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1. Introduction 
An identity t « t' of terms of any type τ is called a hyperidentity for a 

universal algebra A = (A; (/•A),e/) if t « t' holds identically for every choice 
of n-ary term operations to represent n-ary operation symbols occuring in t 
and t' ([8]). Although the concept of a hyperidentity is very strong there are 
countable infinitely many semigroup varieties for which every identity is a 
hyperidentity (solid varieties of semigroups) ([3]). Since any projection de-
fined on A is a term operation of A, a hyperidentity must be satisfied at least 
for the projections. Therefore there are identities which cannot be hyperiden-
tities. Substituting one of the binary projections for F in F(x, y) « F(y,x) 
we see that the commutative law fails to be a hyperidentity in any nontriv-
ial variety with a binary operation symbol. This observation suggests the 
idea to weaken the concept of a hyperidentity. The simplest way for weake-
ness could be to substitute only term operations different from projections. 
The set of all term functions of A which are different from projections can 
be regarded as the universe of an algebra whose fundamental operations 
describe the composition of functions, the so-called pre-iteratire algebra in 
the sense of I.A. Mal'cev ([6]). This motivates to denote these „weaker" hy-
peridentities as pre-hyperidentities. An algebra or a variety for which every 
identity is a pre-hyperidentity is called pre-solid. After developing the the-
ory of pre-hyperidentities and pre-solid varieties we will apply the results 
on semigroups and determine the greatest pre-solid variety of commutative 
semigroups. 

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology 
held at Jachranka, Poland, 8-13 June 1993. 
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The author is indebted to K. Glazek who recommended to consider pre-
solid varieties and to Sh. Wismath for stimulating discussions during the 
workshop on „Universal Algebra and Category Theory" in Berkeley, July 
1993. 

2. Basic concepts and results 
Hyperidentities can be characterized more precisely using the concept of 

a hypersubstitution. We fix a type τ = ( n ¿ ) , · > 0 for all i € I, and 
operation symbols (/¿)<6/> where /¿ is η,-ary. Let WT(X) be the set of all 
terms of type r over some fixed alphabet X , and let Alg{r) be the class of 
all algebras of type τ. 

A mapping 

* : {/i I » € 7} WT(X) 
which assigns to every η,-ary operation symbol /,· an η,-ary term will be 
called a hypersubstitution of type r . Applying a hypersubstitution σ to a 
term t we get a term a[t] which can be defined inductively by: 

(i) σ[χ] := χ for any variable χ in the alphabet X, and 
(ii) d[fi(h,..., ίη)] := σ(/,·)(σ[ίι], · · .,£[<»,]). 

It is clear that CT(/¿) on the right hand side of (ii) must be interpreted as the 
operation induced by the term σ(/,·) on the term algebra WT(X). According 
to the ideas explained in the introduction we define a prehypersubstitution 
of type r as a mapping 

: { f i M e / } - wT(X) \ χ 
which assigns to every operation symbol /,· an n¿-ary term which is different 
from a variable. (Note that we consider the first ti¿ variables xo> · · · >®n,·—ι 
of the standard alphabet X = {xo> · · · , ®n¡-i> · · ·} as η,-ary terms). 

The extension σρ[ί] of a pre-hypersubstitution to a term t is defined 
inductively by rules corresponding to (i) and (ii). 

If t « t' is an equation, then we denote by E[t « t'] the set 

{a[t] « a[t'\ I σ : {f{\i el}-* WT(X)} 

and by Ep]t « t'] the set 

{σρ[ή « a[t']\ap : { f t i G / } - WT(X) \ X}. 
If Σ is a set of equations, we use Ξ[Σ] for the union of the sets E[t « t'], 

for t « t' in Σ. In the same way we define ΞΡ[Σ]. 
Let A = (A; (Z/4)^/) be an algebra in Alg(r), let Κ Ç Alg(r), let σ be 

a hypersubstitution, and let σρ be a pre-hypersubstitution. Then we make 
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the following definitions: 

σ[Α] := (Ma(fi)A)ieI), 

σρ[Α]:= (A-,(op(fi)A)ie/), 

:= {σρ[«4] | σρ is a pre-hypersubstitution of type r } , 

Ξ[Λ] := {cr[A] I a is a hypersubstitution of type τ } , 

Ξ[Κ] := ( J Ξ[Α] 

AÇK 

ΞΡ[Κ] := ( J ΞΡ[Α]. 

