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Introduction 
In this article we define RI-sets, which provide a common axiomatic 

base for commutativity in groups and lattices. Relative inverses are either 
6—α or όΛα'. Abelian groups, D-posets, orthoalgebras, orthoposets, Boolean 
algebras and rings of sets are special examples of RI-sets. These structures 
can be obtained from partial order. It is mentioned that the notion of a 
homomorphism is for RI-sets closely related with the notion of an additive 
map. 

1. RI-sets 

DEFINITION 1.1. Let X be a set with a special element 0 and U be a 
partially defined binary operation on X. We call ( X ; ü , 0 ) an RI-set if the 
binary operation U satisfies the following rules: 

(i) a U 0 is defined for all a G X and a U 0 = a. 
(ii) a U a = 0 for all a € X . 

(iii) If b U a ig defined then b Ü (6 Ü a) is defined. 
(iv) If in the equation (a Id b) U c = (a ü c) ü b one side is defined then 

both sides are defined and the equation holds. 
(v) If b Ü a, c ü b are defined then c Ü a is defined. 

We call b U a a relative inverse of a in b. If a = b then in the following 
equations a Ü c = b U c and c Ü a = c U b, if one side is defined then both 
sides are defined and the equation holds. 
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If we have the additional property 

(vi) c U a = d t ì e implies c = d, 

then we call (X; Ü, 0) an abelian Rl-set. 
Examples which fulfill these rules are: 

a) Abelian groups ((?;+,— ,0) with — replacing U. They are abelian 
RI-sets. Also the additive structure of rings is included here. In particular 
the real numbers R and complex numbers C are abelian RI-sets. 

b) The natural numbers Ν together with 0 and — replacing tí defined 
for η,τη £ Ν with η > m is an abelian RI-set. 

c) Multiplicative abelian groups (H; o , ( ) - 1 , 1 ) with 1 replacing 0 and ϋ 
the usual division, b tí a = 6 a - 1 are abelian RI-sets. 

d) .D-posets X which have an additional largest element 1 € X and 
where 6 tí α is defined iff a < b and θ replaces tí. They are also abelian 
Rl-sets. 

e) Ortholattices with b A a' replacing b tí a are Rl-sets. This example 
includes power sets and Boolean algebras. 

Boolean algebras are also D-posets, but are separately listed, because 
for .D-posets the existence of b Ü a means a < b, but b Ü a always exists in 
its above definition for Boolean algebras. 

f ) Suppose X is a ring of subsets of a given set E (i.e. 0 € X and X is 
closed under the formation of set theoretic differences and finite unions). 

(1) X with the set theoretic difference replacing tí is an Rl-set which 
evidently is not abelian. 

(2) X with the set theoretic symmetric difference ( A A B = ( A \ B ) U ( B \ 
A)) replacing tí is an abelian Rl-set. 

These examples (in case E £ X) cannot be included in d) or e). 
g) Other finite examples of RI-set may be constructed by using tables for 

Ü or by writing a computer program which checks possible tables whether 
or not they fulfill the axioms (i)-(v). 

h) In g) one may take for instance X as the set of 4 elements 0, a, b, c 
with χ ϋ χ = 0 and χ tí 0 = χ for all χ £ X and define b tí a = c, í»tíc = a, 
ctí a = b, ctí b = a. This example can be embedded into the abelian group 

X Z2. 
i) On the poset X containing as elements and as order: 0 < c, d\ c, d < 

e < b, a; 6, a < 1 there does not exist an operation tí which fulfills b tí a iff 
a < b and (i)-(vi), [6]. But there exists, for instance, the partially defined 
operation ϊ ϋ i = 0, z t í 0 = £, btíe — btíd = e — dtíb = dtíe, χ £ X, 
which shall satisfy the rules (i)-(v) of an RI-set. The axioms (iv), (v) do 
not produce new elements χ tí y. 
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Notice that we have chosen such axioms of RI-sets which enable us to 
introduce notions of subalgebras, homomorphisms, additive maps, isomor-
phisms and direct products by a unique simple requirement to inherit the 
operation Ü (see part 4). Moreover, by this way defined subalgebras, iso-
morphic images and products of many examples of Rl-sets (e.g. abelian 
Ä/-posets, abelian groups, Z)-posets, orthomodular posets, Boolean ortho-
posets and Boolean algebras) inherit their own algebraic structures (see part 
4). To show that we are going to derive (in parts 2. and 3.) necessary and 
sufficient conditions for RI-sets under which they become algebraic struc-
tures listed above. Those conditions are inherited always when the operation 
Ü is inherited. 

