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1. Preliminaries

Let (P, <p) anf (@, <g) be two ordered sets. A pair ¢, ) of mappings
@: P — @ and ¢ :@Q — P is called a Galois connection between these two
ordered sets [6] if:

(gcl) z <p y = ¢(y) <q ¢(z) for all z,y € P;
(ge2) u <g v = Y(v) <p Y(u) for all u,v € Q;
(8¢3) p <p P(p(p)) and ¢ <q ¢(¥(q)) forallpe P, g € Q.

A Galois connection can be also characterized by only one condition {2,
7): the pair (¢, %) is a Galois connection iff
(gcd) p<p¥(q) & ¢ <q ¢(p) forallpe P, g € Q.

Several observations of Galois connections have been made in [5, 6, 7]
and a characterization of Galois connections between complete lattices ap-
pears in Shmuely [8]. In this paper we will interpret the Galois connec-
tions between ordered sets as formal concepts of a context. For the Galois
connections between complete lattices a more efficient description than the
Shmuely’s characterization will be given by introducing Galois relations or
Galois bonds. Before dealing with this some definitions and notations from
formal concept analysis which was introduced by Wille [3, 10] are needed.

A (formal) contezt is a triple K = (G, M, I) consisting of two sets, G
and M, and a binary relation I C G' x M between G and M. Usually, the
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elements of G are called objects, those of M attributes. For (g,m) € I we
write gI'm and read it: the object g has the attribute m. A small context
can convenient be represented by a cross-table whose rows are labeled with
objects, columns with attributes, and in which there is a cross in row g and
column m iff gI'm. For a given context K = (G, M, I) we define for A C G
and BC M

Al := {m € M| gI'mfor all g € A} and B! := {g € G| gIm for all m € B}.

Instead of {z}! we simply write z! for z € G or z € M. The two operators
A Al and B — B! form a Galois connection between the powerset lattices
B(G) and B(M), and the two compositions A — Al and B +— B! of these
operators are dually isomorphic closure operators on G and M, respectively.
For A C G,if A = A then A is closed under the closure operator on G and
is said to be an extent of the context, and a subset B C M with B = B!
is called an intent of the context. A pair (A, B) is said to be a (formal)
concept with extent A and intent B of Kif A C G,B C M, Al = B
and B! = A. It is easy to see that each of A and B in a concept (4, B) is
uniquely determined by the other. The system of all concepts of a context
K can be hierachically ordered by

(A1,B1) < (A2,By):& A C Ay (& B, C By)

and forms a complete lattice denoted by B(K) or B(G, M, I) and called
(formal) concept lattice of the context K in which infima and suprema can
be described as follows:

A= (40 (U5)")
teT teT

teT
VB =((U At)H, N &)
teT teT teT

Moreover, every complete lattice V = (V, <) is isomorphic to the concept
lattice of some suitable context, in particular, V= B(V,V, <) [10].

2. Galois connections as concepts
In this section we interpet the Galois connections between ordered sets
as concepts of a context. Let (P,<p) and (@, <g) be two ordered sets. We
now construct a context (P x @,Q X P,I) by defining, for all z,y € P and
u,v €Q,
(z,v)[(uv,y): & (z<py e uy).

The relation I can be easy generated from the ordered sets. For an object
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(p,q) € P x Q of the context we have

(p,0)" = (gl X [P)) U ((Q \ (a]) X (P\ [P)))

and for an attribute (¢,p) € @ x P it is

(0,2)" = (] x [1) U ((P\ (P)) x (@ \ [9))),

where (z] and [y) denote the principal ideal generated by z and the principal
filter generated by y in the ordered sets, respectively.

THEOREM 1. Let (P, <p) and (Q,<q) be ordered sets and let the contert
(P x Q,Q x P,I) be constructed as above. Suppose that ¢ : P — Q and
¥ : Q — P are mappings. Then the pair (p,v) is a Galois connection
between (P,<p) and (Q,<g) iff (p,%) is a concept of the context (P x
Q,Q x P,I). (Here a mapping ¥ : X — Y is also understood as a subset
V={=z¥P0z) e X} CXxY.)

