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1. Preliminaries 
Let (P, <p) anf (Q, <q ) be two ordered sets. A pair φ) of mappings 

φ : Ρ —• Q and ψ : Q —> Ρ is called a Galois connection between these two 
ordered sets [6] if: 
(gel) χ <p y =Φ· (p(y) <Q <p(x) for all x,y G Ρ; 
(gc2) u <Q υ φ{υ) <p φ(η) for all u, υ € Q; 
(gc3) ρ <p φ{ψ{ρ)) and q <Q ψ{φ(ς)) for all ρ e Ρ , q G Q. 

A Galois connection can be also characterized by only one condition [2, 
7]: the pair (ψ, φ) is a Galois connection iff 
(gc4) ρ <p φ(q) &q<Q <p(p) for all ρ ζ Ρ, q € Q. 

Several observations of Galois connections have been made in [5, 6, 7] 
and a characterization of Galois connections between complete lattices ap-
pears in Shmuely [8]. In this paper we will interpret the Galois connec-
tions between ordered sets as formal concepts of a context. For the Galois 
connections between complete lattices a more efficient description than the 
Shmuely's characterization will be given by introducing Galois relations or 
Galois bonds. Before dealing with this some definitions and notations from 
formal concept analysis which was introduced by Wille [3, 10] are needed. 

A (formal) context is a triple Κ = (G, M, I) consisting of two sets, G 
and Μ, and a binary relation I Ç G χ M between G and M. Usually, the 
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elements of G are called objects, those of M attributes. For (g ,m ) € / we 
write glm and read it: the object g has the attribute m. A small context 
can convenient be represented by a cross-table whose rows are labeled with 
objects, columns with attributes, and in which there is a cross in row g and 
column m iff glm. For a given context Κ = (G, M, I) we define for A Ç G 
and Β CM 

A1 := {m G M\glm for all g ζ A) and B1 := {g £ G\ glm for all m £ B} . 

Instead of {x}1 we simply write x1 for χ £ G or χ £ M. The two operators 
Α ι-»· A1 and Β ι—• B1 form a Galois connection between the powerset lattices 
©(G) and ©(M) , and the two compositions A »-> A11 and Β ι-> B11 of these 
operators are dually isomorphic closure operators on G and M, respectively. 
For A Ç G, if A = An then A is closed under the closure operator on G and 
is said to be an extent of the context, and a subset B Ç M with Β = Β11 

is called an intent of the context. A pair (A,B) is said to be a (formal) 
concept with extent A and intent Β of Κ iff A Ç G, B Ç M, A1 = B 
and B1 = A. It is easy to see that each of A and Β in a concept (A, Β) is 
uniquely determined by the other. The system of all concepts of a context 
Κ can be hierachically ordered by 

(A1,B1) < (A2,B2) :«o· Ai Ç A2 (O B2 Ç Βχ) 

and forms a complete lattice denoted by ®.(K) or 2i(G, M, I ) and called 
(formal) concept lattice of the context Κ in which infima and suprema can 
be described as follows: 

A(^t)=(nMu 
ter teT teT 

y ( A t , B t ) = ( ( ( j A t y \ f ) B t ) . 
teT teT teT 

Moreover, every complete lattice V = (V, <) is isomorphic to the concept 
lattice of some suitable context, in particular, V = 93(F, V, <) [10]. 

2. Galois connections as concepts 
In this section we interpet the Galois connections between ordered sets 

as concepts of a context. Let (Ρ, < p ) and (Q, < q ) be two ordered sets. We 
now construct a context ( Ρ X Q, Q χ Ρ, I ) by defining, for all x,y £ Ρ and 
u,v eQ, 

(x,v)I(u,y) (x <p y & u <Q v). 

The relation I can be easy generated from the ordered sets. For an object 
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(P> q) G Ρ X Q of the context we have 

(p ,?) i = ( ( g ] x [ p ) ) u ( ( g \ ( g ] ) x ( P \ b ) ) ) 

and for an attribute (q,p) G Q Χ Ρ it is 

( q , P y = ( ( p ] x [ g ) ) U ( ( P \ ( p ] ) x ( Q \ [ ç ) ) ) , 
where (x] and [y) denote the principal ideal generated by χ and the principal 
filter generated by y in the ordered sets, respectively. 

T H E O R E M 1 . Let (P, <p) and (Q, <q) be ordered sets and let the context 
(Ρ X Q,Q Χ Ρ, I ) be constructed as above. Suppose that φ \ Ρ —* Q and 
φ : Q —• Ρ are mappings. Then the pair (φ,φ) is a Galois connection 
between (P,<p) and (Q,<q) i f f (φ,φ) is a concept of the context (Ρ X 
Q,Q Χ Ρ, I). (Here a mapping Ψ : X —• Y is also understood as a subset 
Ψ = {(χ, !Ρ(χ))| χ e X} C X xY.) 