ΑζΚ 

In [2] it was proved that Ξ is a closure operator on sets of equations and 
on classes of algebras. 

In the same way we get: 

PROPOSITION 2.1: Ξρ is a closure operator on sets of equations Σ and 

on classes of algebras Κ of type r , i.e. 

0) Σ Ç ΞΡ[Σ], 

(ii) Σ' C Σ => ΞΡ[Σ'} C Ξρ[σ], 

(iii) ΞΡ[ΞΡ[Σ}} = ΞΡ[Σ], 

( i ' ) Κ Ç ΞΡ[Κ], 

(ϋ ' ) κ1 ç κ => ΞΡ[Κ'] ς ΞΡ[Κ], 

(iii ') ΞΡ[ΞΡ[Κ]) = ΞΡ[Κ]. 

Since every pre-hypersubstitution is a hypersubstitution we have 

PROPOSITION 2.2: Let Κ be a class of algebras of type τ and let Σ be a 

set of equations of type r. Then 

( i ) ΞΡ[Σ] Ç Ξ[Σ] and 

(ii) ΞΡ[Κ] Ç Ξ[Κ]. 

Using hypersubstitutions and pre-hypersubstitutions we define hyperi-
dentities and pre-hyperidentities in the following way: 

DEFINITION 2.3 : Let A € Alg(r) be an algebra of type r. Then the 
identity t « i ' , where t,t' are terms of type r is a hyperidentity of type 
τ in A {A hypersatisfies t zt t') if σ[ί\ κ· cr[t'\ are identities for every hy-
persubstitution σ. The identity t a t ' is a pre-hyperidentity of type r in 
A {A pre-hypersatisfies tat' if σρ[ί] « σρ [ ί ' ] are identities for every pre-
hypersubstitution σρ. 

Clearly, every hyperidentity of type r is a pre-hyperidentity of this type. 
In general, the converse is false. 
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Let Κ be a class of algebras of type r . Then the identity t « t' is a 
hyperidentity respectively a pre-hyperidentity in Κ if it is a hyperidentity 
(a pre-hyperidentity) in every algebra of K. 

For a class Κ of algebras of type τ and for a set Σ of identities of this 
type we fix the following notations: 
IdK — the class of all identities of Κ, 
HIdK — the class of all hyperidentities of K, 
HpIdK — the class of all pre-hyperidentities of K, 
ΜοάΣ = {A G Alg(r)\A satisfies Σ} — the variety defined by Σ, 
ΗΜοάΣ = {Λ G Alg{r)\A hypersatisfies Σ} — the hyperequational class 
defined by Σ, 
ΗρΜοάΣ = {A G Alg{r)\A pre-hypersatisfies Σ} — the pre-hyperequatio-
nal class defined by Σ, 
VarK = ModldK — the variety generated by Κ, 
HVarK = HModHIdK = {A G Alg{r)\A hypersatisfies HIdK} — the 
hypervariety generated by Κ . 

For these sets we get the following inclusions: 

HIdK C HpIdK, ΗΜοάΣ C ΗρΜοάΣ. 

By definition every hyperidentity or every pre-hyperidentity is an iden-
tity. Very natural there arises the problem to find algebras or varieties 
for which every identity is a hyperidentity or such that every identity is 
a pre-hyperidentity. 

DEFINITION 2 .4: Let V be a variety of type r . Then V is called solid if 
= V. The variety V is called pre-solid if SP[V] = V. 