Proof. Assume that the pair (¢, ) is a concept of the context (P x
| Q,Q x P,I). Then we have

(p, o(p)) (g, %(q)) forallp€ P,g € Q,
that means, by the construction of I,

P<p¥(q) # ¢<qp(p)forallpe Pge @,
but this equivalence is just the characterizing condition (gc4) for a Galois
connection between P,<p) and (@, <g). Conversely, if (¢,%) is a Galois
_connection, then we have, by the construction of I,

(P, ¢(p))1(q,%(q)) forallpe P,g€ Q.

From this it follows that ¢ C %! and ¥ C ¢!. Now, we show that (p,v)
is a concept of the context P x Q,Q x P,I). Assuming (p,q) € ¢T, we

have (p,q)I(q,%(q)), or equivalently, p <p %¥(q) & ¢ <¢ ¢. This implies
p <p ¥(g) and therefore, by the condition (gc4), also ¢ <o ¢(p). On the

other hand, it follows from (¢(p), ¥(p))) € ¥ that
(2, ) I(¢(p), ¥(#(p))) »

i.e.

P <p Y(p(p)) & #(p) <q ¢.
By the condition (gc3), we get ¢(p) <g g. Therefore, ¢ = ¢(p) is true. This
shows (p, ¢) = (p, ¢(p)) € ¢. So, we have ¢ = 1!. Analogously, one can prove
¥ = !, Thus, the pair (¢, ) is a concept of the context (P x Q,Q x P, I).
n

A similar manner of the interpretation in this Theorem appears in an
author’s earlier paper [3] in which the (fixed point free and) order-preserving
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self-mappings of an ordered set were characterized as concepts of a context.
Using this characterization, a practicable algorithm for determining if a
given finite ordered set has the fixed point property was given.

3. Contextual Galois connections

In this section we introduce, as a natural generalization of Galois connec-
tion between ordered sets, the contextual Galois connection between con-
texts, and then we show that every contextual Galois connection between
two contexts can be uniquely extended to a Galois connection between the
concept lattices of these two contexts. This implies immediately a result
of Shmuely [8] that every Galois connection between ordered sets can be
uniquely extended to a Galois connection between their Dedekind-MacNeille
completions [1, 4] (the completions by cuts of the ordered sets).

Let K; = (G1, My, 11) and Ky = (G2, M2, I5) be contexts. A pair (&,7)
of mappings £ : Gy — M; and 5 : G, — M is said to be a conteztual Galois
connection between K; and K,, if ‘

ghin(h) & hlx&(g) for all g € Gy, h € G,

Every ordered set (P, <) corresponds, in a natural way, a context (P, P, <).
By the definition of contextual Galois connection, we have

COROLLARY 1. A pair (p,v) of mappings ¢ : P — Q and ¢ : Q — P is

a Galois connection between ordered sets (P, <p) and (Q,<q) iff it is a con-
textual Galois connection between the conterts (P, P,<p) and (Q,Q,<q)-
n

One can also recognize, as the Galois connections between ordered sets,
the contextual Galois connections between contexts in a suitable context.
For this we call a context (G, M, I) purified, if the mappings g — g’(g € G)
and m — mi(m € M) are injective. In non-purified contexts, there are
different objects which have the same set of attributes, or there are different
attributes which are possessed by the same set of objects.

THEOREM 2. Let Ky = (G, My, 1) and Ky = (G2, My, I2) be purified
contezts. Let J be a relation between G1 X My and G2 X My defined by

(gvn)'](h) m) = (gIlm =4 hIng) .

Then, for two mappings € : Gy — My and n : Gy — M, the following are
equivalent:

(1) (&,7) is a contextual Galois connection between K; and Ky;

(2) (&,7m) is a concept of the context (G X Ma,Ga X My, J).

Proof. The implication (2) = (1) follows immediately from the defini-
tion of J. Now, we show (1) = (2). Assume that (£,7) is a contextual Galois
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connection between K; and Kj. Then, by the definition of J, we get £ C 5’
and 5 C ¢7. If (g,n) € 57 then (g,n)J(k,n(h)) for all A € G;. On the other
hand, (g,£(g)) € € € n’ implies (g,£(g))J(h,n(h)) for all h € G;. So we
have, for all h € Gs,

hn < ghin(h) & h1;2¢(g),

therefore n2 = £(g)%2. Since K, is purified, n = £(g) follows. Therefore,
(g,7) = (9,€(g)) € €. Thus, we have proved £ = n’. The other equation
n = €7 can be analogously shown. And this yields the statement (2). The
proof is completed. =

LEMMA 1. A pair (€,1) of mappings £: Gy — My andn: Gy — My isa
contertual Galois connection between (G1, My, 1) and (G2, My, 1) iff, for
all subsets A C Gy and C C (G,

AC(C)" & C CEA),
where §(A) := {{(9)| g € A} and 7(C) := {n(R)[h € C}.