P r o o f . Assume that the pair (φ,φ) is a concept of the context (Ρ X 
<3, <2 Χ Ρ, I). Then we have 

(P, <p(p))I(q, i>(q)) for all ρ G Ρ, q € Q , 
that means, by the construction of I , 

p <P ip(q)) <*q<Q ψ(ρ) for all ρ e Ρ, q e Q, 
but this equivalence is just the characterizing condition (gc4) for a Galois 
connection between P,<p) and (Q,<Q). Conversely, if (φ,φ) is a Galois 
connection, then we have, by the construction of I, 

(ρ, φ(ρ))ΐ^, i>(q)) for all ρ e Ρ, q ζ Q . 
From this it follows that φ Ç φ1 and φ Ç φ1. Now, we show that (φ,φ) 
is a concept of the context Ρ X Q,Q Χ Ρ, I). Assuming (p,q) G φ1, we 
have (p,q)I(q^(q)), or equivalently, ρ <p φ(q) -ΦΦ· q <q q. This implies 
Ρ i>(q) and therefore, by the condition (gc4), also q <Q φ(ρ). On the 
other hand, it follows from (φ(ρ),Φ(ρ))) G φ that 

(p, ÍMvíjO.ÍKVÍIO)). 
i.e. 

ρ <ρ Φ(φ(ρ)) φ(ρ) —Q q · 
By the condition (gc3), we get φ(ρ) <Q q. Therefore, q = φ(ρ) is true. This 
shows (p, q) = (ρ, φ(ρ)) G φ. So, we have φ = φ1. Analogously, one can prove 
φ = φ1. Thus, the pair (φ, φ) is a concept of the context ( Ρ X Q,Q χ Ρ, I). 

• 

A similar manner of the interpretation in this Theorem appears in an 
author's earlier paper [3] in which the (fixed point free and) order-preserving 
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self-mappings of an ordered set were characterized as concepts of a context. 
Using this characterization, a practicable algorithm for determining if a 
given finite ordered set has the fixed point property was given. 

3. Contextual Galois connections 
In this section we introduce, as a natural generalization of Galois connec-

tion between ordered sets, the contextual Galois connection between con-
texts, and then we show that every contextual Galois connection between 
two contexts can be uniquely extended to a Galois connection between the 
concept lattices of these two contexts. This implies immediately a result 
of Shmuely [8] that every Galois connection between ordered sets can be 
uniquely extended to a Galois connection between their Dedekind-MacNeille 
completions [1, 4] (the completions by cuts of the ordered sets). 

Let Κχ = (Gi, Mi, h) and K2 = (G2,M2,I2) be contexts. A pair (ξ, η) 
of mappings £ : Gi —> M2 and η : G2 • Mi is said to be a contextual Galois 
connection between Κχ and K2 , if 

gl^(h) o· hl2£(g) for all g £ Gi, h e G2. 

Every ordered set (P, <) corresponds, in a natural way, a context (Ρ, P, <). 
By the definition of contextual Galois connection, we have 

COROLLARY 1. A pair (φ, φ) of mappings ψ : Ρ —• Q and φ : Q —• Ρ is 
a Galois connection between ordered sets (P, <p) and (Q, <Q) i f f it is a con-
textual Galois connection between the contexts (P,P,<p) and (Q,Q,<Q)· 

• 

One can also recognize, as the Galois connections between ordered sets, 
the contextual Galois connections between contexts in a suitable context. 
For this we call a context (G, M, I) purified, if the mappings g ι-* g1 (g G G) 
and m •-> m J ( m G M) are injective. In non-purified contexts, there are 
different objects which have the same set of attributes, or there are different 
attributes which are possessed by the same set of objects. 

T H E O R E M 2 . Let Κχ = (Gi,Mi,Ii) and K 2 = (G2,M2,I2) be purified 
contexts. Let J be a relation betwepn G\ X M2 and G2 X Mi defined by 

(g,n)J(h,m) (ghm -O- hl2n). 

Then, for two mappings ξ : Gi —• M2 and η : G2 —> Mi, the following are 
equivalent: 

(1) (ξ, η) is a contextual Galois connection between Κχ and K2; 
(2) (ξ,η) is a concept of the context (Gì X M2,G2 X Mi, J). 