For solid varieties in [2] the following propositions were proved: 

THEOREM 2 . 5 ( [ 2 ] ) : Let K Ç Alg{r) be a variety. Then the following 
conditions are equivalent: 

(i) Κ is a hyperequational class, 
(ii) Κ is solid, 

(iii) IdK Ç HIdK, i.e. every identity of Κ is a hyperidentity, 
(iv) E[IdK] = IdK, i.e. IdK is closed under hyper substitutions. m 

For a given type r by C{r) we denote the lattice of all varieties of this 
type and by 5 ( r ) the set of all solid varieties of this type. Then we have the 
following results: 

PROPOSITION 2 . 6 ( [2 ] , [5 ] ) : 

(i) The set S(T) forms a sublattice of £(τ), 
(ii) If τ is a finite type then the lattice S (τ) is atomic. The unique 

atom is the variety RAT of all rectangular algebras of type τ. (RAT is the 
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variety generated by all algebras of type τ whose fundamental operations are 
projections). • 

Clearly, every solid variety is pre-solid. Now we are going to characterize 
pre-solid varieties. 

3. The class of all pre-solid varieties of type τ 
At first we will prove a theorem similar to Theorem 2.5 for pre-hyper-

equational classes. 

T H E O R E M 3 . 1 : Let Κ Ç Alg(r) be a variety. Then the following condi-
tions are equivalent: 

(i) Κ is a pre-hyperequational class, 
(ii) Κ is pre-solid, 

(iii) IdK Ç HpIdK, i.e. every identity of Κ is a pre-hyperidentity, 
(iv) ¡pp[IdK] — IdK, i.e. IdK is closed under pre-hypersubstitutions. 

P r o o f . Let A be an algebra of Κ and let t « t' be any pre-hyperidentity 
satisfied in A. Then σρ[ί] « σρ[/'] G IdA for every pre-hypersubstitution 
σρ, i.e. Ep[t « t'] Ç IdA. Applying the operator Ep on the algebra A 
we get t « t' G IdEp[A\. Therefore we have HvIdA Ç ΙάΞρ[Α] for every 
A G IC. Conversely, ί ~ ¿' € IdEp[A] implies Ep[t κ t'] G IdA and therefore 
t ä t' G HpIdA. Altogether we have 

(1) HpIdK = IdSp[K]. 

Let Σ be a set of equations of type r and let A G HpModl7, i.e. Σ is pre-
hypersatisfied in A and thus Σ Ç HpIdA. Then ΞΡ[Σ] Ç IdA by Definition 
2.3. This means A G ΜοάΞρ[Σ]. Conversely, A G ΜοάΞρ[Σ] implies A G 
ΗρΜοάΣ and we get 

(2) ΗρΜοάΣ = ΜοάΞρ[Σ]. 

With Σ = HpIdK from (2) and (1) we obtain: 

HpModHpIdK = ModSp[HpIdK] = ModIdEv[K] 

and therefore 

(3) HpVarK = VarSp[K]. 

Now, let Κ be a pre-hyperequational class, i.e. Κ = HpVarK. Then by 
(3) we have Κ = VarEp[K\. Clearly, ΞΡ[Κ] C K - VarEp[K]. Together 
with the closure property (Proposition 1.2 (i')) we get ΞΡ[Κ] = Κ and Κ is 
pre-solid. 

This shows (i)=i>(ii). 
Let Κ be pre-solid. By definition we have Ξρ[Κ] = Κ and further IdK = 

IdEp[K] = HpIdK by (1). Thus (iii) is satisfied. 
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From IdK = HpIdK by definition of a pre-hyperidentity it follows that 
IdK is closed under pre-hypersubstitutions. This shows: (iii)^(iv). 

The equation IdK = HpIdK and the definition of a pre-hyperidentity 
show that IdK is closed under pre-hypersubstitutions, i.e. Ep[IdK] Ç IdK. 
Together with IdK Ç Ep[IdK] we get th?it (iii)=»(iv). 

