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Introduction

In this article we define RI-sets, which provide a common axiomatic
base for commutativity in groups and lattices. Relative inverses are either
b—a or bAa'. Abelian groups, D-posets, orthoalgebras, orthoposets, Boolean
algebras and rings of sets are special examples of RI-sets. These structures
can be obtained from partial order. It is mentioned that the notion of a
homomorphism is for RI-sets closely related with the notion of an additive
map.

1. RI-sets

DEFINITION 1.1. Let X be a set with a special element 0 and U be a
partially defined binary operation on X. We call (X;U4,0) an RI-set if the
binary operation U satisfies the following rules:

(i) a Y 0is defined for alla € X and a B 0 = a.
(i) ada=0foralle € X.
(iii) If Y a is defined then b (b U a) is defined.
(iv) If in the equation (a B b) U ¢ = (a U ¢) U b one side is defined then
both sides are defined and the equation holds.
(v) If b9 a,cd b are defined then ¢ U a is defined.
We call b U a a relative inverse of a in b. If a = b then in the following

equations adc=bY cand cd a = ¢ U b, if one side is defined then both
sides are defined and the equation holds.
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If we have the additional property
(vi) ¢cY a=dUaimplies c = d,

then we call (X;U,0) an abelian RI-set.
Examples which fulfill these rules are:

a) Abelian groups (G;+,—,0) with — replacing J. They are abelian
RI-sets. Also the additive structure of rings is included here. In particular
the real numbers R and complex numbers C are abelian RI-sets.

b) The natural numbers N together with 0 and — replacing U defined
for n,m € N with n > m is an abelian RI-set.

¢) Multiplicative abelian groups (H;o,()~1,1) with 1 replacing 0 and &
the usual division, b U a = ba~! are abelian RI-sets.

d) D-posets X which have an additional largest element 1 € X and
where b U a is defined iff @ < b and © replaces 5. They are also abelian
RI-sets.

e) Ortholattices with b A a’ replacing b U a are RI-sets. This example
includes power sets and Boolean algebras.

Boolean algebras are also D-posets, but are separately listed, because
for D-posets the existence of b U a means a < b, but b U a always exists in
its above definition for Boolean algebras.

f) Suppose X is a ring of subsets of a given set E (i.e. 0 € X and X is
closed under the formation of set theoretic differences and finite unions).

(1) X with the set theoretic difference replacing U is an RI-set which

evidently is not abelian.

(2) X with the set theoretic symmetric difference (AAB = (A\ B)U(B\

A)) replacing U is an abelian RI-set.

These examples (in case E ¢ X) cannot be included in d) or e).

g) Other finite examples of RI-set may be constructed by using tables for
U or by writing a computer program which checks possible tables whether
or not they fulfill the axioms (i)—(v).

h) In g) one may take for instance X as the set of 4 elements 0, a,b,c
withzUWz=0andzJd0==zforallz € X and definebda=c¢,bdc=a,
cda=0b,cd b= a. This example can be embedded into the abelian group
Zy X Zo.

i) On the poset X containing as elements and as order: 0 < ¢,d; ¢,d <
e < b,a; b,a < 1 there does not exist an operation 3 which fulfills b U a iff
a < b and (i)—(vi), [6]. But there exists, for instance, the partially defined
operationz Uz =0,z00=2z,bde=bUdd=e=dUb=dUe, z€ X,
which shall satisfy the rules (i)-(v) of an RI-set. The axioms (iv), (v) do
not produce new elements z U y.
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Notice that we have chosen such axioms of RI-sets which enable us to
introduce notions of subalgebras, homomorphisms, additive maps, isomor-
phisms and direct products by a unique simple requirement to inherit the
operation U (see part 4). Moreover, by this way defined subalgebras, iso-
morphic images and products of many examples of RI-sets (e.g. abelian
RI-posets, abelian groups, D-posets, orthomodular posets, Boolean ortho-
posets and Boolean algebras) inherit their own algebraic structures (see part
4). To show that we are going to derive (in parts 2. and 3.) necessary and
sufficient conditions for RI-sets under which they become algebraic struc-
tures listed above. Those conditions are inherited always when the operation
U is inherited.

ProPosITION 1.2. Let X be an abelian RI-set. Then

(1) if b9 a is defined then b (b U a) = a,
(ii) a Y b = a U ¢ implies b = ¢,
(ili) b Y @ = 0 implies a = b.

