X),-,U,N, I;) and O(X) = (O(X),—,U,N,C;) are dis-
tributive quasi-topological lattices with the smallest and greatest elements.
The function f : O(X) — D(X) such that f(Y) = —-Y forevery Y C X is
a dual isomorphism from O(X) onto D(X).

If X is a given QTSS, then the class C(X)={Y C X : C(Y) = Y} forms
a total topological space on X. This follows from the fact that §, X € C(X)
and for any indexed family (Y;)ies of elements of C(X), U;¢;Yi € C(X) and
N1 Yi € C(X). The subsets of X of the form C*({z}) = Upz, C(™({z}),
where C("({z}) = C(C"~1{z}) are open subsets in that topology for
every x € X. Moreover, if G(z) is a minimal open subset in C(X’) containing
z € X, then the following formula holds:

(1.2) G(z) = C*({z}) for every z € X.

To show this, let us assume that y € C*({z}). Then y € C(™(z) for
some natural number n. From this, there exist z; € C("~V({z}), 22 €
Ctr=({z}),...,2n_1 € CO({z}) such that y € C({z1}), 21 € C({22}),...
.+y2Zn—1 € C({z}). Since G(z) is open, y € G(z). Hence, C*({z}) C G(z).
But G(z) is a minimal open set containing z. Therefore, G(z) C C*®({z}).
Putting these facts together, G(z) = C®({z}) for every z € X. Thus we
see that the topology C(X') is determined by a Q-closure operator C and
minimal open subsets of elements 2 € X. Furthermore it is easy to show
that Y = [ ey G(z) for every Y € C(X). This means that the family
B(C(X)) = {G’(a:) z € X} is a basis of that topology C(X).
Let us recall ([6]) that X = (X, B(X),C) is a self-conjugate QTSS (SC-
QTSS) whenever the following equivalence

(1.3) C(Z)C -Y iff C(Y)C -2

holds for every Y, Z C X. Observe that with any SC-QTSS X is associated a
topological space C(X'), whose basis sets satisfy the following two conditions:

(1.4) z € G(y) implies y € G(z),
(1.5) G(z) N G(y) # 0 implies G(z) = G(y),
for every element z,y € X. In fact, making use of (1.2), (1.3) one proves
(1.4). The property (1.5) follows directly from (1.4). So it is clear that if X
is a SC-QTSS, then C(X') is a partitional topology on X.

It turns out that a Q-closure operator C in a SC-QTSS is closely related
to the Vietoris topology formed on the class of all non-empty topologically

closed subsets D(X) of X. Let us recall that the Vietoris topology formed
on D(X) of the Stone space X is the Stone space in which families B(Y) =
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{D € D(X): D CY} for every Y € B(X) generate a basis consisting of
all clopen subsets of D(X). Since for every y € X the set C({y}) is closed
in X, one can define a function d : X — D(X) such that d(y) = C({y}).
A straightforward calculation shows that d is a continuous mapping from
X into D(X). Indeed, d~1(—B(-Y)) ={y € X :d(y) € B(-Y)} = {y €
X:Cy)nY # 0} = U,ey C{2}) = C(Y) and similarly, d~1(B(Y)) =
{y € X :d(y) € B(Y)} = I(Y). But C(Y) as well as I(Y) belong to B(X)
for every Y € B(X). Thus d is a topologically continuous mapping from X
into D(X). The basis By(D(X)) of the Vietoris space with respect to the
set-theoretical operations —,U,N and with a Q-closure operation Cy such
that Cv(B(Y)) = B(C(Y)) is a QTF. It is easy to see that the function g:
By(D(X)) — B(X) defined by g(D) = d=1(D) for every D € By(D(X)) is
a homomorphism from By (D(X)) into B(X).

A triple X = (X, B(X),C) will be called a Stone space with a total self-
conjugate quasi-topology (SS-TSCQT) if X is the Stone topological space,
B(X) is its basis and C is a total self-conjugate Q-closure operator on X.
Clearly X becomes a SC-QTSS if (B(X),C) is a QTF. With the help of
standard arguments one can show that any SS-TSCQT X = (X, B(X),C)
is a SC-QTSS iff the sets C({y}) are closed in X and d is a continuous
mapping from X into D(X). So SC-QTSS’s can be characterized by means
of a continuous topological mapping from the Stone space X into its Vietoris
topology D(X).