Proof. If the equivalence A C n(C) & C C £(A) is true for all
subsets A C Gy and C C Gy, then it is also true for the special subsets
A = {g} (¢ € G1) and C = {h} (h € G;). Therefore, we have {g} C
(k) & {h} C €&(g)%, this is equivalent to gIyn(h) & hI2£(g). The last
one is just the definition for the contextual Galois connection (£, 7).

Conversely, let (£,7) be a contextual Galois connection between
(G1, M1, 1I1) and (G2, M, I5). Let A C Gy and C C G; be subsets. For
every h € C, it follows obviously from A C n(C)™ that A C 5(h)h1, that
means glyn(h) for all g € A. This implies h1;£(g) for all g € A, and there-
fore h € £(A)%2. Thus, the implication A C p(C) = C C £(A)" has
been proved. The converse implication C C £(A)2 = A C n(C)h can be
analogously shown.

Let (P, <p) be an ordered set. Then the Dedekind-MacNeille completion
of it is the concept lattice B(P, P,<p), and, by ¢(p) := ((p},[p)), an order
embedding ¢ of (P,<p) into B(P, P,<p) is defined [3]. Shmuely has proved
that every Galois connection between two ordered sets (P, <p) and (Q,<¢q)
can be uniquely extended to a Galois connection between their Dedekind-
MacNeille completions [8]. We will now show that the similar observation
can be made for contextual Galois connections and get the Shmuely’s result
as a special case of the following Theorem 3. For this we need at first some
notations and known results. Let (G, M,I) be a context. Define y(g) :=
(¢'1,90)(g € G) and p(m) := (m!,m)(m € M). Call y(g) the object-
concept with respect to the object ¢ and p(m) the attribute-concept with
respect to the attribute m. If the context (G, M, I) is purified, the mappings
g — 7(g) and m + p(m) are injective and we can identity g with y(g) and
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m with p(m), respectively. Without proof, we recall the following Lemma
that describes the characterization of Galois connections between complete
lattices [7].

LEMMA 2. Let (V,<v) and (W, <w) be complete lattices. For mappings
p: Vo Wandy: W -V, the following statements are equivalent:

(1) (@, %) is a Galois connection between (V,<v) and (W,<w);

(2) @(Veer2e) = Arer (@) for 2 € V and Vz € V]y < p(e)} =
) foryew;

(3) ¥I)Vies¥s) = Nses ¥(ys) for y; € W and V{y € W|z < 9(y)} =
o(z) forz e V. .

THEOREM 3. Let K; = (G],M],I]) and K, = (Gg,Mg,Ig) be two puri-
fied contexts. Then every contertual Galois connection between K, and K,

can be uniquely extended to a Galois connection between the concept lattices
Q(Kl) and _%_(KQ)

Proof. Suppose that (£,7) is a contextual Galois connection between

K; and K;. We define now two mappings ¢ : B(K;) — B(Kz) and ¢, :
B(Kz) — B(K1) by

ve(A, B) i= (E(4)™, E(A)=T) for (4, B) € B(K)
and

¥a(C, D) 1= (n(C)",n(C)"") for (C, D) € B(Ke).
For the showing that (¢, %,) is a Galois connection between B(K;) and
B(K,) it is sufficient to verify, for (A4, B) € B(K,) and (C, D) € B(K,),

(A, B) < 9,(C,D) & (C, D) < ¢¢(4, B),
or equivalently,
ACHC & CCEA)=.

By Lemma 1, the last equivalence is true. Now, we show the Galois connec-
tion (¢, ¥y) is an extension of (£,7). For ¢ € G1 we have

(PE(gIIII,gIl) — (E(gIlll)Ig’f(gllIl)IQIQ) .