PROPOSITION 1.2. Let X be an abelian Rl-set. Then 

(i) if b tì a is defined then b Ü (b Ü a) = a, 
(ii) a tí b = a U c implies b = c, 

(iii) b tí a — 0 implies a — b. 

P r o o f , (i) By l.l(ii), (6 tí a) tí (6 tí α) = 0, which by l . l( iv) implies 
(b Ü (6 ü a)) tí a = 0 = a O a. By l . l(vi) it holds b U (b Ü a) = a. 

(ii) We have a U b = a Ü c, which implies a tí (a tí b) = a tí (a tí c) and 
b = c. 

(iii) b tí a = 0 implies α = 6 ϋ ( ό ϋ α ) = 6 ϋ 0 = ί>. 

PROPOSITION 1.3. Let X be an abelian Rl-set and a,b,c e X. Then: 

(i) 6 ϋ α is defined and 6 ϋ α = c i f f 6 tí c is defined and 6 tí c = a. 
(ii) If c tí a, c tí b are defined and one side of the equality (c tí a) tí (c tí 

b) = b tí a is defined, then both sides are defined and the equality 
holds. 

(iii) If b tí a, c tí b are defined then (c tí a) tí (b tí α) = c tí b. 
(iv) If b tí a and 0 tí (6 tí α) are defined then a tí b is defined and 

0 tí (btí a) = atí b. 

P r o o f , (i) It is sufficient to assume that b tí a is defined and 6 Ü a = c. 
We have by l . l(ii) (6 tí a) tí c = 0, by 1.1 (iv) (b tí c) Ü a = 0 and by 1.2(iii) 
6 tí c = a. 

(ii) and (iii). Assume first b tí α, c tí b are defined. Then b ϋ α = (c Ü 
( c t í i ) ) t í o = ( c t í e ) t í ( c t í b) by 1.2(i) and l . l( iv). By (i) (c tí α) tí (6 tí 
a) = c tí b. If (c tí a) tí (c tí 6) is defined then it equals b Ü a by 1.1 (iv) and 
1-2(1). 

(iv) By 1.1 (ii) and 1.1 (iv) we have 0 tí (b tí a) = (b tí b) tí (6 tí a) = (b ϋ 
(b tí α)) tí b, which by 1.2(i) equals a tí b. 
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2. Abelian i2 /-posets 
An abelian partial semigroup is a set X with a special element 0 and 

with a partially defined operation l+l which satisfies the commutative and 
associative laws (if one side of these equations is defined) and absorbs a zero 
element. 

DEFINITION 2.1. For an abelian RI-set X we define the partial operation 
l+l by 

α 1+) 6 = c iff c ϋ α = 6 exists for a, b, c € X. 
By l.l(vi), l+l is well-defined. 

PROPOSITION 2.2. For an abelian RI-set ( X ; Id, 0) the structure (X; 1+1,0), 
defined in 2.1, is an abelian partial semigroup. If all operations b tí a are 
defined then (X; l±J, 0) is an abelian group and — coincides with Ü. 

P r o o f , (i) The commutative law holds for 1+1, since α l+lb = c means that 
c U a = b, which by 1.3(i) is equivalent to c U b = a and hence b l+l a = c. 

(ii). The associative law holds for l+J, since for u = (a 1+) b) l+l c we have the 
following equivalences: u = c l+l (a 1+) 6) by (i), « U c = al+Jòby the definition 
of l+l, {u tí c) tí a = b, (u tí a) Ü c = b by l.l(iv), c l+l b = u tí a, which is 
equivalent to u = a l+l (c l+l b) = a l+l (b l+l c) by (i). 

(iii) Assume all operations b tí a are defined. Then Ol+Ja = al+10 = a, since 
a Ü a = 0 by l . l(ii) . By 2.1 we have — a = 0 tí α as inverse, α l+l ( - a ) = 0. 
Since c Ü a = b means a l+l b = c and this is equivalent to c — a = b, it follows 
that the operations tí and — coincide. 