Now the concept of a 2-continuous mapping between QTSS’s will be
introduced. Let X = (X1, B(X1),C1) and X, = (X3, B(X3),C3) be two
QTSS’s. Then any function g : X; — X, is said to be a 2-continuous
mapping from A} into A5 if the following two conditions are satisfied:

(1.6) fHY") € B(Xy),
(1.7) FHCAY)) = Cu(F 7 (Y)),

for every Y’ € B(X2). The first condition means that f is a topological
continuous mapping from X; into X,, whereas the second one means that
f~1 is a homomorphism from a QTF B(X;) into a QTF B(X;). It is not
hard to verify that the mapping d is an example of a 2-continuous mapping
from X = (X, B(X),C) into Ay = (D(X), By(D(X)),Cy). Note that the
notion of a 2-continuous mapping coincides with a 2-continuous mapping
in the sense of Quackenbush-Suszko (cf. [2]) when the structure of a quasi-
topological space is replaced by the McKinsey—Tarski topology. In particular
if C1 and Cy in A} and X, respectively, are identity operators, then A} and
A3 become the usual Stone topological spaces and any 2-continuous mapping
between them passes to the well-known topological condition of continuity.
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2. Quasi-topological Stone spaces of QTBA’s

This section presents constructions of QTSS’s corresponding to QTBA’s,
examines relationships between QTBA’s, normal QTBA’s and their dual
counterparts as well as describes connections between homomorphisms of
QTBA’s and 2-continuous mappings of QTSS’s.

Let A = (4,—-,U,n,C4) be a QTBA. Denote by X(.A) the set of
all ultrafilters in A and by hs(A) = {ha(a) : a € A}, where hy(a) =
{V € X(A) : a € V}. As it is known ([3], [6]), ha(A) with respect to
the set-theoretical operations —,U,N and with a Q-closure C defined by
C%(ha(a))=ha(Ca(a)) for every a € A is a QTF isomorphic to A. The
family h4(A) is a basis of the Stone topology on X (A) (cf. [3]). According
to the extension theorem (cf. [6]), a Q-closure operation C} on h4(.A) one
can extend to the Q-closure operation C on X (.A) such that

(2.1) cv)=|J () ra(Cale))
VIEY a€V!
for every subset Y of X (.A).

By virtue of a straightforward verification one shows that C(ha(a)) =
C%(ha(a)) for every a € A, i.e. the operations C and C?% coincide on the
quasi-topological subfield h4(.A). Moreover, from (2.1) it follows that C is
a total Q-closure. Thus with every QTBA A is associated a QTSS of the
form X4 = (X(A), ha(A),C), where C is defined by (2.1). This space will
be called a QTSS of A. Also to X4 is assigned the QTBA Ay, = ha(A)
which will be called the dual QTBA of X 4. Obviously A is isomorphic to
Ax,.

Now let X = (X,B(X),C) be any QTSS. Then Ay = B(X) is its
dual QTBA. This algebra determines in turn the QTSS X4, = (X(B(X)),
h(B(X)),C), where X (B(X)) is the set of all ultrafilters in the QTF B(X),
h(B(X)) consists of elements of the form h(Y) for Y € B(X) and C* is a Q-
closure on X (B(X)) which extends of Cf defined by Cx(h(Y)) = h(C(Y))
for every Y € B(X). Observe that a mapping ¢ : X — X(B(X)) such that
g(z) = V, for every 2 € X (where V is an ultrafilter in B(X) determined
by a point z € X) is a bijective 2-continuous mapping (2-homeomorphism)
from X onto X4, . In fact, if 2 # y, then there exists a clopen subset Y €
B(X)suchthat y€e Y andz ¢ Y. Hence,Y € V, and Y ¢ V. This implies
that V, # V, which means that g(z) # g(y). So g is 1 — 1. To prove the
property “onto”,let V be any ultrafilter in X (B(X)). Since B(X) is a perfect
QTF, it follows that there exists 2 € X such that V = V. Hence, there
exists z € X for which g(z) = V,; = V. Thus g is an epifunction. Moreover,
for every z € X and every Y € h(B(X)) the following equivalences hold: z €
g Y (r(Y))iff g(z) =V, €h(Y)ilY € V,if z €Y and z € g71(C*(A(Y))
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iff V, € W(C(Y))iff C(Y) € V. iff z € C(Y) = C(¢g7(h(Y))). Thus we
have shown that g is a bijective 2-continuous mapping (2-homeomorphism)
from X onto X4, . Putting these facts together we receive the following
theorem.