Proof. (i) By 1.1(ii), (b Y a) U (b Y a) = 0, which by 1.1(iv) implies
(bu(bYa))da=0=aUYa. By 1.1(vi)it holds bU (bU a) = a.

(ii) We have a U b = a U ¢, which implies a U (a U b) = a U (e U ¢) and
b=c.

(ili) bda=0impliesa=bY (bda)=bU 0 =b.

ProrosiTION 1.3. Let X be an abelian RI-set and a,b,c € X. Then:

(i) bY a is defined and bJ a = c iff bW ¢ is defined and b U ¢ = a.

(i) If cY a,c O b are defined and one side of the equality (c Y a) U (c Y
b) = b U a is defined, then both sides are defined and the equality
holds.

(ili) IfbY a,c 9 b are defined then (cYa) Y (bW a)=cUb.

(iv) If b Y a and 0 U (b U a) are defined then a U b is defined and
0”d(bda)=aUb.

Proof. (i) It is sufficient to assume that b J a is defined and b5 a = c.
We have by 1.1(ii) (b5 a) U ¢ = 0, by 1.1(iv) (b U ¢) U a = 0 and by 1.2(iii)
bdc=a.

(i) and (iii). Assume first b J a,c U b are defined. Then b Y a = (¢ U
(cub))Ya=(cBa)d(cUb)by 1.2(i) and 1.1(iv). By (i) (c”Ua) U (b U
a)=cUb.If (cYa)U (cJbd)is defined then it equals b U ¢ by 1.1(iv) and
1.2(1).

(iv) By 1.1(ii) and 1.1(iv) we have 0 5 (bW a) = (bU b)Y (bU a) = (b U
(b Y a)) Y b, which by 1.2(i) equals a U b.
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2. Abelian RI-posets

An abelian partial semigroup is a set X with a special element 0 and
with a partially defined operation W which satisfies the commutative and
associative laws (if one side of these equations is defined) and absorbs a zero
element.

DEFINITION 2.1. For an abelian RI-set X we define the partial operation
¥ by
a¥b=c iff cUa=>bexists for a,b,c€ X.
By 1.1(vi), @ is well-defined.

PROPOSITION 2.2. For an abelian RI-set (X ;J,0) the structure (X;¥,0),
defined in 2.1, is an abelian partial semigroup. If all operations b U a are
defined then (X;9,0) is an abelian group and — coincides with Y.

Proof. (i) The commutative law holds for W, since a¥Wb = ¢ means that
c¢J a = b, which by 1.3(i) is equivalent to ¢ J b = a and hence bW a = c.

(ii). The associative law holds for W, since for u = (aWb) W ¢ we have the
following equivalences: u = cW (a W b) by (i), v B ¢ = a ¥ b by the definition
of W, (u”de)ba=>b,(uda)dec=>bby1l1(iv),cWb = u U a, which is
equivalent tou = a W (cWb) = aW (bWc) by (i).

(iii) Assume all operations b U a are defined. Then 0Wa = a0 = a, since
a Y a =0 by 1.1(ii). By 2.1 we have —a = 0 U a as inverse, a ¥ (—a) = 0.
Since ¢ Y a = b means aWb = c and this is equivalent to ¢ — a = b, it follows
that the operations U and — coincide.

PRrOPOSITION 2.3. Let (X;U,0) be an abelian RI-set. Assume that for
X a partial binary operation ¢ be defined as in 2.1 and for all a,be€ X

(i) if both a U b and b J a are defined then a = b.
Then the relation < of X defined by
(ii) a < b iff b Y a is defined
is a partial order of X with least element 0.
Moreover, for a,b,c € X the following hold
(i) e<awb b<awyb,
(iv) a < b impliesaWe < bW¥e,
whenever the appropriate W operations are defined.
Proof. (1) By 1.1(i), 1.1(ii) 0 € a,a < aforall a € X. If a < b and

b < a then, by the assumption (i) it holds @ = b. The transitivity of <
follows from 1.1(v).
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(2) Assume a Wb = ¢. Then @ = ¢ U b and by 1.1(iii)) ¢ B (c U b) is
defined, which implies ¢ U b < ¢. Therefore a < a W b. Since bWa =aWb
holds, we also have b < ab.

(3) Assume a < b and aWe, bW c are defined. Then b U a is defined and
it follows from b U (b U a) = a and the definition of ¥ that (b U a)wa = b.
Therefore b c = (bW a)Wa)We=(aWc)W (b a) > aWec, by (2).