Obviously, £(g/t1)2 C €(g)%2 follows from £(g) € £(gM71). On the other
hand, with h € &(g)"2 we have g € n(h)™ and therefore g"*li C n(h)h,
that yields, by Lemma 1, h € £(g"111)%2, Thus, £(g)%2 = £(g"111)!2, and that
means

ee(g" 1, 9™) = (£(9)", €(9)") with £(g) € M3 .
Similary, we can show for h € GG

Ya(h"72,h72) = (n(h)", n(h)™") with n(h) € My .
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Therefore, identifying ¢ € G, with 7,(g) := (¢"*1,¢") and h € G, with
v2(h) := (hT212 h%2), it follows that (¢, 1y,) is an extension of (£,7). The
uniqueness of the extension can be shown by using Lemma 2 and the fact
that

(4,B) = \/ n(g) for (4, B) € B(K,),
geEA
(C,D) = \/ 72(h) for (C,D) € B(K;). u
heC
As a consequence of this Theorem we have the following

COROLLARY 2. A Galois connection (p,v) between B(Gy, My, I1) and
B(G,, M,, I,) is an extension of some contertual Galois connection between
K; = (Gy, M1, 1) and K, = (G2, M2, L) iff o(¢) maps the object-concepts
of K;(Ky) to the attribute-concepts of K (Ky).

Proof. In the proof of Theorem 3 we have seen that each of the two
mappings ¢ and 9, of the unique extension (@¢,%,) of any contextual
Galois connection (£,7) maps the object-concepts of the one context to the
attribute-concepts of the other context. Suppoing that the mappings ¢ :
B(K;) — B(K2) and ¢ : B(K;) — B(K;) satisfy the sufficient conditions,
we define now two mappings £, : G1 — M, and 5y : G2 — My by

Ew(g) = if (,O(gllll’grl) = (nIz,ang)’
ne(h) := m if Y(hT272 b)) = (mh, mhTry.

Then it is easy to verify that the pair (§,,7y) is a contextual Galois connec-
tion between K; and K; and that (¢, ) is the unique extension of (£,,7y).
]

4. Characterization of Galois connection between concept lat-
tices

Galois connections between complete lattice were interpreted by G-ideals.
We recall here some results from [8]. Let (V, <) and (W, <) be complete lat-
tices. A subset J C V x W is said to be a G-ideal of the direct product
(V X W, <), if
(gil) (a,b) € J and (z,y) < (a,b) implies (z,y) € J;
(82) {(ai,bi)li € S} € T = (Vies i, Ajesbi)s (Aies @i, Viesbi) € J.
It is easy to see that (gi2) yields (Ov,1w),(1v,0w) € J. In [8] it was shown
that the set of all G-ideals of (V x W, <), ordered by the set inclusion, forms
a complete lattice which is isomorphic to the complete lattice of all Galois
connections between (V, <) and (W, <). The relationships between G-tdeals
and Galois connections can be described as follows: For a Galois connection
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(¢, %) the subset

J:={(a,b)|b< p(a)} CV xW
is a G-ideal; and for a G-ideal J C V x W a Galois connection (¢, ) will
be defined by

o(a) := \/{b| (a,b) € J} and ¢(b) := V{a| (a,b) € J}.

In order to judge whether a subset J C V x W is a G-ideal we should check
that, firstly, J is indeed an order ideal of direct product and that, secondly,
every subset of J is compatible to the \/ — A and A —V/ construction. This is
obviously not easy to do even for finite lattices. In this section we will give a
new interpretation of Galois connections between complete lattices by con-
sidering concept lattices. This interpretation follows by introducing Galois
bonds and Galois relations between contexts which should be conveniently
treated on the context plane, especially for the finite case.

Let Ky = (Gi, My, 1) and Ky = (G2, Ms, 1) be contexts. A pair
(I12,I21) of relations I12 € Gy X M, and I3 € G2 X M is said to be a
weak Galois bond between K; and K,, if for all ¢ € G1, h € G5 the condi-
tion

iz C gll o qu C Rz

is satisfied. The word “bond” has appeared in a Wille’s paper on complete
subdirect product construction of concept lattices in which a bond from
K; to K, is defined as a subset J C G; X My such that g7 is an intent of
K, (9 € G1) and n” is an extent of K; (n € M;); i.e. the extents of the
context (G1, My, J) are extents of (G, M1, I;) and the intents of the context
(G4, M3, J) are intents of (G2, M2, I;) [11]. We call here the pair (I12,121)
weak Galois bond between K; and K;, because the Galois connections be-
tween B(K;) and B(K;) can be characterized by such pairs.