PROPOSITION 2.3. Let ( X ; t í , 0 ) be an abelian RI-set. Assume that for 
X a partial binary operation l+l be defined as in 2.1 and for all a,b G X 

(i) if both α tí 6 and b tí a are defined then a = b. 

Then the relation < of X defined by 

(ii) a < b iff b tí a is defined 

is a partial order of X with least element 0. 
Moreover, for a,b,c € X the following hold 

(iii) α<αΙ+Ιό, 6<al+l6, 
(iv) a < b implies a l+l c < b l+l c, 

whenever the appropriate l+l operations are defined. 

P r o o f . (1) By l . l ( i) , l . l(ii) 0 < a ,a < a for all a G X. If a < b and 
b < a then, by the assumption (i) it holds a = b. The transitivity of < 
follows from l . l (v) . 
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(2) Assume a li) b = c. Then a = c U 6 and by l . l ( i i i ) c ü (c ü b) is 
defined, which implies c tí b < c. Therefore α < a 1+) 6. Since 6 (±1 a = a Ü b 
holds, we also have b < a 1+1 6. 

(3) Assume a < b and a l+l c, b l±l c are defined. Then 6 Ü a is defined and 
it follows from b Ü (6 ϋ α) = a and the definition of l+J that (6 Ü a) t+l a = b. 
Therefore 6 l+l c = ((6 U a) 1+) a) l+l c = (α l+l c) 1+) (6 tí a) > a l+l c, by (2). 

An abelian RI-set with property 2.3(i) and the partial order defined by 
2.3(ii) we call an abelian Ä/-poset. 

PROPOSITION 2.4. Let for an abelian RI-poset ( X ; < , U , 0 ) for all a,b € 
Χ, α φ b exactly one of the operations a tí 6 ,6 U a is defined. Then X is a 
linearly ordered RI-poset with the least element 0. 

Let us recall the notion of a jD-poset P , introduced by Kôpka-Chovanec 
[4]. An equivalent definition was given by Navara-Pták [5]: Ρ is a bounded 
poset with a partially defined binary difference operation θ which satisfies 
6 θ α is defined i f f a < 6 , a 9 0 = a for all a and if a < b < c then cQb < cQa 
and (c θ α) θ (c θ b) - b Q a. 

An example of an abelian RI-poset, which is not a D-poset, is a ring X 
of subsets of a set Ε , with E not an element of X , and Β tí A = Β — A is 
defined iff A Ç Β for A, B G X . Here X contains the empty set, is closed 
under the formation of set theoretical difference Β — A and union A U f l , for 
Α,ΒζΧ. 

PROPOSITION 2.5. Let X be an abelian RI-poset. Assume there exists 
1 6 X such that all 1 Ü a, a G X, are defined. Then X is a D-poset. 

P r o o f . Assume 1 tí a = 6, then α l+l 6 = 1 and a < 1 for all a G X . l . l ( i ) 
assures that 0 < a. Assume a < b < c. Then c tí 6,6 tí a and c Ü a are 
defined. By 1.3 (ii), 6 tí a = (c ϋ a) tí (c Ü 6). Hence c t í 6 < c ü a a n d ü 
satisfies all properties of θ of a .D-poset. 

In the following proposition we take from [6] the definition of an RI-
semigroup (relative inverse semigroup) ( X ; < , l ± J , 0 ) , which is a poset with 
smallest element 0 and a 1+) 0 = α, 1+) is partially defined such that the 
commutative and associative law hold, whenever one side of these equations 
is defined, α < 6 implies a l+l c < 6 1+) c, whenever a l+l c, 6 1+) c are defined and 

(1) for a < b there exists a unique c = 6 tí a such that a 1+) c = 6. 

Examples of i?/-semigroups are the positive cone of ordered abelian 
groups, or orthoalgebras ( Χ ; Θ , 0 , 1 ) (see [1]), if < on X is defined by: a < b 
iff there exists c G X with α φ c = 6. We then define θ on X by c = 6 θ α, 
which makes an orthoalgebras also to a jD-poset. Then X is an abelian 
RI-poset (i2/-semigroup) replacing θ by ϋ ( φ by l+J). 
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An Rl-semigroup X is, on the other hand, an orthoalgebra iff there exists 
an element 1 G X such that 1 Ü a is defined for all a £ X and a < 1 Ü a 
implies a = 0 (see [5] or [6]). For the reader, not familiar with the axioms 
for orthoalgebras we add, that φ is for them partially defined, satisfies the 
commutative and associative law, in case the left side of these equations is 
defined, furthermore, if ρ φ ρ is defined then ρ = 0, and for every ρ £ X 
there exists a unique q G X with ρ φ q = 1. 