P r o o f . The implication (2) (1) follows immediately from the defini-
tion of J. Now, we show (1) =ί» (2). Assume that (£, η) is a contextual Galois 
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connection between Ki and K2. Then, by the definition of J, we get ξ Ç η·7 

and η Ç ξ·7. If (g, n) G ηJ then (g,n)J(h^(h)) for all h G G2. On the other 
hand, (fir,£(5)) € ξ Ç η·1 implies (g,Ç(g))J(h^(h)) for all Λ € G2. So we 
have, for all h G G2, 

hl2n o ghv(h) <3- h l ^ ( g ) , 

therefore n12 = £(<7)Í2. Since K2 is purified, n = £(<7) follows. Therefore, 
(g,n) = (<7, £(<7)) G ξ. Thus, we have proved ξ = η3. The other equation 
77 = f J can be analogously shown. And this yields the statement (2). The 
proof is completed. • 

LEMMA 1. A pair (ξ, η) of mappings ξ : G\ —> M2 and η : G2 —• Mi is a 
contextual Galois connection between {G\,M\,I\) and (G2,M2,I2) i f f , for 
all subsets A Ç G\ and C Ç G2, 

A Ç 77(C)'1 ü C C £(Ä)h , 

where ξ(Α) := g G A} and 77(C) := {η(Η)\h G C}. 

P r o o f . If the equivalence A Ç τ i (C) h O C Ç ξ(Α)1* is true for all 
subsets A Ç Gì and C Ç G2, then it is also true for the special subsets 
A = {5} (g G Gì) and C = {/ι} (h G G2). Therefore, we have {5} Ç 
η^Υ1 {h} C £(g)h, this is equivalent to gltf(h) hl2^(g). The last 
one is just the definition for the contextual Galois connection (ξ, η). 

Conversely, let (£, 77) be a contextual Galois connection between 
(Gì, Mi, Ii) and (G2,M2,I2). Let A Ç G1 and C Ç G2 be subsets. For 
every h G C, it follows obviously from A Ç 7 7 ( C ) t h a t A Ç 77(h)11, that 
means gl^(h) for all g G A. This implies hl2£(g) for all g G A, and there-
fore h G Thus, the implication A Ç 77(C)h C Ç £(A)Í2 has 
been proved. The converse implication C Ç £(A)Í2 => A Ç 77(C)71 can be 
analogously shown. 

Let (P, <p) be an ordered set. Then the Dedekind-MacNeille completion 
of it is the concept lattice ©(P, P, <p), and, by i(p) := ((p],[p)), an order 
embedding t of (P, <p) into 2Î(P, P, <p) is defined [3]. Shmuely has proved 
that every Galois connection between two ordered sets (P, <p) and (Q, <Q) 
can be uniquely extended to a Galois connection between their Dedekind-
MacNeille completions [8]. We will now show that the similar observation 
can be made for contextual Galois connections and get the Shmuely's result 
as a special case of the following Theorem 3. For this we need at first some 
notations and known results. Let (G,M,I) be a context. Define 7 ( g ) := 
(a11^1)^ G G) and μ(τη) := (m í ,m / í)(TO G M). Call 7 ( g ) the object-
concept with respect to the object g and μ(τη) the attribute-concept with 
respect to the attribute TO. If the context (G, M, I) is purified, the mappings 
g ι-»· 7(0) and m, μ(πι) are injective and we can identity g with 7 ( g ) and 



756 Weiqun Xia 

m, with μ(τη), respectively. Without proof, we recall the following Lemma 
that describes the characterization of Galois connections between complete 
lattices [7]. 

LEMMA 2 . Let (V, <v) and (W, < w ) be complete lattices. For mappings 
φ : V —* W and ψ :W V, the following statements are equivalent: 

(1) (φ,ψ) is a Galois connection between (V, <v) and (W, <vk); 
(2) v(VteTxt) = AteTf(xt) for xt £ V and \/{x G V\ y < <p(x)} = 

Φ(ν) for y G W; 
(3) Φ) VsesVs) = A j g s Ψ (y s) for y3 G W and \J{y G W\ χ < φ(ν)} = 

φ(χ) for χ G V. 

T HEOREM 3 . Let Κ ι = {G\,M\,I\) and K 2 = ( G 2 , M 2 , / 2 ) be two puri-
fied contexts. Then every contextual Galois connection between Κχ and K2 

can be uniquely extended to a Galois connection between the concept lattices 
®(Ki) and<B(K2). 

P r o o f . Suppose that (£,η) is a contextual Galois connection between 
Ki and K 2 . We define now two mappings ψξ : ©(Κχ) —» ®.(K2) and φη : 
®(K 2 ) - » ( Κ χ ) by 

φξ(Α,Β) := (ξ(ΑΥ\ξ(ΑΥ^) for (A,Β) G ®(KX) 

and 
φη(0,Ό) := WCy\V(C)™) for (C,D) G ® ( K 2 ) . 