THEOREM 4. Let K; = (Gy, My, L) and Ky = (G2, M2, I;) be contexts.
(1) Every weak Galois bond (113, I51) between K; and K; induces a Galois
connection (¢r1,,, YL, ) between B(K;) and B(K;) by defining

Pl Q(Kl) - Q(KZ)a (A, B) — /\ (g’”I’,gI”I’I’);
geEA

Pl 2§(K2) N Q(Kl), (C,D) N /\ (hInIl’hInIlIl);
heC

(2) For every Galois connection (¢,1) between B(K,; ) and B(K;) there
erists a weak Galois bond (I,, 1) between K; and K, with

¢(A,B)= M (¢%",g""2") for (4,B) € B(K1),
gEA
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%(C,D)= A (BB, 141 1) for (C,D) € B(K,).
heC

Proof. (1) Let (I12, I21) be a weak Galois bond between K; and K;. To
prove that (¢g,,,%r,, ) is a Galois connection between B(K;) and B(K) it
is enough to show that for all (4, B) € B(K;) and (C, D) € B(K,)

(A’B) < ¢121(C’D) « (C < D) < 90112(A’ B) s
or equivalently,

AC n pinh s CC n quIz.
hecC g€A

Assuming A C ,cc k™1, it follows from hy € C that A C h{*". This
implies h{“ c Al = ﬂgeA gTt. Therefore, we have hlI21 C gh forall g € A,
and this yields g2 C hf’ for all g € A. So we get hy € h{’I’ C ﬂgeA gh2lz,
That shows the implication A C N, b2 = C C Ngea gh22_ The
converse of this implication can be analogously verified.

(2) Let (¢,1) be a Galois connection between B(K;) and B(K;). We
construct two relations I, C G1 X My and I, C G5 X M3 by defining

g% :={n € Ma|p(g"",g™) < (n2,27212)} forge Gy
and
R := {m e My|p(h"22, hT2) < (m",mBh)} forh e Gy,

i.e. gfv is the intent of the concept ¢(g"'1,g1) € B(K,) and A% is the
intent of the concept ¥(h%2%2, h72) € B(K;). Then, we have

h1¢ g gIl <=> (gIlIl,gII) S (hI,pI],hI‘b) — 'l,b(hl2[2,h12)
o (hlzlz’hlg) < w(gI‘I‘,gI‘) — (gI,IQ,gL,)
o gle C Al .
So, the pair (I, I;) is a weak Galois bond between C; and C,. Moreover,
it follows that for (A4, B) € B(K;) and (C, D) € B(K;)

¢(A,B) = <p( V (g"",g")) = A w(g"", ")

gEA gEA
= /\ (g¥%2,¢%) = /\ (g¥72, g% 202
geA geEA |
$(C, D) = ¢( \V (hbb,h”)) = N\ $(h"", bt
hec hec
= NBBE Y = N\ (W95, R05), .

heC heC
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By WGB = WGB(K;,K;) we denote the set of all weak Galois bonds
between K; and K, and by GC = GC(B(K; ), B(K;)) the set of all Galois
connections between B(K; ) and B(K;). Two order relations can be defined
on the sets WG D and GC, respectively, as follows:

(L, Inn) < (Ify,I3)): & L CIf, and I C I3,
(Pp1,91) S (p2,¥2) 1 & 91 <2 and 1 < ¢y

It is well-known that the set GC is a complete lattice with respect to the
order relation defioned above. For the set WG B we have the following The-
orem.

THEOREM 5. The set WG B is a complete lattice with respect to the order
relation defined above.

Proof. The pair (§,0) € WGB is obviously the smallest weak Galois
bond. By the definition, it is easy to show that the supremum of a subset
{L},,I}))|i € T} C WGB is given by

Vil Bolie Ty = (U B U T) - .
i€T €T

In Theorem 4 the relationship between the complete lattices WG B and

GC is established. In fact, we can define two mappings between them as
follows:

I': WGB — GC, (I127{21) — ("Plu’wlzl);
Y:GC - WGB, (p,9)~ (Ip1y).