THEOREMF 2.1. There erists a one-to-one correspondence between the
classes of QTBA’s and QTSS’s.

Let us confine ourselves to the subclass of normal QTBA’s. Recall that a
QTBA A = (A,—,U,N,C4) is normal if there exists a normal ultrafilter in
A. As it is known (cf. [5]), any Boolean ultrafilter V is normal if C4(a) € V
iff a # 0 for every a € A. It will be shown that dual spaces corresponding to
normal QTBA’s are strongly compact QTSS’s. A QTSS X = (X, B(X),C)
is said to be strongly compact if (;c;C(Y:) # @ for every indexed family
(Y:):ier of non-empty subsets of X' (cf. [6]).

LEMMA 2.1. Let A = (A,—,U,N,C4) be a normal QTBA. Then X4 =
(X (A),h(A),C) is a strongly compact QTSS such that its dual QTBA Ay,
is isomorphic to A.

Proof. If A = (A,~,U,N,C4) is normal, then there exists a normal
ultrafilter V in A. The corresponding to A a QTSS is of the form X4 =
(X(.A), h(A), C) Let nieI hA(CA(a,') = 0. Then V ¢ nie[ hA(CA(a,-)). This
implies that there exists ¢ € I such that h4(Ca(a;)) ¢ V. By normality of V,
ha(a;) = @ for some ¢ € I. Thus the set D(h(A)) = {ha(Ca(a)): ha(a) #
0} has the intersection property (intersections are non-empty). Hence, for
every element a € V € X(A) we have [,y ha(Ca(a)) = C(V) # 0. Note
that (N;c;C(Vi) = NierUaew, ha(Ca(a)) is not empty, because a # 0.
Finally a simple calculation shows that ();.; C(Y:) = N;c;Uyey, C(V) =
U"‘EH-ez v, Nier C(e(3)) # 0 for every indexed family (Y;)ier of non-empty
subsets in X (A). So X4 is a strongly compact QTSS. This space determines
the dual QTBA Ax, = h(.A) that is isomorphic to A.

Now if we start with any strongly compact QTSS, then we get the fol-
lowing lemma.

LEMMA 2.2. Let X = (X,B(X),C) be a strongly compact QTSS. Then
it determines @ normal QTBA Ay = B(X) which determines in turn a
strongly compact QTSS X4, that is 2-homeomorphic to X'.

Proof. If X is a strongly compact QTSS, then in B(X) the set D(B(X))
= {C(Y) : Y # 0} has FIP (finite intersection property). Hence, the set
D(B(X)) generates a filter which can be extended to an ultrafilter V(D).
Observe that V(D) is a normal ultrafilter in B(X). Thus Ay = B(X) is a
normal QTBA. By Theorem 2.1, X4, = (X(B(X)),h(B(X)),C) is a QTSS
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of Ay. According to Lemma 2.1, X4, is a strongly compact QTSS of Ay. As
it was shown above the function g : X — X (B(X)) defined by g(z) = V,
for every z € X is a bijective 2-continuous mapping (2-homeomorphism)
from & onto X 4,.

The next theorem presents main relationships between the subclass of
normal QTBA’s and the subclass of strongly compact QTSS’s.

THEOREM 2.2. The classes of normal QTBA’s and strongly compact
QTSS’s are in a one-to-one correspondence.