For the showing that (ψξ, φη) is a Galois connection between ©(Κχ) and 
2L(Kj) it is sufficient to verify, for (A, B) G 2*(Ki) and (C, D) G ®(K 2 ) , 

(A, Β) < D) & (C, D) < <pt(A, Β), 

or equivalently, 

A Ç 77(C)Jl OCÇ £{A)h . 
By Lemma 1, the last equivalence is true. Now, we show the Galois connec-
tion (ψζ, φ η ) is an extension of (£, η). For g G Gì we have 

Μ9ΙιΤ\9Ζι) = ( Í O / ' 1 7 1 ) ' ^ ' 1 ' 1 ) ' * ' 2 ) · 
Obviously, ç ( g hi ι ) /2 ς f o U o w s f r o m G ( ( g h h y On the other 
hand, with h, G £(fif)Í2 we have g G η{Κ)Ιλ and therefore <7ílJl Ç η(Η)11, 
that yields, by Lemma 1, h G ((g*111)12· Thus, Ç(g)h = £ ( g h I l ) h , and that 
means 

<Pd9Ilh,9h) = (ξ(9)ΐ2,ξ(9)Í2Í2) with Ç(g) G M2 . 
Similary, we can show for h e G2 

φ^Η1*1* ,hh) = with η(Η) G Μ ι . 
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Therefore, identifying g G Gì with 71 (ff) := ( f f 7 * 7 1 , a n d h € G2 with 
72(/ι) := (/i Í2 Í2 ,h,1*), it follows that (φζ,φη) is an extension of (ξ,η). The 
uniqueness of the extension can be shown by using Lemma 2 and the fact 
that 

(Α,Β) = V 7 l(sr) for (A,B) e ©(Ki), 
g£A 

(C, D) = V 72(Λ) for (C, Z?) G 2 ( K j ) . > 
hec 

As a consequence of this Theorem we have the following 

C o r o l l a r y 2. A Galois connection (φ,ψ) between ® ( G I , ΜΙ, /Χ) and 
®((j2, M2, Ì2) 2S a " extension of some contextual Galois connection between 
Ki = (Gi,Mi,/i) and K2 = (G2, M2,/2) i f f φ(Φ) maps the object-concepts 
o/Ki(K2) to the attribute-concepts of K2(Ki). 

P r o o f . In the proof of Theorem 3 we have seen that each of the two 
mappings ψξ and φη of the unique extension (φζ, φη) of any contextual 
Galois connection (ξ, η) maps the object-concepts of the one context to the 
attribute-concepts of the other context. Suppoing that the mappings φ : 
©(Κι) ®(K2) and φ : ®(K2) ©(Κι) satisfy the sufficient conditions, 
we define now two mappings ξφ : G\ —> M2 and ηψ : G2 —> M\ by 

( M := n if <p(ghh,gh) = ( n 7 a , n i a / a ) , 
η^Η) : = m if i¡>(hhh,hh) = ( τ n h , m h h ) . 

Then it is easy to verify that the pair ηψ) is a contextual Galois connec-
tion between Ki and K2 and that (ιρ, φ) is the unique extension of (ξφ, η φ). 

• 

4. Characterization of Galois connection between concept lat-
tices 

Galois connections between complete lattice were interpreted by G-ideals. 
We recall here some results from [8]. Let (V, <) and (VF, <) be complete lat-
tices. A subset J Ç V χ W is said to be a G-ideal of the direct product 
(V χ W, <), if 
(gii) (a, b) G J and (x ,y ) < (a, b) implies (x ,y ) Ç J ; 
(gi2) { ( a i , b i ) \ i e S } Ç J ^ ( \ / (A 
It is easy to see that (gi2) yields (Oy, Ιν^),(Ιν,Ονκ) e J. In [8] it was shown 
that the set of all CMdeals of (V χ W, <), ordered by the set inclusion, forms 
a complete lattice which is isomorphic to the complete lattice of all Galois 
connections between (V, <) and (W, <). The relationships between G-ideals 
and Galois connections can be described as follows: For a Galois connection 
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(φ, φ) the subset 
J:= {(a,b)\b< ψ(α)} CV xW 

is a G-ideal; and for a G-ideal J Ç V X W a Galois connection (φ, ψ) will 
be defined by 

ψ(α) := \ / { ό | (α, b) G J} and φ(ό) := \ / { α | (α, b) G J} . 

In order to judge whether a subset J Ç V X W is a G-ideal we should check 
that , firstly, J is indeed an order ideal of direct product and that , secondly, 
every subset of J is compatible to the V — A a n d Λ — V construction. This is 
obviously not easy to do even for finite lattices. In this section we will give a 
new interpretation of Galois connections between complete lattices by con-
sidering concept lattices. This interpretation follows by introducing Galois 
bonds and Galois relations between contexts which should be conveniently 
treated on the context plane, especially for the finite case. 