From Theorem 4 we can see that I'(X(p,v¥)) = F(I¢,I¢) ((,01",1/)1‘0) =
(¢, %) for (<p, ¢) € GC. That means that the mapping I is surjective, i.e.
I(WGB) =

THEOREM 6. The pair (I, X) is a Galois connection between the complete
lattices WG B and GC.

Proof. What has to be proved is that for any (liz,l) € WGB and
any (¢,4) € GC

(N2, I21) £ Z(p,¥) & (9, %) < I'(I12,In1),
or equivalently,
Ly Cl,,InCly & o< on,, <, .

We show now I1; C I, ¢ ¢ < ¢r,,. Supposing I, C I,,, we get gh12 C glo
and therefore g/1212 D glo !z for all g € Gy. Then, for all any (4, B) € B(K;),
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it follows, by Theorem 4, that

<P(A, B) = A (glvlz,glvlzfz) < /\ (quIz’gIlzIzI:) — (PIu(A’ B).
9€A gEA
That means ¢ < ¢y,,. Conversely, with ¢ < ¢, we have for any g € G,
n € M,, by Theorem 4, that

glion=>ne€ gI12 = gI”I"-’ - nlz = ﬂ ghalz - nl2
rzeghh

= 90112(91111’911) < (n127n1212)
= <P(gllh,gh) < (nfz’nlez)
>negl > glyn.

That shows I3 C I,. The equivalence Iy; C Iy ¢ 9 < 9y, can be similary
verified. m

Since (I', ) is a Galois connection between WG B and GC, the two com-
positions I'Y and X'I are closure operators on GC and WG B, respectively,
and then the coresponding closure systems I'(WGB) = GC and X(GC) are
dual isomorphic lattices. We call now the elements from X(GC) the Galois
bonds between K; and K,, that are those weak Galois bonds which are im-
ages of the mapping X. Denote the set of all Galois bonds between K; and
K; by GB = GB(K;,K;). Then we have

COROLLARY 3. The set GB, ordered by the restriction of the order rela-
tion of WGB on it, is a complete lattice dual isomorphic to the coomplete
lattice GC. The restriction of I' on GB, I'| gg : GB — GC, and the map-
ping X' : GC — G B are the corresponding dual isomorphisms. The suprema
in GB can be described as follows: for any subset {(I},,13,)|: € T} C GB,
the supremum (I3, I3,) = V{(Iiy, Iiy)| i € T} is given by

g1s == ( U in2)IZI2 forallge Gy
ieT
and

i \hLT
h3, :=(Uh’21) " forallheG,. .
t€T

Now, we give some equivalent conditions for Galois bonds.

LEMMA 3. Let (112, I21) be a weak Galois between contexts Ky = (G, My,
I) and K; = (G2, M2, I5). Then, (I12, I21) is a Galois bond iff the following
conditions are satisfied:

(1) For every g € Gy the subset gz C M, is an intent of Ky, and

g91* C g;* implies g{** 2 g3* for all g1, g2 € Gu;
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(2) For every h € G, the subset ' C M, is an intent of K;, and
h{’ C h? implies h{” ) hf” for all hy,hy € Gs.

Proof. Supposing that (I12,I21) is a Galois bond, i.e. there is a Galois
connection (¢,%) € GC such that (l12,121) = X(¢,¥) = (Ip,1y). Then,
from the proof of Theorem 4 we can see that /12 = g¢(g € G;) is the intent
of the concept (g1, gT1). Moreover, as (p,%) is a Galois connection, it
follows from g* C gf*(g1,92 € G1), or equivalently, (¢, ¢f2) < (¢, ¢*)
that tp(g{‘ll,g{‘) < cp(gzllll,gz[‘), and this implies immediately gZI12 = g;“’ -
glI“’ = g{*2. So, (1) has been proved. Similary, (2) can be shown.