An abelian RI-set with property 2.3(i) and the partial order defined by
2.3(ii) we call an abelian RI-poset.

PRrROPOSITION 2.4. Let for an abelian RI-poset (X;<,4,0) for all a,b €
X, a # b ezactly one of the operations a U b,b d a ts defined. Then X is a
linearly ordered RI-poset with the least element (.

Let us recall the notion of a D-poset P, introduced by Képka-Chovanec
[4]. An equivalent definition was given by Navara-Ptdk [5]: P is a bounded
poset with a partially defined binary difference operation & which satisfies
bSais definediff a < b,a60 =aforallaandifa < b < cthen c8b < cHa
and (c©a)6(cOb)=bSa.

An example of an abelian RI-poset, which is not a D-poset, is a ring X
of subsets of a set F, with E not an element of X,and BUA=B—-Ais
defined iff A C B for A,B € X. Here X contains the empty set, is closed
under the formation of set theoretical difference B — A and union AU B, for

A, BeX.

ProproOsSITION 2.5. Let X be an abelian RI-poset. Assume there ezists
1€ X such that all1 5 a, a € X, are defined. Then X is a D-poset.

Proof. Assume 1 Ja=b,then awb=1and a <1forall a € X.1.1(i)
assures that 0 < a. Assume a < b < ¢. Then ¢ U b,b U a and ¢ U a are
defined. By 1.3 (ii), bda=(cJda)U (cY b). Hencecd b < cBaand U
satisfies all properties of & of a D-poset.

In the following proposition we take from [6] the definition of an RI-
semigroup (relative inverse semigroup) (X; <,,0), which is a poset with
smallest element 0 and a W 0 = a, W is partially defined such that the
commutative and associative law hold, whenever one side of these equations
is defined, a < b implies a W ¢ < bW ¢, whenever a W ¢, bW ¢ are defined and

(1) for a < b there exists a unique ¢ = b U a such that a ¥ ¢ = b.

Examples of RI-semigroups are the positive cone of ordered abelian
groups, or orthoalgebras (X; ®,0,1) (see [1]),if < on X is defined by: a < b
iff there exists ¢ € X with a @ ¢ = b. We then define © on X by ¢ = bS5 a,
which makes an orthoalgebras also to a D-poset. Then X is an abelian
RI-poset (RI-semigroup) replacing © by U (& by ).
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An RI-semigroup X is, on the other hand, an orthoalgebra iff there ezists
an element 1 € X such that 10 a is defined for alla € X anda<1U a
implies a = 0 (see [5] or [6]). For the reader, not familiar with the axioms
for orthoalgebras we add, that @ is for them partially defined, satisfies the
commutative and associative law, in case the left side of these equations is
defined, furthermore, if p @ p is defined then p = 0, and for every p € X
there exists a unique ¢ € X with p@® ¢ = 1.

PROPOSITION 2.6. Let X be a set. The following conditions are equiva-
lent:

(i) (X;<,9,0) is an abelian RI-poset with ¥ defined as in 2.1 (and <
defined as in 2.3).
(ii) (X;<,4,0) is an RI-semigroup, with O defined fora < bbybYa =—c
ifb=ave.

Proof. Assume (i). Then for e < b, b U a = c is defined and aW ¢ = b.
This, together with the properties of an abelian RI-poset, shown in 2.2,
proves (ii).

Assume (ii). From 2.3 we conclude that X is an abelian RI-poset if it
is an abelian RI-set. 1.1(i),(ii) follows from a & 0 = a for a € X. We have
by the definition of O in (ii) that for @ < b, b = a W (b U @) which means
bu (b a) = a. Therefore 1.1(iii) holds. 1.1(iv) is an immediate consequence
from the associative and commutative law for X in (ii). If b J a,c U b are
defined then a < b < ¢ and, by the transitivity of <,c U a is defined. This
shows 1.1(v). In order to prove 1.1(vi), observe thatif cda=b=d U5 a
thenc=awb=d.

ProrosITION 2.7. Let (X,4,0) be an abelian RI-set such that b U a
is defined for all a,b € X. Let there ezist X;,Xy; C X with the following
properties:

(l) XIUX2=X,X10X2={O},
(ii)anEXl iffbdace X,,
(iii) ifa € Xy and bJ a € X; then b€ X;.

Then the relation < of X defined by a < b iff bUY a € Xy is the linear
order of X.