Proof. By Lemmas 2.1 and 2.2.

For every QTBA A = (A, —,U,N,C4) one can construct a normal QTBA
A*=AQ® 2 = (A x {0,1},—,U,n,C*), in which the Boolean operations
are defined componentwise and a Q-closure C* is defined by the formula
C*(a,z) = (Ca(a),1) whenever (a,z) # (0,0) and C*(a,z) = (0,0) when-
ever (a,z) = (0,0) for every (a,z) € A x {0,1} (cf. [5]). By virtue of
Theorem 2.2, corresponding to .A* the QTSS X 4. = (X(A*),h(A*),C*) is
strongly compact. The dual counterpart of the algebraic construction of nor-
mal QTBA’s is a quasi-topological construction of strongly compact QTSS’s.
Namely, if ¥ = (X, B(X),C)is a QTSS, then X* = (X*, B(X*),C*), where
X*=XU{z*},z*¢ X, B(X*)= B(X)U P({z*}) and

* _Jcy)u{z*}, DAY CX*
o= 1 Y'=0
forevery Y C X*,is a strongly compact QTSS obtained from X'. A QTSS A*
constructed from X" will be called a 1-point strong compactification (1-PSC)
of X.

Let us apply now the 1-PSC to X4 of A. Then we get a strongly compact
QTSS of the form X% = (X*(A), h*(A),C*), where X*(A) = X(A)U {1},
h*(A) = ha(A)U P({1}) = {ha(a) U hy(z) : a € A,z € {0,1}} and h,4,
hy are the Stone isomorphisms of A and 2, respectively. With the help of
standard calculations one shows that the function f: X(A*) — X*(A) such
that f(V,{1}) = {V}U {1} for every V € X(A) is a 2-homeomorphism from
X4~ onto X'}. Thus for every QTBA A one can construct a strongly compact
QTSS A’} using 1-PSC as well as a strongly compact QTSS X4 using the
algebraic normal construction. These two spaces up to 2-homeomorphism
can be treated as identical.

Connections between homomorphisms of QTBA’s and 2-continuous map-
pings of QTSS’s are described int the following two theorems.

THEOREM 2.3. Leth : Ay — A, be a homomorphism from a QTBA A, =
(A1,—,U,n,Cy) into a QTBA A, = (A;,—,U,N,C3). Then the mapping
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g: X(A2) = X(A,) defined by the formula:
(2.2) (V') = h™Y(V') for every V' € X(A;)

is a 2-continuous mapping from a QTSS X4, = (X(Az2),h2(A2),Cy) into a
QTSS X4, = (X (A1), h1(A1),Ch).

Proof. We have to show two conditions: g~}(Y) € hs(A;) and
g HC1(Y)) = C2(g~1(Y)) for every Y € hq(A;). Since Y € hy(A;), there
exists a € A; such that Y = hj(a). Hence, g~ 1(h1(a)) = {V' € X(A) :
9(V') € m(a)} = {V' € X(A;) : h(a) € V'} = hy(h(a)) € hy(Ar).
This means that g~}(Y) € hy(A;) for every Y € h;(A;). Note that for
every V' € X(Az) and every a € A; the following equivalences hold:
V' € g7Y(C1(h1(a))) iff g(V') € Ci(hi1(a)) iff C1(a) € g(V') = A7Y(V')
iff h(Cl(a)) = C2(h(a)) e V'iff V' € hz(Cz(h(a))) = Cg(hq(h((l))) =
C2(g~1(h1(a))). So the second condition is satisfied.

THEOREM 2.4. If g : X7 — X; is a 2-continuous mapping from a QTSS
Xy = (X1, B(X1),C1) into a QTSS X; = (X,, B(X3),C3), then the mapping
h: B(X;) — B(X1) such that

(2.3) R(Y') = g7} (Y") for every Y' € B(X,)
is a homomorphism from a QTF B(X,) into a QTF B(X,).