By definition of a pre-hyperidentity the equation Ep[IdK] = IdK implies 
IdK = HpIdK and further Κ = VarK = ModldK = ModEp[IdK] = 
ModEp[HvIdK] = HpModHpIdK by (2). This means Κ = HpVarK and 
Κ is a pre-hyperequational class. • 

Note that the equivalence of (i) and (ii) is a Birkhoff-type-characteriza-
tion of pre-hyperequational classes. A variety is a pre-hyperequational class 
if and only if it is closed under the operator Ev. 

Let S p ( r ) be the class of all pre-solid varieties of type r . Then we have: 

T H E O R E M 3 . 2 : SP(T) forms A meet-subsemilattice of C(T) containing 
S(T) as a sublattice. 

P r o o f . Let V\ and V2 be two pre-solid varieties of type r . The inclusion 
Vi η V2 Ç VI, shows ΞΡ[ΝΓ Π V2] c ~p[V¿] = Vu (i = 1,2) and EP[VX Π V2] = 
VI Π V2. Since Vi V V2 agress with Vi Π V2 by Theorem 3.1 the variety Vi Λ V2 
is pre-solid. Since every solid variety is pre-solid and since the solid varieties 
of type r form a lattice the second property is clear. 

4. Pre-solid varieties of semigroups 
By £(S) we denote the lattice of all semigroup variétés. Now we will 

describe a bit more of the structure of all pre-solid varieties of semigroups. 
We start with the observation that for a variety of semigroups to be solid it 
must satisfy the associative law as a hyperidentity. In [9] semigroup varieties 
with this property are called hyperassociative. In [1] the hyperequational 
class defined by the associative law was determined. 

Consider the following sets of identities: 
il := {(xklyk2 .. .xkn-1yk")klzk2 ... (xklyk2 ... x

k"-iyk"s)k<>-i2
kn 

« xkl(yklzk3 . . . y * - 1 ? · ) * ' ...xk»-l(yklzk2 1zfc-)fc" | η e {2,4,6} 
for 1 < k\,..., kn < 3}. 

/2 := {(xkl(yklzk2yk3 .. .zkn~1ykn)k2 ... (yklzk2yk3 .. .zkn-1ykn)kn-1xkn 

« (xklyk2xk3 ...yk"~1xk»)klzk2 ... (xkï yk* xki ...y*—1!*»)*» | η G {3,5} 
for 1 < ki,..., kn < 3}. 

We put 
VHS := Mod(Ii U I2 U {x2 « x4}). 

Then for any class Κ of semigroups the following is equivalent: 
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(i) Κ Ç VHS 
(ii) Κ Ç HMod(F(F(x, y), z) « F{x,F(y,z)). 
It is easy to check that for a variety of commutative semigroups the 

following proposition is true: 
PROPOSITION 4.1: Let V be a nontrivial variety of commutative semi-

groups. Then V is hyperassociative if and only if it fulfils the identity χ2 « 
χ4 . • 

Since VHS is a hyperequational class the following is obvious: 

PROPOSITION 4 . 2 ([1]): The variety VHS IS solid and for any variety V 
of solid semigroups, V Ç VHS-

Let S(VHS) he the lattice of all solid semigroup varieties. According to 
Proposition 2.6, every solid semigroup variety contains the variety RA2. It is 
well-known that the variety RA2 is equal to the variety RB of all rectangular 
bands which is defined by the identities x(yz) « (xy)z, X2 Ä Χ, xyz ÂÎ xz. 
Then we obtain: 

PROPOSITION 4 . 3 ([7]): RB is the least nontrivial element of S (VHS)· • 

Of course, not every variety in the interval between RB and VHS is solid. 
But for pre-solid varieties of semigroups we have: 

PROPOSITION 4 .4 : The variety VHS is pre-solid and for any pre-solid 
variety V of semigroups, V Ç VHS· • 

P r o o f . As a solid variety VHS is pre-solid. Since VHS is the hyperequa-
tional class generated by the associative law it is also the pre-hyperequa-
tional class generated by the associative law and thus the greatest pre-solid 
variety of semigroups. • 

Let SP(VHS) be the class of all pre-solid semigroup varieties. We want 
to discuss the following question: 

Are there pre-solid semigroup varieties in the interval between RB and 
VHS which are not solid? 