Let Κχ = Mi, Ii) and K2 = (G2, M2,12) be contexts. A pair 
( / i2 , Ì2i) of relations Τχ2 Ç Gì Χ M2 and I21 Ç G 2 X Mi is said to be a 
weak Galois bond between Κχ and K2, if for all g G G\, h G G2 the condi-
tion 

hhl Ç gh g112 Ç hh 

is satisfied. The word "bond" has appeared in a Wille's paper on complete 
subdirect product construction of concept lattices in which a bond from 
Κχ to K2 is defined as a subset J Ç G χ Χ Μ2 such that g3 is an intent of 
K2 (g € Gi ) and nJ is an extent of Κχ (η G M2); i.e. the extents of the 
context (Gì, M2, J) are extents of (Gi, M\, I\) and the intents of the context 
(Gi,M2,J) are intents of ( G 2 , M 2 , h ) [11]· We call here the pair (/χ2, hi) 
weak Galois bond between Κχ and K2, because the Galois connections be-
tween 2$(Κχ) and ®(K2) can be characterized by such pairs. 

T h e o r e m 4 . Let Κχ = (£?χ,Μχ,/χ) αΓκ/Κ2 = (G2,M2,h) be contexts. 
(1) Every weak Galois bond (Ii2,hi) between Κχ and K2 induces a Galois 

connection (φι12, Φι21) between Κχ) and ©(K2) by defining 

<ρι» :»(K!)-®(K2), (A,B)» l\(gh*h,gh*hh)·, 
geA 

¥>i31:®(K2)->®(Κχ), (C,D)~ / ^ ' » V " ' ^ ) ; 
hec 

(2) For every Galois connection (ψ, φ) between ©(Κχ ) and ® ( K 2 ) there 
exists a weak Galois bond (Ιψ,Ι·ψ) between Κχ and K2 with 

ψ(Α,Β) = f \ for (A, B) G » ( Κ χ ) , 
geA 
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φ(0,Ό) = (C, D) G Q3(K2) . 
hec 

P r o o f . (1) Let ( /χ2 , /2χ) be a weak Galois bond between Κχ and K2. To 
prove that (φι12,Φι2ι) is a Galois connection between 03(Kj) and ©(K2) it 
is enough to show that for all (A, Β) G ®(Κχ) and (C, D) G ®(K2) 

(A, Β) < φ ΐ Ά (C, D)&(C<D)< <pha(A, Β), 

or equivalently, 

a ç ρ h h i h & c ç p | g*™1*. 
h€C geA 

Assuming A Ç f \ e c ^ / 2 l / l > ή follows f r o m h e C that A Ç h[2lh. This 
implies h[21 Ç A11 = (~}geA gIx- Therefore, we have h{21 Ç gTl for ail g G A, 
and this yields g1" Ç h[2 for ail g G A. So we get hi G h[2h Ç Ç\geA9h2h· 

That shows the implication A Ç C\hechl2lh ^ c Ç Ç\g&AgIl2h. The 
converse of this implication can be analogously verified. 

(2) Let (φ, φ) be a Galois connection between ®.(Ki) and ©(K2). We 
construct two relations Ι φ Ç Gì Χ Μ2 and Ιψ ÇG2 Χ by defining 

g1* := {neM2\ y{ghh , g h ) < ( η 1 2 , η*2*2)} for g £ Gì 

and 

h1* := {m e Μι | φ{h12*2, hl2) < ( m h , m h h ) } for h G G2, 

i.e. g1* is the intent of the concept <p(gIlTl ,gTl) G ®(K2) and h i s the 
intent of the concept φ(^ 2 ΐ 2 ,Η ΐ 2 ) G 2*(Κχ). Then, we have 

h1· ç gh & ( g h h , g h ) < (hI*h,hI'>) = i/>(hhh,hl2) 

O (hl2l2,hl2) < <p(ghh,gh) = (,g 

o· gIv ç h'2. 

So, the pair (Ιφ ,Ιψ) is a weak Galois bond between Çx and C2. Moreover, 
it follows that for (A,B) G »(Κχ) and (C, D) G £ ( K 2 ) 

ψ(Α,Β) = <p( V ( g T l T l , f f T l ) ) = A ^ a h I \ a h ) 
geA geA 

= Λ (9Ινΐ2,9φ)= Λ (9φΙ',9φΐ2ΐ')> 
geA geA 

Φ(0,Ό) = φ[ \ / ( h l 2 l 2 , h l 2 ) ) = /\ φ{Ηΐ2ΐ2,Ηΐ2) 
hec hec 

hec hec 
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By WGB = WGB( K 1 } K 2 ) we denote the set of all weak Galois bonds 
between Kx and K2 , and by GC = GC(®(K 1 ) ,®(K 2 ) ) the set of all Galois 
connections between ®(Ki) and !Β(Κ?). Two order relations can be defined 
on the sets WGD and GC, respectively, as follows: 

(I12J21) < (I12J21) : h* Ç In and / 2 1 Ç /2 \ , 
(ψι,Φι) < (<P2,il>2) • φι < Ψ2 and φχ<φΊ. 

It is well-known that the set GC is a complete lattice with respect to the 
order relation defioned above. For the set WG Β we have the following The-
orem. 