Conversely, assume that the weak Galois bond (I13, I51) satisfies the con-
ditions (1) and (2). Consider the Galois bond (I, r,,, Iyr,) = 2(I')(I12, I21).
By Theorem 4, glel12(g € G;) is the intent of the concept ¢y, (g7t gh1),

that means
I LI
gIva — (U{gflzlezlgl € gIIII}) — (U{g{ulgl c 91111})

LI 1 T
= g22f2 = ghz

I,

So, 12 = I, . has been proved. Analogously, we can show I3; = I,,,In.
Thus, (112,1211) is the image of the Galois connection (¢y,,,%r,,) under %,
i.e. a Galois bond. =

It is known that each mapping (¢ or 9) in a Galois connection (¢, %) can
be uniquely determined by the other. In some case one considers only one
mapping from them and speaks about Galois mappings and tensor products
of complete lattices [8, 9]. The similar situation appears also for Galois bonds
between contexts.

LEMMA 4. For two contezts Ky = (G1, M1, 1) and Ky = (Gq, My, 1)
and for two relations I;; C Gy X M, and I;; C Gy X M, the following
statements are equivalent:

(1) The pair (I13,I21) is a Galois bond between K; and Ky;

(2) For all g1,92,9 € G1, the subset gz C M, is an intent of Ko
and glll - gr_{l implies g{” ) g{”, and for every h € G,, the subset
{g € G1|g"2 C h'2} is an extent of K, and h'* = {g € G4| g2 C APz} 7,

(3) For all hy,hy,h3 € G, the subset K112 C M, is an intent of Ky
and hi? C hf* implies b2 D i and for every g € G, the subset {h €
Go| k1 C gh1} is an extent of Ky and g12 = {h € Go| b C gl } 2.

Proof. The proof for (1) < (3) is dual to the proof for (1) & (2). We
show here only (1) < (2).

(1) & (2): Let (I12,1>1) be a Galois bond between K; and K. Then,
by Lemma 3, the subset g12(g € G;) is certainly an intent of K, and we
have, for all ¢,,¢92 € Gy, glI1 - gZI1 = glI12 2 921“. Since the pair (12, [21)
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is a Galois bond we get, by Corollary 3, (I12,I51) = Z(I'(Li2, I21). That
means, by Theorem 4, that the subset hf22 C M; (h € G») is the intent of
the concept (A1, By) := ¥, (212, h%2) € B(K;). From Lemma 2 follows

(41, B1) = \/{(4, B) € B(K1)| (2", h") < o1, (4, B)}
= V{(4,B) e B(Ky)| |J o™ C h"}.

geEA
So, we get
A, = (U{Al Ahn AC Gy, U ngz C hIz})hIl
geEA
: (U {( U gm)I‘h| Ahh = AacGy, | o™ ¢ h”})ml
gEA geA
_ (U{ U gIlIIIAIIIl - A C Gl, U gIm C hIz})IlIl
geEA g€eEA

I I
= (U{y“‘lg € Gy,9™ C h”}) -
— {g € Gllgllz C hlz}th .

From this it follows that k%1 = B) = Al = {g € G;| ¢"2 C h2}11. In order
to show that {g € G1|¢"12 C h'2} is an extent of K; it is sufficient to prove
Ay = {g € G1| g2 C A2} D {g € Gy| g2 C hfr2 C h22}1ihh =: A3, For
this we have
z € A3 = b = {g € Gy|g"* ChT2}N C 2D
# 2112 C hI2
=z € {g € Gilg" Ch"}.
That shows Ay D Aj.
(2) = (1): Assume that the pair (I12, I>;) satisfies the conditions in (2).
By Lemma 3, we need to show that, for all hy,hy,h € G; and g € Gy,
(i) h{z C hzfz = h{n ») h£21;
(ii) the subset A2 C M is an intent of K;;
(iii) g2 C APz & hIn C gh,
Since y = {g € G1| g™ C y2}1 for any y € G, the statements (i) and
(il) are obviously true. For (iii) we need to prove

g2 ChP & {z € Gy|zP2 C B} C g,

If gh2 C h%2 then g € {z € Gy|2z"2 C h’2} and this implies g/t D {z €
G1|zh2 C A%2}11. On the other hand, {z € Gy|zhz C z2}1 C g't yields



764 Weiqun Xia

g € ghlh C {z € Gi|zh2 C AB}2h = {z € Gy|zD2 C h2}. That shows
gh2 C H™2, So, the proof is completed. m

