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1. Introduction

An identity ¢ = t' of terms of any type 7 is called a hyperidentity for a
universal algebra A = (A; (fA)icr) if t & t' holds identically for every choice
of n-ary term operations to represent n-ary operation symbols occuring in ¢
and t' ([8]). Although the concept of a hyperidentity is very strong there are
countable infinitely many semigroup varieties for which every identity is a
hyperidentity (solid varieties of semigroups) ([3]). Since any projection de-
fined on A is a term operation of A, a hyperidentity must be satisfied at least
for the projections. Therefore there are identities which cannot be hyperiden-
tities. Substituting one of the binary projections for F in F(z,y) = F(y,z)
we see that the commutative law fails to be a hyperidentity in any nontriv-
ial variety with a binary operation symbol. This observation suggests the
idea to weaken the concept of a hyperidentity. The simplest way for weake-
ness could be to substitute only term operations different from projections.
The set of all term functions of A which are different from projections can
be regarded as the universe of an algebra whose fundamental operations
describe the composition of functions, the so-called pre-iteratire algebra in
the sense of I.A. Mal’cev ([6]). This motivates to denote these ,,weaker” hy-
peridentities as pre-hyperidentities. An algebra or a variety for which every
identity is a pre-hyperidentity is called pre-solid. After developing the the-
ory of pre-hyperidentities and pre-solid varieties we will apply the results
on semigroups and determine the greatest pre-solid variety of commutative
semigroups.

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology
held at Jachranka, Poland, 8-13 June 1993.
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The author is indebted to K. Glazek who recommended to consider pre-
solid varieties and to Sh. Wismath for stimulating discussions during the
workshop on , Universal Algebra and Category Theory” in Berkeley, July
1993.

2. Basic concepts and results

Hyperidentities can be characterized more precisely using the concept of
a hypersubstitution. We fix a type 7 = (n;)ier, ni > 0 for all z € I, and
operation symbols (f;)ier, where f; is n;-ary. Let W.(X) be the set of all
terms of type T over some fixed alphabet X, and let Alg(7) be the class of
all algebras of type 7.

A mapping

o:{filteI} - W,(X)

which assigns to every n;-ary operation symbol f; an n;-ary term will be
called a hypersubstitution of type 7. Applying a hypersubstitution o to a
term t we get a term o[t] which can be defined inductively by:

(i) @{z] := « for any variable z in the alphabet X, and

(i) 5Lfilt1, s ta)] i= 0(f)(Bltr]y - -, Bltn,]):
It is clear that o( f;) on the right hand side of (ii) must be interpreted as the
operation induced by the term o(f;) on the term algebra W, (X). According
to the ideas explained in the introduction we define a prehypersubstitution
of type T as a mapping

oy {fili€ I} = Wi (X)\ X

which assigns to every operation symbol f; an n;-ary term which is different
from a variable. (Note that we consider the first n; variables zo,..., 25,1
of the standard alphabet X = {z¢,...,Zn,-1,...} as n;-ary terms).

The extension o,[t] of a pre-hypersubstitution to a term ¢ is defined
inductively by rules corresponding to (i) and (ii).

If t = t' is an equation, then we denote by =[t = t] the set

(Gl =3[l | o : {fili € I} - Wr(X)}
and by =]t = t'] the set
{G,[t] = 5[t')|op : {fili € I} - W(X)\ X}

If X is a set of equations, we use Z[X] for the union of the sets Z[t = t'],
for t = ¢/ in X. In the same way we define Z,[X].