T H E O R E M 5 . The set WGB is a complete lattice with respect to the order 
relation defined above. 

P r o o f . The pair (0,0) G WGB is obviously the smallest weak Galois 
bond. By the definition, it is easy to show that the supremum of a subset 
{I[2,P2l)I ieT}C WGB is given by 

Ν { ( / Ί 2 , 4 ) ΐ ^ Τ } = ( Υ 4 , Υ / 2 ΐ ) · 
ieT ieT 

In Theorem 4 the relationship between the complete lattices WGB and 
GC is established. In fact, we can define two mappings between them as 
follows: 

Γ : WGB - GC, ( W 2 1 ) ~ (v>i„, V/21 ) Î 
L:GC->WGB, (ψ,φ)^(Ιφ,Ιφ). 

From Theorem 4 we can see that Γ(Σ(φ,φ)) = Γ(Ιφ,Ιψ) = (φιφ,φιΦ) = 
(φ, φ) for (φ, φ) Ε GC. Î h a t means that the mapping Γ is surjective, i.e. 
r(WGB) = GC. 

T H E O R E M 6 . The pair (Γ, Σ) is a Galois connection between the complete 
lattices WGB and GC. 

P r o o f . What has to be proved is that for any ( I i 2 , / 2 i ) € WGB and 
any (φ, φ) e GC 

(I12J21) < Σ(φ,φ) & (φ,φ) < Γ(Ι12,Ι21), 

or equivalently, 

Ι12 Q Ιφ, hiQIxp&<P< ψι12, Φ < Φι21 • 

We show now Ιί2 Ç Ιψ φ < φΙΐ2. Supposing Ι\2 Ç Ιφ, we get g1*2 Ç g1* 
and therefore D g ^ for ail g <E Gì . Then, for all any (A, B) € ®(Ki) , 
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it follows, by Theorem 4, that 

gÇ.A g£A 

That means ψ < ψιί2· Conversely, with φ < ψιλ2 we have for any g G G\, 
η G M2, by Theorem 4, that 

gl12n => η G g1" ghih Ç nh ^ f°| xh*h Ç nh 

xeg'ih 

= > í p / i a ( / l í l , í ' í l ) < ( » / a » » / 2 í a ) 
=• <p(grih,9h) < ( n Í 2 , n Í 2 Í 2 ) 
=>· η G tf7" => íf/^n . 

That shows /χ2 Ç Ιψ. The equivalence hi Ç Ι-ψ & Ψ < Φι21 can be similary 
verified. • 

Since (Γ, Σ) is a Galois connection between WGB and GC, the two com-
positions Γ Σ and ΣΓ are closure operators on GC and WGB, respectively, 
and then the coresponding closure systems T(WGB) = GC and Σ(GC) are 
dual isomorphic lattices. We call now the elements from E(GC) the Galois 
bonds between Κχ and K2, that are those weak Galois bonds which are im-
ages of the mapping Σ. Denote the set of all Galois bonds between Κχ and 
K2 by GB = GB(KX,K2). Then we have 

COROLLARY 3 . The set GB, ordered by the restriction of the order rela-
tion of WGB on it, is a complete lattice dual isomorphic to the coomplete 
lattice GC. The restriction of Γ on GB, Γ| qb GB —> GC, and the map-
ping Σ : GC —» GB are the corresponding dual isomorphisms. The suprema 
in GB can be described as follows: for any subset {(I{2,I2i)\ i Ç GB, 
the supremum (/χ*2,^21) = V{(^i2>^2i)li € î S given by 

<7*2 : = ( ( J 91'12) h h for all g G Gx 
ieT 

and 

Ki •= ( U h h f°r allh^G2. • 
ieT 

Now, we give some equivalent conditions for Galois bonds. 

LEMMA 3. Let ( / 1 2 , / 2 1 ) be a weak Galois between contexts Κχ = {G\, M\, 
/χ) and K2 = (G2, M2,Ii)· Then, (/χ2,/2ΐ) is a Galois bond i f f the following 
conditions are satisfied: 

(1) For every g G G\ the subset gTl2 Ç M2 is an intent ofK2, and 
9Í1 Q gl1 implies g[12 D g¡12 for all g1,g2 G Gx; 
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(2) For every h G G2 the subset hÍ21 Ç Α/χ is an intent of Κχ, and 
h[2 Ç h[2 implies /if21 D h¡21 for all Λχ,/ι2 6 G 2 . 

P r o o f . Supposing that (/χ2,/2ι) is a Galois bond, i.e. there is a Galois 
connection (φ,ψ) G GC such that (Iu,hi) = Σ(φ,ψ) = ( Ι φ , Ι φ ) . Then, 
from the proof of Theorem 4 we can see that gTl2 = gI,f{g G Gx) is the intent 
of the concept ¥>(<7il71, <7Zl)· Moreover, as (φ, ψ) is a Galois connection, it 
follows from gl1 Ç g^(gi,g2 e G ι), or equivalently, {g{lh,g{2) < {g^^gl1) 
that ψ{β[ιΙί,gf1 ) < (pigi*11,gl1), and this implies immediately g^12 = g2v Ç 
gl* = g[12· So, (1) has been proved. Similary, (2) can be shown. 