PROPOSITION 2 . 6 . Let X be a set. The following conditions are equiva-
lent: 

(i) ( X ; < , t í , 0) is an abelian RI-poset with 1+) defined as in 2.1 (and < 
defined as in 2.3). 

(ii) ( X ; <, l±l, 0) is an Rl-semigroup, with tí defined for a < b by b tí a — c 
iff b = α l±) c. 

P r o o f . Assume (i). Then for a < b, b ϋ α = c is defined and a l+l c = b. 
This, together with the properties of an abelian i27-poset, shown in 2.2, 
proves (ii). 

Assume (ii). From 2.3 we conclude that X is an abelian Ä/-poset if it 
is an abelian RI-set. l . l(i) ,(ii) follows from a l±J 0 = a for α € X . We have 
by the definition of tí in (ii) that for a < 6, b = a l+J (6 ϋ a) which means 
b U (6 Ü a) = a. Therefore l . l(iii) holds. 1.1 (iv) is an immediate consequence 
from the associative and commutative law for X in (ii). If b U a, c ü b are 
defined then a < b < c and, by the transitivity of < , c Ü a is defined. This 
shows l . l (v) . In order to prove l . l(vi) , observe that if ctía = b = dtía 
then c = a 1+) b = d. 

PROPOSITION 2 . 7 . Let ( X , 0 , 0 ) be an abelian RI-set such that b tí a 
is defined for all a,b G X . Let there exist X i , X 2 Ç X with the following 
properties: 

( i ) Χ ι υ x 2 = χ , Χ ι η x 2 = { o } , 

(ii) a Ü b G Χχ i f f b ϋ α G X 2 , 
(iii) if a ζ Χι and b ϋ α G Χ ι then b ξ. Χι. 

Then the relation < of X defined by a < b iff b ϋ α G Χι is the linear 
order of X. 

P r o o f . For all α G X we have α tí α = 0 G Χ ι , hence α < a. If a < b and 
b < a, then by (ii) α ϋ b G Χ ι Π X 2 and hence α tí b = 0. It follows a = b by 
1.2(iii). If a < 6, b < c then b tí a, c tí b G Χ ι and (since all operations ϋ are 
defined) by 1.3(ii) we have (c tí a) tí (c tí b) = b Ü a G Χι- Now by (iii) we 
obtain c tí a G Χ ι and thus a < c. Finally for any a, 6 G X we obtain a < b 
or b < a by (i). 
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PROPOSITION 2 . 8 . Let an abelian RI-poset ( X ; < , tí, 0 ) have the following 
properties for all a, b,c G X: 

( i ) There exists 1 € X and, for all a € X , a' = 1 tí a is defined. 

( i i ) If ( 1 ü a) Ü a is defined then a = 0 . 

( i i i) If b Ü a,b U c and ( 1 ϋ α ) tí c are defined then (b ϋ α ) ü c is defined. 

Then ( X ; <,', 0,1) is an orthomodular poset. 

P r o o f . X is a D-poset by the Proposition 2.5. In view of (ii) it follows 
that a < 1 U a implies a = 0. Thus by [5] or [6] we obtain that X with 
orthocomplementation α' = 1 Ü a is an orthoposet. Now by [6], Proposition 
3.4 it suffices to show that if a < b' then the smallest upper bound avb 
of elements a, 6 exists in X. Suppose a < b'. Then 6' ϋ a is defined and 
b' tí a < b', b' tí a < 1 U a = a'. Hence b' tí a is a lower bound of elements 
a',b'. On the other hand if c < a', c < b' then b' tí c, (1 tí a) tí c are 
defined and in view of (iii) also (b' tí a) tí c is defined. It follows that 
c < b' ϋ a and 6' ϋ α is the greatest lower bound of a' and b'. Finally by 
a V b = (α' Λ b')' = 1 Ü (6' Ü a) we obtain that α V 6 exists in X. 

Suppose now that ( X ; < / , 0 , 1 ) is an orthomodular poset. Let us put 
for a, b € X b Ü a = 6 Λ a' iff a < b. Then ( X ; < , ü , 0 , 1 ) is an abelian 
RI-poset satisfying conditions (i)-(iii) of the Proposition 2.8. Clearly, 1 tí α 
is an orthocomplement of α € X . 