Proof.Foralla € X wehaveada =0¢€ X;,hence a < a.Ifa <band
b < a, then by (ii) a U b € X; N X, and hence a U b = 0. It follows a = b by
1.2(iii). If a < b,b < c then bJ a,c U b € X; and (since all operations U are
defined) by 1.3(ii) we have (c 5 a) U (c U b) = b U a € X;. Now by (iii) we
obtain ¢ J @ € X; and thus a < c. Finally for any ¢,b € X we obtain a < b
or b < a by (i).
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PRroPOSITION 2.8. Let an abelian RI-poset (X;<,,0) have the following
properties for all a,b,c € X:

(i) There ezists 1 € X and for alla € X, a' = 1U a is defined.
(ii) If (1 Y a) Y a is defined then a = 0.
(i) IfbY a,bd c and (1 5 a) U ¢ are defined then (bQ a) U c is defined.

Then (X;<,,0,1) is an orthomodular poset.

Proof. X is a D-poset by the Proposition 2.5. In view of (ii) it follows
that @ < 1 U a implies a = 0. Thus by [5] or [6] we obtain that X with
orthocomplementation a’ = 1 U a is an orthoposet. Now by [6], Proposition
3.4 it suffices to show that if a < b’ then the smallest upper bound avb
of elements a,b exists in X. Suppose a < b'. Then b’ U a is defined and
VUa<b,b’da<1l1Ya=ada Hence b’ d ais a lower bound of elements
a’,b'. On the other hand if ¢ < @/, ¢ < b’ then ' U ¢, (1 Y a) U ¢ are
defined and in view of (iii) also (b' U a) U c is defined. It follows that
¢ < b UYaand b U ais the greatest lower bound of a’ and ¥'. Finally by
aVb=(a'Ab) =19 (b U a) we obtain that a V b exists in X.

Suppose now that (X;<,,0,1) is an orthomodular poset. Let us put
fora,b € X bUYa=>bAd iff a <b. Then (X;<,9,0,1) is an abelian
RI-poset satisfying conditions (i)—(iii) of the Proposition 2.8. Clearly, 1 J a
is an orthocomplement of a € X.

3. Boolean RlI-sets

ProrosiTION 3.1. Let (X;0,0) be an RI-set and the following conditions
are satisfied:

(i)e”db=0,b8c=0implyadc=0,
(ii) fba=0=a b thena =b.

Then the relation < of X defined by a < b iff a 9 b = 0 is a partial
order.

Proof. By 1.1(ii) @ < a holds. If a < b, b < a then by the assumption
(ii) we obtain a = b. If a < b, b < c then a < ¢ by (i).

DEFINITION 3.2. Let X be an RI-set with 1 € X. We call (X;15,0,1) a
Boolean RI-set if the following conditions are satisfied:

()agb=0,b0dc=0imply adc=0,

(i) fbda=0=atdbthen a=0b,
(ii)0Ya=0,forall a € X,

(iv)a' =19 aexists forall a € X and 1Y (1Y a) = a.
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In every Boolean RI-set X we can introduce a partial order as in 3.1
and then we call X a Boolean RI-poset.

An example of a Boolean RI-poset is a Boolean algebra X with the
binary operation U defined for all a,b € X by a U b= a A b. An example of
a Boolean RI-poset which is neither a Boolean algebra nor an orthoposet is
a chain 0 < a < 1 with the operation Y defined as follows:

Qa=0U1l=a"Yl=aba=1581=000=0,
lda=ad0=a, 100=1

ProrosITION 3.3. Let (X;<,9,0,1) be a Boolean RI-poset. Then for all
a,b € X are satisfied:

(i) a Y b is defined,
(ii) (eYUb)Ha=0,
(i) a’ B b' =bYa,
(iv) 0’ =1.
Moreover, if for all @ € X(1 U a) U a = 0 implies a = 1, then
(X;<,,0,1) is a Boolean orthoposet (i.e. aANb=0=a < V).

Proof. (i), (ii). Let a,b € X. By 3.2(iii) and 1.1.(ii) we have 0 = 0 U
b= (ada)db Now by 1.1(iv) (a U b) U a is defined and (a U b) U a =
(eYa)ub=0.

(iii) For a,b € X by 3.2(iv) and 1.1(iv) we have

aBb=[18(1Ya)u[lUu(1Lb)]=(10[1Y(1Ud)])Y (1L a)
=(1dbu(lya)=b'Ya

(iv)1=19(191)=190 =0 by 3.2(iv) and 1.1(ii).