Proof. Standard calculations show that h preserves Boolean opera-
tions in B(X,) and B(X;). Moreover, for every Y' € B(X3),h(C2(Y')) =
97 C2(Y")) = Ci(g~'(Y")) = C1(R(Y")).

Thus we see that dual counterparts of homomorphisms in QTBA’s are
2-continuous mappings of QTSS’s. By virtue of Theorems 2.1, 2.2 and simple
calculations one can show that dual counterparts of isomorphisms between
QTBA’s are 2-homeomorphisms between QTSS’s.

If b is a monomorphism from A; = (4;,—,U,N,C) into A =
(A2, —,U,N, C,), then the corresponding 2-continuous mapping g : X (4;)—
X(A,) defined by (2.2) is a surjection. Indeed, if h is a monomorphism, then
h(V) € X(A;) for every V € X(A;). From this, for every V € X(A;) there
exists h(V) € X(Az) such that g(h(V)) = A~ 1(R(V)) = V.

If h is an epimorphism from .A; onto Ay, then the function g is an
injective 2-continuous mapping from X4, into X4,. In fact, let us assume
that g(V') = g(V") for any V', V" € X(A,). Hence, by (2.2), A~1(V') =
h=1(V") which implies that h(h=%(V') = h(h~1(V")). By hypothesis that
h is an epimorphism we get V/ = V. From this and from Theorem 2.3 it
follows that g is an injective 2-continuous mapping.

By the above remarks it is seen that to monomorphisms (epimorphisms)
of QTBA’s correspond surjective (injective) 2-continuous mappings of
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QTSS’s. Similarly it may be shown that if g is a surjective (injective) 2-
continuous mapping from a QTSS &; = (X3, B(X1),C1) onto (into) a QTSS
X, = (X2, B(X3),C3), then the corresponding dual mapping h : B(X;) —
B(X,) defined by (2.3) is a monomorphism (epimorphism) from B(X>) into
(onto) B(Xy).

As it is known for every QTBA A = (A, —,U,N,C4) one can construct a
normal QTBA A* = (4*,—,U,N,C*). Since the mapping IT : A* — A such
that IT(a,z) = a for every (a,z) € A* is an epimorphism from .A* onto A, it
follows that the mapping g : X(A) — X (A*) defined by g(V) = II~1(V) for
every V € X (A) is the corresponding injective 2-continuous mapping from
X4 =(X(A),h(A),C) into X'} = (X*(A),h*(A),C*). In fact, the mapping
h : A* — h*(A) such that h(a,z) = ha(a) VU ha(z) for every (a,z) € A* is
an isomorphism from .A* onto h*(.A). Furthermore, V € g71(h4(a)Uha(z))
iff g(V) € h(a,z) iff (a,z) € I7Y(V)iff e« € Viff V € ha(a) as well as
V € g7N(C*(ha(a) U ha(2)) iff (V) € (ha(Cala), {1}) = A(Cala),1) iff
(C’A(a),l) € H'—l(V) iff CA(a) € VIt V € hA(C'A(a)) = C(hA(a)) =
C(g~Y(ha(a) U ha(z)) for every V € X(A) and every a € A,z € {0,1}. But
¢ is an injection. Therefore g is an injective 2-continuous mapping from A4
into A’}.

Let us take now any QTSS X = (X, B(X),C). Then X* = (X*, B(X*),
C*) is a strongly compact QTSS such that the identity function g(z) = « for
every z € X is a bijective 2-continuous mapping (2-embedding) from X’ into
X'*. This mapping determines in turn an epimorphism II : B(X*) — B(X)
such that IT(Z) = g~1(Z) for every Z € B(X™).