3. Boolean RI-sets 

PROPOSITION 3 .1 . Let ( X ; tí, 0 ) be an Rl-set and the following conditions 
are satisfied: 

( i ) a tí b = 0 , b tí c = 0 imply a tí c = 0 , 

(ii) í / 6 t í a = 0 = a t í 6 then a = b. 

Then the relation < of X defined by a < b i f f α tí 6 = 0 is a partial 
order. 

P r o o f . By l.l(ii) a < a holds. If a < b, b < a then by the assumption 
(ii) we obtain a = b. If a < b, b < c then a < c by (i). 

DEFINITION 3.2. Let X be an RI-set with 1 e X . We call (X; tí, 0,1) a 
Boolean Rl-set if the following conditions are satisfied: 

(i) a tí b - 0,6 Ü c = 0 imply a tí c = 0, 
(ii) I f 6 t í a = 0 = a ü 6 then a = b, 

(iii) 0 tí a = 0, for all α G X , 
(iv) a' = 1 Ü a exists for all α G X and 1 tí (1 tí α) = o. 
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In every Boolean Rl-set X we can introduce a partial order as in 3.1 
and then we call X a Boolean RI-poset. 

An example of a Boolean i2/-poset is a Boolean algebra X with the 
binary operation Ü defined for all a, b G X by a Ü b = α A b. An example of 
a Boolean RI-poset which is neither a Boolean algebra nor an orthoposet is 
a chain 0 < a < 1 with the operation tí defined as follows: 

0 t í a = 0 ü l = a t í l = a t í a = l ü l = 0 ü 0 = 0, 
l t í a = a t í O = a, 1 tí 0 = 1 

PROPOSITION 3.3 . Let ( X ; < , tí, 0 , 1 ) be a Boolean RI-poset. Then for all 
a,b G X are satisfied: 

(i) a tí b is defined, 
(ii) (a tí b) Ü a = 0, 

(ili) a' tí b' = b tí a, 
(iv) 0' = 1. 

Moreover, if for all a G X(1 tí a) tí a = 0 implies a = 1, then 
(^i > 0,1) is a Boolean orthoposet (i.e. a Ab = 0 a < b'). 

P r o o f , (i), (ii). Let a,b e X. By 3.2(iii) and 1.1.(ii) we have 0 = 0 tí 
b = (a tí a) tí b. Now by l . l ( iv) (a tí b) Ü a is defined and (a tí b) Ü a = 
(a tí a) tí b = 0. 

(iii) For a, b G X by 3.2(iv) and l . l( iv) we have 

a Ü 6 = [1 tí (1 tí α)] tí [1 tí (1 tí ό)] = (1 tí [1 tí (1 tí &)]) tí (1 tí a) 
= (1 tí 6) tí (1 tí a) = b' tí a'. 

(iv) 1 = 1 tí (1 tí 1) = 1 tí 0 = 0' by 3.2(iv) and l.l(ii). 

For the rest of the proposition we have 0 < α < 1 for all α G X , since by 
3.2(iii) 0 tí a = 0 and α tí 1 = [1 tí (1 tí α)] tí 1 = (1 tí 1) tí (1 tí a) = 0 tí 
a' = 0 using 3.2(iv), l . l ( iv) and 3.2(iii). If a < b then a t í 6 = 0 = 6 ' t í a ' 
implies b' < a'. Now it is sufficient to show that 1 is the least upper bound of 
a and a'. Let a < c,a' < c for c 6 X. The c' < a < c implies c' tí c = 0. We 
obtain ( l ü c ) ü c = 0 which by the assumption implies c = 1. We conclude 
that the mapping α —* a' = 1 Ü a for all ç, G X is an orthocomplementation. 

Now let a,b G X with a A b = 0. Then by (ii) we have (α tí 6') tí a = 0 
which implies a tí b' < a. By (iii) a tí b' = b tí a' < b. Thus a tí b' < a Ab = 0 
and by the definition of < we have a < b'. It follows that X is a Boolean 
orthoposet. 

It is known that a Boolean orthoposet need not be even orthomodular 
(see [7], Example 7). On the other hand, every Boolean ortholattice is a 
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Boolean algebra. The next proposition gives the condition under which a 
Boolean ÄJ-poset is a Boolean algebra. 