For the rest of the proposition we have 0 < a < 1 for all a € X, since by
32(ii)0da=0andadl=[10(1”a)dl=(1U1)U(lda)=00
a' = 0 using 3.2(iv), 1.1(iv) and 3.2(iii). f a < bthena U b=0=b U a’
implies &’ < a’. Now it is sufficient to show that 1 is the least upper bound of
a and a'. Let a < ¢,a’ < cfor ¢ € X. The ¢’ < a < cimplies ¢/’ J ¢ = 0. We
obtain (1 U ¢) U ¢ = 0 which by the assumption implies ¢ = 1. We conclude
that the mapping ¢ — @’ = 1J a for all ¢ € X is an orthocomplementation.

Now let a,b € X with a A b = 0. Then by (ii) we have (a Jb')Ja =0
which implies a U b’ < a. By (iii) a0 b =bUa' <b.Thusau b’ <aAb=0
and by the definition of < we have a < b'. It follows that X is a Boolean
orthoposet.

It is known that a Boolean orthoposet need not be even orthomodular
(see [7], Example 7). On the other hand, every Boolean ortholattice is a
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Boolean algebra. The next proposition gives the condition under which a
Boolean RI-poset is a Boolean algebra.

ProrosITION 3.4. Let (X;<,09,',0,1) be a Boolean RI-poset. If the con-
dition

(i)cdb=0,cd(1Ya)=0implyc” (b8a)=0 foralla,b,ce X
holds, then (X;<,!,0,1) is a Boolean algebra.

Proof. We show in (a) that X is an orthoposet, in (b) we use the
assumption (i) to show that b J a is the greatest lower bound of b and a',
which by (a) implies that X is an ortholattice. In (c) we show that X is
orthomodular and every pair of elements in X commute. This proves that
X is a Boolean algebra.

(a) Suppose (1 J ¢) B a = 0. By 1.1(ii) we have (1Jda) U (15 a) =0
and by the assumption (i), (18 a) U (a Y a) = 0. Hence 1 J a = 0. On the
other hand by 3.3(lli)ay1=10Ja =(1Y1)Y(1Ja)=009 0 =0. Thus
by 3.2(ii) @ = 1 and by the Proposition 3.3, X is an orthoposet.

(b) By 3.3(ii) we have (b a)gb=0and bJa < bforall a,b € X. By
3.3(iii) we have b J a = a’ U b’ which is less or equal to a' by 3.3(ii). Hence
b a is a lower bound of b,a’. The assumption (i) (in view of the definition
of <) implies that b J a is the greatest lower bound b A a’ of b and d'.

(c) Assume a < band @’ Ab = 0, which impliesa db=0and a' B o' = 0.
Therefore bYW a = a’ 3 b =0 =a 3 band a = b by 3.2(ii). Hence X is
orthomodular (see [2]). Finally, we show that all a,b € X commute (aCb in
the form of [2]),i.e. aAb = bA(b'Va). It is aAb < bA(b' Va). In order to show
the reverse inequality, observe that (bW (bUJa))Ja=(bBa)U (bba)=0
implies b U (b QY a) < a. By (b) we also have b U (b U a) < b. Therefore
bA(M'Va)y=bd ((d'Va))=bd(bva')=bd (bda)<aAb.

Note that a Boolean algebra (X;<,’,0,1) with the binary operation &
defined for all a,b € X by a U b = a A b’ is a Boolean RI-poset, satisfying
the condition 3.4(i).

4. Subalgebras, products and homomorphisms

We define in the class of RI-sets the notions of subalgebras, products
and homomorphisms. These definitions demonstrate how strong unifying is
the notion of relative inverse (resp. the RI-set operation U) for many alge-
braic structures (see examples in 1.1) which are basic namely in classical and
noncompatible measure theory. Partial orderings, lattice operations, ortho-
complementations and some other characteristic notions of those structures
can be introduced by relative inverse operation 4.
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DEFINITION 4.1. Let X be an RI-set. We call a subset 0 # Y C X a
subalgebra of X if for all a.b € Y with b U a defined in X it holds that
bdaeY.If1€ X then we claim that also 1 €Y.