Let A = (A4;(f*)ic1) be an algebra in Alg(r),let K C Alg(r),let o be
a hypersubstitution, and let o, be a pre-hypersubstitution. Then we make
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the following definitions:
a[A] := (A5 (o(£:)*)ier),
aplA] = (4; (0p(fi)*)ier),
Zp[A] := {o,[A] | 0, is a pre-hypersubstitution of type 7},
Z[A] := {o[A] | o is a hypersubstitution of type 7},

2K = | Z[A

AEK
E[K]:= | ZlAL
AEK

In [2] it was proved that = is a closure operator on sets of equations and
on classes of algebras.
In the same way we get:

PRrROPOSITION 2.1: =), is a closure operator on sets of equations X and
on classes of algebras K of type 1, i.e.
(i) T C 5,[Z],
(i) ' C ¥ = 5[] C Eplo],
(iii) EP[EP[Z]] = EP[Z],
() K C 5,[K],
(i) K' C K = Z,[K'] C Z,[K],
(iii") Ep[Ep[K]] = Zp[K]. .
Since every pre-hypersubstitution is a hypersubstitution we have

PROPOSITION 2.2: Let K be a class of algebras of type 7 and let X' be a
set of equations of type . Then
() Z,(Z] € Z[Z] and
(ii) =p[K] C Z[K]. ]
Using hypersubstitutions and pre-hypersubstitutions we define hyperi-
dentities and pre-hyperidentities in the following way:

DErFINITION 2.3 : Let A € Alg(7) be an algebra of type 7. Then the
identity t ~ t’, where t,t' are terms of type 7 is a hyperidentity of type
7 in A (A hypersatisfies t = t') if o[t] =~ T[t'] are identities for every hy-
persubstitution ¢. The identity ¢ =~ t' is a pre-hyperidentity of type 7 in
A (A pre-hypersatisfies ¢t = t' if 0,[t] = G,[t'] are identities for every pre-
hypersubstitution o,.

Clearly, every hyperidentity of type 7 is a pre-hyperidentity of this type.
In general, the converse is false.
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Let K be a class of algebras of type r. Then the identity ¢t =~ t' is a
hyperidentity respectively a pre-hyperidentity in K if it is a hyperidentity
(a pre-hyperidentity) in every algebra of K.

For a class K of algebras of type 7 and for a set ' of identities of this
type we fix the following notations:
IdK — the class of all identities of K,
HIdK — the class of all hyperidentities of K,
H,IdK — the class of all pre-hyperidentities of K,
ModX = {A € Alg(r)|A satisfies £} — the variety defined by 2,
HModXY = {A € Alg(r)|A hypersatisfies X'} — the hyperequational class
defined by X,
H,ModX = {A € Alg(T)|A pre-hypersatisfies £} — the pre-hyperequatio-
nal class defined by X,
VarK = ModIdK — the variety generated by K,
HVarK = HModHIdK = {A € Alg(7)|A hypersatisfies HIdK} — the
hypervariety generated by K.

For these sets we get the following inclusions:

HIdK C H,JdK, HModS C H,ModX.

By definition every hyperidentity or every pre-hyperidentity is an iden-
tity. Very natural there arises the problem to find algebras or varieties
for which every identity is a hyperidentity or such that every identity is
a pre-hyperidentity.

DEFINITION 2 .4: Let V be a variety of type 7. Then V is called solid if
Z[V] = V. The variety V is called pre-solid if =Z,[V] = V.

For solid varieties in [2] the following propositions were proved:

THEOREM 2.5 ([2]): Let K C Alg(t) be a variety. Then the following
conditions are equivalent:
(i) K is a hyperequational class,
(ii) K s solid,
(iii) IdK C HIdK, i.e. every identity of K is a hyperidentity,
(iv) E[IdK]) = IdK, i.e. IdK is closed under hypersubstitutions. "
For a given type 7 by L£(7) we denote the lattice of all varieties of this

type and by S(7) the set of all solid varieties of this type. Then we have the
following results:

ProrosiTION 2.6 ([2], [5]):

(i) The set S(r) forms a sublattice of L(T),

(ii) If T is a finite type then the lattice S(7) is atomic. The unique
atom is the variety RA, of all rectangular algebras of type 7. (RA, is the
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variety generated by all algebras of type T whose fundamental operations are
projections). ]

Clearly, every solid variety is pre-solid. Now we are going to characterize
pre-solid varieties.

3. The class of all pre-solid varieties of type 7
At first we will prove a theorem similar to Theorem 2.5 for pre-hyper-
equational classes.