P r o p o s i t i o n 3.4. Let ( X ; < , tí,' , 0 , 1 ) be a Boolean RI-poset. If the con-
dition 

(i) c ü b = 0, c ü (1 tí a) = 0 imply c Ü (6 Ü a) = 0 for all a,b,ce X 

holds, then (X; < / ,0 ,1 ) is a Boolean algebra. 

Proo f . We show in (a) that X is an orthoposet, in (b) we use the 
assumption (i) to show that 6 tí α is the greatest lower bound of b and a', 
which by (a) implies that X is an ortholattice. In (c) we show that X is 
orthomodular and every pair of elements in X commute. This proves that 
X is a Boolean algebra. 

(a) Suppose (1 ϋ α) tí α = 0. By l.l(ii) we have (1 ϋ a) tí (1 tí a) = 0 
and by the assumption (i), (1 tí a) tí (a tí a) = 0. Hence 1 tí a = 0. On the 
other hand by 3.3(iii) a tí 1 = 1' tí a' = (1 tí 1) tíι (1 tí α) = 0 tí 0 = 0. Thus 
by 3.2(ii) a — 1 and by the Proposition 3.3, X is an orthoposet. 

(b) By 3.3(ii) we have (6 ϋ α) Ü 6 = 0 and b tí α < b for all a, b G X. By 
3.3(iii) we have b tí a = a' tí b' which is less or equal to a' by 3.3(ii). Hence 
b tí a is a lower bound of ò, α'. The assumption (i) (in view of the definition 
of <) implies that b Ü a is the greatest lower bound b A a' of b and a'. 

(c) Assume a < b and a'Ab = 0, which implies a tí b = 0 and a' tí b' = 0. 
Therefore ó t í a = a / t í 6 ' = 0 = aü í> and a = b by 3.2(ii). Hence X is 
orthomodular (see [2]). Finally, we show that all a, 6 G X commute (aCb in 
the form of [2]), i.e. a Ab = òA(è'Va). It is a Ab < òA(ò'Va). In order to show 
the reverse inequality, observe that (b ϋ (b ϋ α)) tí α = (b tí α) tí (b tí α) = 0 
implies b tí (b tí α) < α. By (b) we also have b tí (6 tí α) < b. Therefore 
b A (b' V a) = b tí ((6' V a)') = b Ü (6 V a') = b tí (b tí a) < a A 6. 

Note that a Boolean algebra (X;< / ,0 ,1 ) with the binary operation tí 
defined for all a,b G X by a tí b = a A b' is a Boolean i?/-poset, satisfying 
the condition 3.4(i). 

4. Subalgebras, products and homomorphisms 
We define in the class of RI-sets the notions of subalgebras, products 

and homomorphisms. These definitions demonstrate how strong unifying is 
the notion of relative inverse (resp. the RI-set operation tí) for many alge-
braic structures (see examples in 1.1) which are basic namely in classical and 
noncompatible measure theory. Partial orderings, lattice operations, ortho-
complementations and some other characteristic notions of those structures 
can be introduced by relative inverse operation tí. 
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D E F I N I T I O N 4.1. Let X be an RI-set. We call a subset 0 φ Y Ç X a 
subalgebra of X if for all a.b G Y with b U α defined in X it holds that 
btí a £Y. If 1 G X then we claim that also 1 6 7 . 

Evidently for every subalgebra y of a Ri-set X we have 0 = a ϋ a G Y. 
If the Ri-set X is an abelian RI-set then clearly every subalgebra y of X 
(in the sense 4.1) is also an abelian Rl-set. Since for all a, b G Y, b U α exists 
in y iff 6 U α exists in X , the restriction of the partial order of an abelian 
RI-poset X to a subalgebra y of X is a partial order which makes Y an 
abelian i2/-poset. In view of the Proposition 2.5, if X is a Z)-poset then Y 
is also a D-poset and by the Proposition 2.8 if X is an orthomodular poset 
then so is Y. Further it is easy to see that if X is a linearly ordered abelian 
RI-set then Y is also a linearly ordered abelian RI-poset (see Proposition 
2.4). Finally from the propositions of the part 3. of this article it is clear 
that if RI-set X is a Boolean poset (Boolean orthoposet, Boolean algebra) 
then every subalgebra y of X defined by 4.1 is a Boolean poset (Boolean 
orthoposet, Boolean algebra). 