Evidently for every subalgebra Y of a RI-set X wehave 0 =ada €Y.
If the RI-set X is an abelian RI-set then clearly every subalgebra Y of X
(in the sense 4.1) is also an abelian RI-set. Since for all ¢,b € Y, b U a exists
in Y iff b U a exists in X, the restriction of the partial order of an abelian
RI-poset X to a subalgebra Y of X is a partial order which makes Y an
abelian RI-poset. In view of the Proposition 2.5, if X is a D-poset then Y
is also a D-poset and by the Proposition 2.8 if X is an orthomodular poset
then so is Y. Further it is easy to see that if X is a linearly ordered abelian
RI-set then Y is also a linearly ordered abelian RI-poset (see Proposition
2.4). Finally from the propositions of the part 3. of this article it is clear
that if RI-set X is a Boolean poset (Boolean orthoposet, Boolean algebra)
then every subalgebra Y of X defined by 4.1 is a Boolean poset (Boolean
orthoposet, Boolean algebra).

DEFINITION 4.2. For RI-sets (X;,U;, 0;),1 € I we define on the cartesian
product X = HieIXi the element O = (O;):es as zero element and the
partial binary operation U by

(bi)ie[ J (ai)iel = (Ci)ie[ iff all b; Y; a; = ¢; exist in X;,7 € 1.
Then we call (X;,0) the direct product of RI-sets X;,1 € I.

Evidently rules 1.1(i)~(v) hold then for the direct product X = [[;c; X:.
If X;, i€ I, are RI-posets (abelian or Boolean) (a;)ier < (b:)ier iff a; < b;
in X; for all ¢ € I (see the Propositions 2.3 and 3.1). If all (X;);er have
unit elements 1; € X; then we put 1 = (1;);es as the unit element in X.
Now, it is clear that if all X;,7 € I are abelian RI-sets (abelian RI-posets,
D-posets, orthomodular posets, Boolean RI-posets, Boolean orthoposets,
Boolean algebras) then the same is their direct product X = [[,; X; defined
by 4.2. (see the Propositions in part 2 and 3 of this article).

DEerINITION 4.3. Let (X;;6;,0),(X2;U2,0) be RI-sets, h : X7 — X be
a map. We call h a homomorphism if for all a,b € X; with b J; a defined in
X, it holds that h(b) Uz h(a) is defined in X, and h(bU; a) = h(b) Y; h(a).

From the definition of a homomorphism it is clear that for 0 € X; it
holds h(0) = h(a Uy a) = h(a) Y2 h(a) = 0 € X,. Moreover if X, X, are
RI-posets (abelian or Boolean) then for all a,b € X; with a < b we have
h(a) < h(b) in X, (see Propositions 2.3, 3.1). The identity map and also the
projection maps which map a direct product of RI-sets onto its factors are
homomorphisms.
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DEFINITION 4.4. Let X1, X, be RI-sets, h : X; — X, be a map. We call
h an isomorphism if it is bijective and h and its inverse map are homomor-
phisms.

In view of Propositions of the part 2 and 3 of this article it is not difficult
to show that if two RI-sets X1, X, are isomorphic in the sense of 4.4 then
if X is an abelian RI-set (abelian RI-poset, D-poset, orthomodular poset,
orthoposet, Boolean algebra) then so is X5.

5. Concluding remarks
We add some remarks on homomorphisms and additive maps.

As we have shown in part 2 for an abelian RI-set X we can introduce
a partially defined commutative semigroup operation W by a Wb = ¢ iff
cY a = b exists in X;a,b,c € X. Evidently for abelian RI-sets (X;;U;
,01),(X2;92,02) amap h : X; — X, is a homomorphism iff for all a, b € X
with a ¥y b defined the operation h(a) ¥, h(b) is defined and h(a ¥ b) =
h(a) W2 h(b). Moreover we have shown that h(0) = 0. A map h : X7 — X,
with last two properties we call an additive map. Clearly, if X; and X, are
abelian RI-posets then % is also monotone. For o-additivity of h we claim
an additional convergence property for ascending countable chains (an)nen
of X : a, | a implies h(a,) T h(a) (see [3]).

Many cases of additive or o-additive maps from rings or algebras of
sets, quantum logics, Boolean algebras and D-posets into real numbers or
some partially ordered spaces (partially ordered semigroups, lattice ordered
groups, orthomodular posets) occur this way. For instance measures and
probabilities in classical measure theory and observables, states and prob-
abilities in noncompatible probability theory are examples. For an abelian
RI-poset X which is a lattice, one may to introduce the notion of valuation
from X into an abelian RI-poset Y.

Some of these questions will be discussed in a further paper of one of the
authors.
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