THEOREM 3.1: Let K C Alg(t) be a variety. Then the following condi-
tions are equivalent:
(i) K is a pre-hyperequational class,
(ii) K is pre-solid,
(ii) IdK C HpIdK, i.e. every identity of K is a pre-hyperidentity,
(iv) Ep[IdK]) = IdK, i.e. IdK 1is closed under pre-hypersubstitutions.

Proof. Let A be an algebra of K and let ¢t = t’ be any pre-hyperidentity
satisfied in A. Then &,[t] = G,[t'] € IdA for every pre-hypersubstitution
oy, i.e. Ept = t'] C IdA. Applying the operator =, on the algebra A
we get t = t' € Id=,[A]. Therefore we have H,IdA C Id=Z,[A] for every
A € K. Conversely, t = t' € Id=,[A] implies =,[t ~ t'} € IdA and therefore
t~t' € H,IdA. Altogether we have

(1) H,IdK = IdZ,[K].

Let X' be a set of equations of type 7 and let A € H,ModX, i.e. X is pre-
hypersatisfied in A and thus ¥ C H,IdA. Then Z,[X] C IdA by Definition
2.3. This means A € ModZ,[X]. Conversely, A € ModZ,[X] implies A €
H,ModX and we get

(2) H,ModX = ModZ,[X].
With X' = H,IdK from (2) and (1) we obtain:
H,ModH,IdK = Mod=,[H,IdK] = ModId=,[K]

and therefore
(3) HpyVarK = VarZ,[K).
Now, let K be a pre-hyperequational class, i.e. K = H,VarK. Then by
(3) we have K = VarZ,[K]. Clearly, Z,[K] C K = VarZ,[K]. Together
with the closure property (Proposition 1.2 (i’)) we get Zp[K] = K and K is
pre-solid.

This shows (i)=>(ii).

Let K be pre-solid. By definition we have Z,[K] = K and further IdK =
IdZ,[K] = HpyIdK by (1). Thus (iii) is satisfied.
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From IdK = H,IdK by definition of a pre-hyperidentity it follows that
IdK is closed under pre-hypersubstitutions. This shows: (iii)=>(iv).

The equation IdK = H,IdK and the definition of a pre-hyperidentity
show that IdK is closed under pre-hypersubstitutions, i.e. Z,[IdK] C IdK.
Together with IdK C Z,[IdK] we get that (iii)=>(iv).

By definition of a pre-hyperidentity the equation Z,[IdK] = IdK implies
IdK = H,IdK and further K = VarK = ModldK = ModZ,[IdK] =
ModZ,[H,IdK] = H,ModH,IdK by (2). This means K = H,VarK and
K is a pre-hyperequational class. =

Note that the equivalence of (i) and (ii) is a Birkhoff-type-characteriza-
tion of pre-hyperequational classes. A variety is a pre-hyperequational class
if and only if it is closed under the operator =,,.

Let S,(7) be the class of all pre-solid varieties of type 7. Then we have:

THEOREM 3.2: S,(7) forms a meet-subsemilattice of L(T) containing
S(r) as a sublattice.

Proof. Let V; and V; be two pre-solid varieties of type . The inclusion
VinVy CV;, shows S,[VinW,] C E,[Vi]=V;, (i = 1,2) and E,[VinVy] =
VinV;. Since V; VV; agress with V3 NV, by Theorem 3.1 the variety V3 AV,
is pre-solid. Since every solid variety is pre-solid and since the solid varieties
of type 7 form a lattice the second property is clear.

4. Pre-solid varieties of semigroups

By L(S) we denote the lattice of all semigroup varietes. Now we will
describe a bit more of the structure of all pre-solid varieties of semigroups.
We start with the observation that for a variety of semigroups to be solid it
must satisfy the associative law as a hyperidentity. In [9] semigroup varieties
with this property are called hyperassociative. In [1] the hyperequational
class defined by the associative law was determined.