Conversely, assume that the weak Galois bond ( I u , h i ) satisfies the con-
ditions (1) and (2). Consider the Galois bond (Ιφι12·>Ιψι21) = Σ ( Γ ) ( Ι ΐ 2 , Ì21)· 
By Theorem 4, gI<fIï2(g G G ì ) is the intent of the concept <r>i12(gri11,g11), 
that means 

g i v h , = ( | J { / 1 2 / 2 Í 2 l 5 i e / 1 7 1 } ) ' 2 ' 2 = ( 1 > Í 1 2 I < 7 1 z g h h i ) h h 

- gh^hh — gli2 

So, 7i2 = Ιφι has been proved. Analogously, we can show /2χ = Ι·ψι21 · 
Thus, ( I i 2 i h i ) is the image of the Galois connection ( φ ι ^ , Φ ι ^ ) under Σ , 
i.e. a Galois bond. • 

It is known that each mapping (ψ or φ) in a Galois connection (φ, ψ) can 
be uniquely determined by the other. In some case one considers only one 
mapping from them and speaks about Galois mappings and tensor products 
of complete lattices [8, 9]. The similar situation appears also for Galois bonds 
between contexts. 

LEMMA 4. For two contexts Κχ = (Gx,Mx,/x) and K2 = (G2,M2,/2) 
and for two relations I\2 Q G\ Χ M2 and 72i Q G2 Χ Μχ the following 
statements are equivalent: 

(1) The pair (/12, hi) is a Galois bond between Κχ and K2; 
(2) For all <71, <72, <7 G Gx, the subset gTl2 Ç M2 is an intent of K2 

and g^1 Ç g^1 implies g[12 3 gζ12, and for every h Ç G2, the subset 
{9 S Gi\gh2 Ç hl2} is an extent of Κχ and h121 = {g G G\\gh2 Ç hh}h\ 

(3) For all Λχ,Λ2,/ΐ3 € G 2 , the subset hTl2 Ç Μχ is an intent of Κχ 
and h{2 Ç hJ22 implies h[21 D h^21, and for every <7 G Gx, the subset {h G 
G2I hhl Ç 5 J i } is an extent of K2 and gh2 = {h G G2\ hl2ì C gh}h. 

P r o o f . The proof for (1) <3> (3) is dual to the proof for (1) (2). We 
show here only (1) (2). 

(1) O (2): Let (/χ2,/2χ) be a Galois bond between Κχ and K 2 . Then, 
by Lemma 3, the subset gIl2(g G Gx) is certainly an intent of K2 and we 
have, for all gi,g2 G Gx, gf1 Ç g¡1 => g(12 D g\™. Since the pair (IU,121) 
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is a Galois bond we get, by Corollary 3, ( l u , I21) = Σ(Γ(Ιι2, Λι) · That 
means, by Theorem 4, that the subset /iÍ21 Ç Μι (h E G2) is the intent of 
the concept (Αι,Βι) := i ) h l ( h h h , h h ) G ®(Κχ). From Lemma 2 follows 

( A l t B 1 ) = y {(A,Β) G ®(Κχ)| (h1*1',h1*) < φι,Μ,Β)} 

= \¡{{A,B)ZUKOI ( J g^Çh1*}. 
geA 

So, we get 

Αλ = ( ( J { ¿ l ΑΙχΙχ = A C Gl, U g1» C h1*})11*1 

geA 

= (U {( U 9 h h ) h h \ A ^ =ACGl,\J ç fc*})*'1 
geA geA 

= ( υ { U 9 h h \ A h h = A Ç Gx, U 9h> Ç 
geA geA 

= {geGl\gI» çh1*}1*1*. 

From this it follows that hhl = Βλ = A[x = {g G G i |ö i l 2 Ç In order 
to show that {g G Gx | gTl2 Ç h1"2} is an extent of Κχ it is sufficient to prove 
A2 := {g G Gi |g 1 * 2 Ç h1*} D {g G Gx|s í l 2 Ç h1*2 C h*2}1^ =: A3. For 
this we have 

χ G A3 hhl = {ge G i l / 1 2 Ç hh}h Ç xh 

=• xl12 Ç hh 

=>· ® € { 5 G G ì | gJl2 Ç h12} . 

That shows A2 D A3. 
(2) => (1): Assume that the pair ( I i 2 , h \ ) satisfies the conditions in (2). 