It is worth to note that not every subclass of QTSS’s is closed un-
der the operation of taking the 1-PSC. For instance if in X = (X, B(X),
C) a Q-closure operator satisfies the following condition:

(2.4) CY)NC(-C(Y)) =0 for every Y C X,

then the strongly compact QTSS X'* = (X*, B(X*),C*) does not satisfy
(2.4). Indeed, C*(Y U {z*}) N C*(-C*(Y U {z*})) = (C(Y)U {z*}) n
C*(-(CY)n{z*}) = (CY)NnC(-C(Y))U {z*} = {z*}. Hence X* does
not belong to the subclass of QTSS’s satisfying (2.4). Moreover, this result
implies that the corresponding subclass of QTBA’s is not closed under the
construction of normal QTBA’s. Let us add that if a subclass of QTBA’s
is closed under the operation of taking algebras of the form A*, then free
algebras are normal. This fact is important in the Boolean strangthening of
the sentential calculus with identity since normal algebras are just models
of that logic ([4], [5]).
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3. Connections between categories of QTBA’s and QTSS’s

The goal of this section is to describe some relationships between QTBA’s
and their QTSS’s in terms of categories and functors.

Let K(QT BA) be a category of QTBA’s. Objects are QTBA’s and mor-
phisms are homomorphisms between QTBA’s. The dual counterpart of this
category is a category K(QT'SS) of QTSS’s the objects of which are QTSS’s
and morphisms are 2-continuous mappings between QTSS’s. Making use
of Theorem 2.3 and applying standard calculations one shows that F' :
K(QTBA) — K(QTSS) such that F(A) = X4 and F(g)(V') = ¢7}(V')
for any QTBA A and every V' € X(A;) is a contravariant functor from
K(QTBA) into K(QTSS), where g is a homomorphism from a QTBA A4,
into a QTBA A;(¢9 € Hom(A;,A;) and F(g) is a 2-continuous mapping
from X4, into X4, (F(g) € Conty(X4,, X4, ).

Since the restriction of F' to Hom(.A4;,.42) is an injective mapping for
every QTBA A,, A,, it follows that F is a faithful functor. Furthermore, F
transforms injective (surjective) homomorphisms of QTBA’s into surjective
(injective) 2-continuous mappings of QTSS’s. In particular, F transforms
isomorphisms between QTBA’s into 2-homeomorphisms between QTSS’s.

Let A* be the normal algebra constructed from a QTBA A. Then the
function IT : A* — A such that II(a,z) = a for every (a,z) € A* is an
epimorphism from A* onto A. Hence F(II') is an injective 2-continuous
mapping from X4 into X4-. But up to isomorphism AX4. = X}. There-
fore, F(A*) = F(A)* for every QTBA A. Note that if A € Hom(A,;,.Az),
where A;, A; are normal QTBA’s and V' is a normal ultrafilter in A;, then
F(h)(V') does not have to be a normal ultrafilter in .4;. This means that
F(h) does not preserve normality of ultrafilters. It can be shown that F(h)
preserves the normal property of ultrafilters iff A is a monomorphism.

Let us take now under consideration a function G : K(QTSS) —
K(QTBA) such that G(X) = B(X) for every QTSS X = (X, B(X),C).
Moreover, if f is any 2-continuous mapping from a QTSS & = (X1, B(X1),
C1) into a QTSS X, = (X,, B(X3),C,), then G(f) € Hom(B(X3), B(X1))
is defined by the formula G(f)(Y') = f~1(Y"') for every Y’ € B(X;). Ob-
serve that G is a contravariant functor from K(QTSS)into K(QT BA). This
functor transforms injective (surjective) 2-continuous mappings into surjec-
tive (injective) homomorphisms. Since every TQTSS X is 2-embedded in
the strongly compact QTSS X'*, it follows that G is commutative with the
operation “*”, i.e. G(X*) = G(X)* (up to isomorphism). Furthermore, if
g is a 2-embedding from X into A'*, then G(g) is the corresponding epi-
morphism from B(X*) onto B(X) such that G(g)(Y) = g~!}(Y) for every
Y € B(X*). Also it is easy to see that if f is a 2-homeomorphism from
X, = (X1, B(X1),Ch) onto Ay = (X,, B(X,),C,), then G(f) is the corre-
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sponding isomorphism from B(X3) onto B(X;).

Denote by F'G a covariant functor which is the composition of F’ and G.
We will show that F'G is naturally equivalent to the identity functor on the
category of QTSS’s.