Consider the following sets of identities:

I = {(zhryhe . ghmryheyhaghe | (ghigke | ghn-1gknyke-a pka
xoahi(yhrzhe | ybn-igheke | ghaoa(ghigke | yka-1k Ve g € {2,4,6)
for 1 < ky,...,k, < 3}.
I := {(ghr(yhr2Fayks L hemryknyke (R gkagks | ka1 gkn yEaoa gk
x (zhrykeghs | yke-aghaRighe | (ghagkaghs | gka-igka ke g € (3 5)
for 1< ky,...,k, < 3}.
We put
Vs := Mod(I, U I U {2* =~ z*}).
Then for any class K of semigroups the following is equivalent:
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(i) K C Vus
(i) K C HMod(F(F(z,y),2) ~ F(z, F(y,2)).
It is easy to check that for a variety of commutative semigroups the
following proposition is true:

PRroPOSITION 4.1: Let V' be a nontrivial variety of commutative semi-
groups. Then V is hyperassociative if and only if it fulfils the identity z* ~

4

ZT . N

Since Vs is a hyperequational class the following is obvious:

ProproSITION 4.2 ([1]): The variety Vs is solid and for any variety V
of solid semigroups, V. C Vys.

Let S(Vis) be the lattice of all solid semigroup varieties. According'to
Proposition 2.6, every solid semigroup variety contains the variety RA,. It is
well-known that the variety RA; is equal to the variety RB of all rectangular
bands which is defined by the identities z(yz) = (zy)z, 2 =~ z, zyz = z2.
Then we obtain:

PRroOPOSITION 4.3 ([7]): RB is the least nontrivial element of S(Vis). m

Of course, not every variety in the interval between RB and Vs is solid.
But for pre-solid varieties of semigroups we have:

PRroroOSITION 4.4: The variety Vys ts pre-solid and for any pre-solid
variety V of semigroups, V C Vys. m

Proof. As a solid variety Vs is pre-solid. Since Vg is the hyperequa-
tional class generated by the associative law it is also the pre-hyperequa-
tional class generated by the associative law and thus the greatest pre-solid
variety of semigroups. m

Let S,(Vus) be the class of all pre-solid semigroup varieties. We want
to discuss the following question:

Are there pre-solid semigroup varieties in the interval between RB and
Vus which are not solid?

Attacking our question we prove:

LEMMA 4.5: Let V be a variety of type T = (2) such that RB CV. Then
V is solid if and only if V is pre-solid.

Proof. The “=” — direction is trivial. Let V be pre-solid. If t ~ t' €
IdV and if o, is a pre-hypersubstitution then o,[t] ~ o,[t'| € IdV.Ifois a
hypersubstitution different from a pre-hypersubstitution then o assigns to
the binary fundamental operation one of the projections, i.e. t & ¢’ must be
satisfied in a projection algebra and therefore it must be satisfied in RB.
(RB is the variety generated by the projection algebras). Because of RB C V
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we have IdRB D IdV, i.e. every identity in V is satisfied in a projection
algebra. Therefore, for any hypersubstitution we have o[t] = o[t'] € IdV
and by Theorem 3.1 the variety V is solid. =

As a consequence of this result a pre-solid variety of semigroups which
is not solid must be outside of the interval between RB and Vis. Notice
that the same argument works if we have an n-ary operation symbol, i.e. if
T = (n) for arbitrary n > 2. It fails to work in the general case.

Now we consider examples for pre-solid varieties. By Proposition 4.4 all
these varieties must be hyperassociative. In [1] we determined all minimal
hyperassociative semigroup varieties. They are generated by the following
sets of identities:

1. z(yz) = (zy)z, 7y = yz,z? = z, (semilattices),

2. z(yz) = (zy)z,zy = z, (right semigroups),

3. z(yz) = (zy)z,zy = y, (left semigroups),

4. z(yz) = (zy)z,2y = zu, (zero semigroups),

5. z(yz) = (zy)z,ry = yz,z’y = y, (commutative groups of exponent 2).

THEOREM 4.6: The variety of zero-semigroups is the only pre-solid atom
in the lattice of all semigroup varieties.