By Lemma 3, we need to show that, for all hi, h.2, h G G2 and g G Gì, 
(i) h[2 Ç h[2 =» h{21 D h?1 ; 

(ii) the subset h121 Ç Μι is an intent of Κχ ; 
(iii) g1" Ç h1"2 O h1*1 Ç grK 

Since y121 = {g G Gi\gl21 Ç y12}11 for any y G G2 the statements (i) and 
(ii) are obviously true. For (iii) we need to prove 

gh2 Ç h12 {χ G Gil xl12 Ç Λ'2}'1 Ç gh . 

If g1" C h12 

then g G {x G G i | x i l 2 Ç h12} and this implies gTl D {x G 
Gi\xh2 Ç h*2}h. On the other hand, {χ G G i | x / l 2 Ç χ ' 2 } ' 1 Ç gh yields 
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g e ghh c {χ e Gx\xh* ς hh}hh = {χ e Gx\xh2 ς /ι '2}. That shows 
ς /7Í2 So5 the proof is completed. • 

Lemma 4 says that the two relations I12 and I21 in a Galois bond 
(7i2, /21) between Κχ and K2 are uniquely determined each other. For this 
reason we can also consider only one relation to describe the Galois con-
nections between 2$(Κχ) and ©(K2). For contexts Ki = {G\,M\,I\) and 
K2 = ((j?2 > , I2 ) we call a relation I\2 Ç G\ Χ M2 a Galois relation be-
tween Κχ and K2, if the following three conditions are satisfied: 
(grl) For every g € Gì the subset gTl2 Ç M2 is an intent of K2; 
(gr2) For all g\, <72 € G\ the implication gl1 Ç g^1 =>• g[12 D is true; 
(gr3) For every h G G2 the subset {g 6 Gx|firil2 Ç h1*} Ç G\ is an extent 
of Ki. 
It is clear that a relation I12 Ç G\ x M2 is a Galois realtion between Κχ and 
K2 iff there is an unique relation J21 Ç G2 x M\ such that the pair (Ii2,hi) 
is a Galois bond between Κχ and K2. 

C o r o l l a r y 4 . For contexts K i = (Gi,Mi,Ii) and K 2 = ( G 2 , M 2 , / 2 ) 
the set of all Galois relations between Κχ and K2, ordered by the set in-
clusion, is a complete lattice dual isomorphic to the complete lattice of all 
Galois connections between tB(Ki ) and *B(I€? ). A dual isomorphism can be 
defined by I12 ^ (Iu,hi) {ψι12,^/21)· • 

It is easy to see that the conditions (grl), (gr2) and (gr3) can be conven-
tiely checked on the context plane. So we have a more efficient description 
of Galois connections between complete lattices than the description by 
G-ideals. 

Finally, we will given an example. We take two contexts Κχ and K2 and 
consider the corresponding concepts lattices ®.(Κχ ) = and ®(K2 ) = M3 
(see fig. 1). The extents of Κχ are subsets 0, {3}, {1}, {1,2} and {1,2,3} of 
Gi, the intents of K2 are subsets 0, {d}, {e}, { / } and {d, e, / } of M2. Firstly, 
we choose arbitrarily an intent of K2 as 3 / l 2 , say 3 i l 2 := {d}. Since here the 
intent 3 J l = {c} of Κχ is incomparable with the intents l^1 = {a, 6} and 
2 i l = {6}, we can arbitrarily choose 2 / l 2 := {d, e,f}. Because of 2 J l Ç l7 1 

and the conditions (gr2) and (gr3) we can only take {d, e, / } , {e} or { / } as 
l i l 2 . If we choose l i l 2 := {e}, then we get a Galois relation /χ2 Ç G\ Χ M2 
between Κχ and K2 which stand as a contect (G\ ,M2, I \2 ) in fig. 2 right 
above. The context (G2, Μι, I21) standing in fig. 2 left below describes the 
unique relation I21 Ç G2 X Mi such that the pair I\2,h\) is a Galois bond 
between Κχ and K2. The other 40 Galois relations between Κχ and K2 are 
in fig. 3, and the complete lattice of all 41 Galois realtions between Κχ and 
K2 is drawn as a nested line diagram [12] in fig. 4. 
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EXAMPLE. GX = { 1 , 2 , 3 } , Mx = { a , 6 , c } , G2 = { 4 , 5 , 6 } , M 2 = { d , e , f } . 

a b c 

1 X X 
2 X 
3 X 

Ki = (G i , Μ ι , / χ ) » ( Κ ι ) 9 É N 5 K 2 = ( G 2 , M 2 , J 2 ) »(Κ;!) 9=! Λ/3 

Figure 1: Contexts and their concept lattices. 

Figure 2: Context K i (left above) and Κ2 (right below) from fig. 1, and a Galois bond 
(•^12.^21) between K i and K 2 . 
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Figure 3: The 40 Galois realtions between K i and K 2 from fig. 1. 
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the contexts Ki and K2 from fig. 1. 
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