D E F I N I T I O N 4 . 2 . For RI-sets (X¿, U¿, 0 ¿ ) , i E I we define on the cartesian 
product X = Y [ i € I X i the element O = (0¿) tg/ as zero element and the 
partial binary operation U by 

(6j)¿e/ U (a¿) , e / = (c¿)¿£7 iff all b¡ b¿ ai = c; exist in X¿, i G Ι· 

Then we call (X; tì, 0) the direct product of Rl-sets X¿, i G I. 

Evidently rules l . l ( i ) - (v) hold then for the direct product X = Π ί £ / ^ ί · 
If X,·, i G I , are RI-posets (abelian or Boolean) (a¿)¿e/ < (bi)i£i iff a¿ < 6,· 
in X,· for all i G I (see the Propositions 2.3 and 3.1). If all (X¿)¿e/ have 
unit elements 1¿ G X¿ then we put 1 = (1 t)¿g/ as the unit element in X . 
Now, it is clear that if all X,·, i G I are abelian RI-sets (abelian RI-posets, 
.D-posets, orthomodular posets, Boolean RI-posets, Boolean orthoposets, 
Boolean algebras) then the same is their direct product X = Y[ i &¡Xi defined 
by 4.2. (see the Propositions in part 2 and 3 of this article). 

D E F I N I T I O N 4 . 3 . Let (Xi ; U i , 0 ) , (X2 ; tì2,0) be RI- sets, h: Χ ι X 2 be 
a map. We call h a homomorphism if for all a, 6 G Χ ι with b Ui a defined in 
Xi it holds that h(b) U2 h(a) is defined in X2 and h{b Ui a) = h(b) U2 h(a). 

From the definition of a homomorphism it is clear that for 0 G Xi it 
holds h(0) = h(a Ui a) = h(a) U2 h(a) = 0 G X 2 . Moreover if X i , X 2 are 
RI-posets (abelian or Boolean) then for all a, b G X\ with a < b we have 
h(a) < h(b) in X 2 (see Propositions 2.3, 3.1). The identity map and also the 
projection maps which map a direct product of RI-sets onto its factors are 
homomorphisms. 
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D E F I N I T I O N 4 . 4 . Let Χι,Χ? be RI-sets, h : Χχ —*• Χι be a map. We call 
h an isomorphism if it is bijective and h and its inverse map are homomor-
phisms. 

In view of Propositions of the part 2 and 3 of this article it is not difficult 
to show that if two RI-sets Xi,X2 are isomorphic in the sense of 4.4 then 
if X\ is an abelian RI-set (abelian i27-poset, D-poset, orthomodular poset, 
orthoposet, Boolean algebra) then so is X i . 

5. Concluding remarks 
We add some remarks on homomorphisms and additive maps. 
As we have shown in part 2 for an abelian RI-set X we can introduce 

a partially defined commutative semigroup operation W by a 1+) b = c iff 
c U a = b exists in Χ ;α ,ό , c G X. Evidently for abelian Rl-sets ( Χ ^ ϋ ι 
, Οι) , (X2; O2-Pi) a map h : X\ —*· X2 is a homomorphism iff for all α, 6 £ Χι 
with a Wi b defined the operation h(a) I+J2 h(b) is defined and h(a Ι+)χ 6) = 
h(a) l+l2 h(b). Moreover we have shown that Λ(0) = 0. A map h : X1 —> Χι 
with last two properties we call an additive map. Clearly, if X\ and X2 are 
abelian RI-posets then h is also monotone. For σ-additivity of h we claim 
an additional convergence property for ascending countable chains (a n ) n ejv 
of X : an I a implies h(an) "f h(a) (see [3]). 

Many cases of additive or σ-additive maps from rings or algebras of 
sets, quantum logics, Boolean algebras and £)-posets into real numbers or 
some partially ordered spaces (partially ordered semigroups, lattice ordered 
groups, orthomodular posets) occur this way. For instance measures and 
probabilities in classical measure theory and observables, states and prob-
abilities in noncompatible probability theory are examples. For an abelian 
RI-poset X which is a lattice, one may to introduce the notion of valuation 
from X into an abelian i?7-poset Y. 

Some of these questions will be discussed in a further paper of one of the 
authors. 
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