LEMMA 3.1. Let f be a 2-continuous mapping from a QTSS Xy =
(X1, B(X1),C4) into a QTSS X; = (X3, B(X3),C2). Then there are 2-
homeomorphisms ¢, : Xy —» FG(Xy) and g2 : X2 — FG(X;) such that
920 f=FG(f)og.

Proof. Let us consider the function g, : 3 — FG(&X1) = (X(B(X1)),
Brg(X1),Crg) defined by the formula gi(z;) = V,, for every z; € X;,
where V., is a principal ultrafilter generated by z; € X;. The function
g1 is an injection since the field Bpg(X,) is irreducible. But Brg(X1)
is also perfect. Therefore ¢, is an epimorphism. It remains to be shown
yet that g; is a 2-continuous mapping. Elements of Bpg(X;) will be de-
noted by A(Y) = {V € X(B(X1)) : Y € V} for every Y € B(Xy). Then,
gl ={z1 € X1:91(z1) = Vs, € R(Y)} = {21 € X1 : Y € V,,} =
{1‘1 €Xy:2, € Y} =Y e B(Xl) and gl—l(Cpg(h(Y))) = gl‘l(h(Cl(Y))) =
Ci(Y) € B(X;). Thus g; is a 2-homeomorphism. Making use similar reason-
ings one shows that the function g; : A2 = (X,, B(X3),C2) —» FG(X;) =
(X(B(X2)), Bra(X2),Crg) such that gy(z2) = V,, for every z2 € X,
is a 2-homeomorphism. Moreover, (g2 o f)(z1) = g2(f(21)) = V@) =
G(f) Y Vs,) = FG(f)(g1(z1)) for every z; € X;. Thus, goof = FG(f)og.

It turns out that the covariant functor GF is also naturally equivalent
to the identity functor on the category K(QTBA). This is shown in the
following lemma.

LEMMA 3.2. Let h be a homomorphism from a QTBA A, =
(A1,—,U,N,Cy) into a QTBA A, = (Ay,—,U,N,C3). Then there exist
isomorphisms f; : Ay — GF(A;) and f, : Ay — GF(A2) such that
faoh=GF(h)o f;.

Proof. If h € Hom(A;, A;), then by Theorem 2.3 the function F(h) :
X.Az = (X(.Az),hz(.Az),CA2> — XA; = (X(.A]),hl(.Al),CAl) such that
F(h)(V') = h=}(V') for every V' € X(A:) is a 2-continuous mapping. Let
us define f; : Ay = GF(A;) = h1(A1) by fi(a) = hi(a) for every a € A,
and define f, : Ay —» GF(A2) = hy(A2) by fa(a') = hg(a') for every
a' € Az. Then f, as well as f, are isomorphisms. Furthermore, (f, o h)(a) =
fa(h(a)) = ha(h(a)) = {V' € X(A2) : h(a) € V'} = {V' € X(A2) :
F(h)(V') € hi(a)} = (k) (ha(a) = GF(h)(ha(a) = GF(h)(fi()) for
every a € A;. Hence, f oh = GF(h)o f;.

From above two lemmas we get the following theorem.
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THEOREM 3.1. Categories K(QTBA) and K(QTSS) are dually equiva-
lent.

Proof. By Lemma 3.1, FG is naturally equivalent to the identity functor
Ig(qTss)- By Lemma 3.2, GF is naturally equivalent to the identity functor
Ix(@rBa)- From these facts it follows that K(QTBA) is dually equivalent
to K(QTSS).

Let us note finally that if A = (4,—,U,N,C,4) is a total complete and
atomic QTBA (TCA-QTBA), then the corresponding QTSS X4 becomes a
total quasi-topological space (TQTS). As it is known (cf. [7]), TCA-QTBA’s
form a category K(TCA-QTBA) which is a full subcategory of K(TQTBA).
Also TQTS’s constitute a full subcategory of K(QTSS). Thus confining our-
selves to the subclasses of TCA-QTBA’s and TQTS’s Theorem 3.1 passes to
the dual equivalence between subcategories K(TCA-QTBA) and K(TQTS).
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