Lemma 4 says that the two relations Ij2 and Iy; in a Galois bond
(I12,I21) between K; and K, are uniquely determined each other. For this
reason we can also consider only one relation to describe the Galois con-
nections between B(K;) and B(K;). For contexts K; = (Gy, M;,I1) and
Ky = (G2, M3, I;) we call a relation I1; C Gy X M, a Galois relation be-
tween K; and K;, if the following three conditions are satisfied:

(gr1) For every g € G, the subset g1z C M, is an intent of Ky;

(gr2) For all g;,g; € Gy the implication g* C g{‘ = gll” 2 g{” is true;
(gr3) For every h € G, the subset {g € G1]g"* C h'2} C G, is an extent
of Kl .

It is clear that a relation I;; C G X M, is a Galois realtion between K; and
K, iff there is an unique relation I3 C G3 x M, such that the pair (13, I21)
is a Galois bond between K; and K.

COROLLARY 4. For contezts Ky = (G1, M1, 1I1) and K; = (Ga, My, I2)
the set of all Galois relations between K, and K, ordered by the set in-
clusion, is a complete lattice dual isomorphic to the complete lattice of all
Galois connections between B(K;) and B(K;). A dual isomorphism can be

defined by I — (12, I21) = (@15, ¥1,,). ®

It is easy to see that the conditions (grl), (gr2) and (gr3) can be conven-
tiely checked on the context plane. So we have a more efficient description
of Galois connections between complete lattices than the description by
G-ideals.

Finally, we will given an example. We take two contexts K; and K, and
consider the corresponding concepts lattices B(K; ) = N5 and B(K;) = M3
(see fig. 1). The extents of K; are subsets @, {3}, {1}, {1,2} and {1,2,3} of
G1, the intents of K are subsets @, {d}, {e}, {f} and {d, e, f} of M;. Firstly,
we choose arbitrarily an intent of K, as 312, say 3512 := {d}. Since here the
intent 31 = {c} of K; is incomparable with the intents 17+ = {a,b} and
21 = {b}, we can arbitrarily choose 2112 := {d, ¢, f}. Because of 2/1 C 11
and the conditions (gr2) and (gr3) we can only take {d, ¢, f}, {€} or {f} as
152, If we choose 1112 := {e}, then we get a Galois relation I;s € G; X M,
between K; and K, which stand as a contect (G, M3, I;2) in fig. 2 right
above. The context (G, My, I51) standing in fig. 2 left below describes the
unique relation I3; € G5 X Mj such that the pair Iy, I51) is a Galois bond
between K; and K,. The other 40 Galois relations between K; and K; are
in fig. 3, and the complete lattice of all 41 Galois realtions between K; and
K; is drawn as a nested line diagram [12] in fig. 4.
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ExAMPLE. Gy = {1,2,3}, M; = {a,b,c}, G2 = {4,5,6}, M2 = {d,e, f}.

atbd c e | f
X 4
b
3
X a 5 X
3 X 6 X

K; =(G1,M1,1) BEK1))=Ns Kz=(G2, Mz, 1) B(Kz)=M;

Figure 1: Contexts and their concept lattices.

b e d f
1 X | x X
2 X X | x| x
3 X X
4 X X
5 X | x X
6 x| x| x X

Figure 2: Context K; (left above) and K3 (right below) from fig. 1, and a Galois bond
(112,121) between K; and Ks.

X | XX X X
X | X1 X X X X X
X XI X[ X] [ X X X
X X X X
X[ XX X X X X
X[ XX XIXIX] [ X X X
X
X1 XX X
X | XX X | X X}) [ X X X
X X | X | X X | X | X X |1 X 1 X
X[ XX X I X! X X | X | X X1 XX
X 1 X X1 X[ X X X
X1 X I X! | X X X
X X I X [ X X1 X 1X X | X1 X1 [ X
XI XX} X X X
X X X X X
X X {1 X | X X | X | X X | X | X X
X 1 X1 X ] [X X
X X X X
X X X X X
X I X X] X X X
X X Pl
X X X X
X I XTI X| (X X X

Figure 3: The 40 Galois realtions between K; and K> from fig. 1.
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A

(1]
(2]
(3]
[4]
(8]
(é]

Figure 4: The complete lattice of all 41 Galois realtions between
the contexts K; and K> from fig. 1.
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