Proof. Substituting the binary term t(z,y) = z? in the commutative
law we obtain z2 &~ y?2 and by indempotency z ~ y, i.e. no nontrivial semi-
lattice is presolid. Substituting (z,y) = z% in F(z,y) ~ yor t(z,y) = % in
F(z,y) ~ = we get 2% =~ y or y? = z, respectively. Using the idempotency
we have z = y, i.e. a nontrivial right or left semigroup cannot be pre-solid.

Substituting any binary term ¢ for F in F(z,y) ~ F(z,u) and using the
identity 2y =~ zu we get an identity in a zero semigroup.

F(z,F(z,y)) ~ y is not hypersatisfied in a commutative group of expo-
nent 2 since for #(z,y) = z* we get 22 ~ y and therefore z2y ~ y%. Using
the identity z2y ~ y we have y? =~ v, i.e. all semilattice identities would be
saisfied in contradiction to the minimality of the variety of all semilattices. =

Note that there is the following striking difference between hypersubsti-
tutions and pre-hypersubstitutions. The operator =}, is not permutable with
the application of Birkhoff’s derivation rules for identities as the example of
semilattices shows. Using at first the identities in a semillattice we obtain
only t1(z,y) = z,t2(z,y) = y, and t3(z,y) = zy as binary semigroup terms.
Since we have to substitute only t3(z,y) = zy in the axioms the variety of all
semilattices would be pre-solid. But the definition of a pre-hypersubstitution
says that we have at first to substitute arbitrary binary terms of the type
7 = (2). Substituting ¢(z,y) = 2? in the commutative law we obtain z? = y?
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and then using the idempotency we have z = y. This means, no nontrivial
semilattice can be pre-solid.

Since the commutative law cannot be a hyperidentity there is no nontriv-
ial solid variety of commutative semigroups. By Proposition 4.1 and Propo-
sition 4.2 a pre-solid variety of commutative semigroups must satisfy the
identity z2 ~ z. We ask for the greatest pre-solid variety of commutative
semigroups. By Theorem 3.1 we have to determine the pre-hyperequational
class generated by the associative and the commutative law.

THEOREM 4.7: For every class K of semigroups the following proposi-
tions are equivalent:
(i) K C HyMod{F(F(z,y),2) = F(z, F(y,2)), F(,y) = F(y,z)},
(i) K € Mod{(zy)z =~ z(yz),zy = yz, 7y’ = 2%y, z? =~ y?}.

Proof. (i)=(ii): Let S € K. Assume that (i) is satisfied. Substituting
the binary term t,(z,y) = 22 # z in the hyperidentity F(z,y) ~ F(y,z) we
get 22 ~ y?. With t;(z,y) = zy we obtain zy = yz and t3(z,y) = zy? leads
to zy? =~ z%y. The associative hyperidentity gives the associative identity.
This shows that S € Mod{(zy)z ~ z(yz),zy ~ yz,2y’ ~ z%y,2% ~ y*}.

(ii)=(i): Assume that (ii) is satisfied. By Proposition 4.1 K C Vi and
the associative law is a pre-hyperidentity satisfied in §. We show that the
commutative law is a pre-hyperidentity too. Firstly, from the identities z?
y? and 2%y ~ zy? we get the identity z%2y =~ z2y? and then 2%y ~ z%. Let
now t(z,y) be a binary term different from a variable. Substituting t(z, y) in
the pre-hypercommutative law and using the identities zy =~ yz,z%y = zy?,
and z2y ~ 2% we have

a) t(z,y) ~ 7y ~ yz = t(y,z) or

b) i(z,y) =~ 2% ~ y* = t(y, z).

Therefore the commutative law is a pre-hyperidentity and
S € Mod{F(F(z,1),2) ~ F(s, F(y,2)), F(z,4) ~ F(y,2)}. u

We set Vpe := Mod{(zy)z = z(yz),zy ~ yz,zy* =~ z?y,z? =~ y?}.
By Theorem 3.1 Vpc is the greatest pre-solid variety of commutative semi-
groups.

~
~
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