Attacking our question we prove: 

LEMMA 4 .5 : Let V be a variety of type τ = ( 2 ) such that RB Ç V. Then 
V is solid if and only if V is pre-solid. 

P r o o f . The "=>·" — direction is trivial. Let V be pre-solid. If t « t' 6 
IDV and if σρ is a pre-hypersubstitution then σρ[ί\ « σρ[ί'] ζ IDV. If σ is a 
hypersubstitution different from a pre-hypersubstitution then σ assigns to 
the binary fundamental operation one of the projections, i.e. t m t' must be 
satisfied in a projection algebra and therefore it must be satisfied in RB. 
(RB is the variety generated by the projection algebras). Because oîRB Ç V 
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we have IdRB D IdV, i.e. every identity in V is satisfied in a projection 
algebra. Therefore, for any hypersubstitution we have a[t] « a[t'] G IdV 
and by Theorem 3.1 the variety V is solid. • 

As a consequence of this result a pre-solid variety of semigroups which 
is not solid must be outside of the interval between RB and Vus- Notice 
that the same argument works if we have an ra-ary operation symbol, i.e. if 
r = (n) for arbitrary n > 2. It fails to work in the general case. 

Now we consider examples for pre-solid varieties. By Proposition 4.4 all 
these varieties must be hyperassociative. In [1] we determined all minimal 
hyperassociative semigroup varieties. They are generated by the following 
sets of identities: 

1. x(yz) « (xy)z,xy « yx,x2 « x, (semilattices), 
2. x(yz) rH (xy)z,xy « x, (right semigroups), 
3. x(yz) « (xy)z,xy & y, (left semigroups), 
4. x(yz) « (a:y)z,xy « zu, (zero semigroups), 
5. x(yz) « (xy)z, xy « yx, x2y ~ y, (commutative groups of exponent 2). 

T H E O R E M 4 . 6 : The variety of zero-semigroups is the only pre-solid atom 
in the lattice of all semigroup varieties. 

P r o o f . Substituting the binary term t(x,y) = x2 in the commutative 
law we obtain x2 « j/?2 and by indempotency χ « y, i.e. no nontrivial semi-
lattice is presolid. Substituting t(x,y) = x2 in F(x,y) « y or t(x,y) = y1 in 
F(x, y) « χ we get x2 « y or y2 « x, respectively. Using the idempotency 
we have χ ss y, i.e. a nontrivial right or left semigroup cannot be pre-solid. 

Substituting any binary term t for F in F(x,y) « F(z,u) and using the 
identity xy « zu we get an identity in a zero semigroup. 

F(x,F(x,y)) « y is not hypersatisfied in a commutative group of expo-
nent 2 since for t(x,y) = x2 we get x2 « y and therefore x2y « y2. Using 
the identity x2 y « y we have y2 « y, i.e. all semilattice identities would be 
saisfied in contradiction to the minimality of the variety of all semilattices. • 

Note that there is the following striking difference between hypersubsti-
tutions and pre-hypersubstitutions. The operator Ξρ is not permutable with 
the application of Birkhoff's derivation rules for identities as the example of 
semilattices shows. Using at first the identities in a semillattice we obtain 
only i i (x ,y) = x,t2(x,y) = y, and Í3(x,y) = xy as binary semigroup terms. 
Since we have to substitute only ^ ( x , y) = xy in the axioms the variety of all 
semilattices would be pre-solid. But the definition of a pre-hypersubstitution 
says that we have at first to substitute arbitrary binary terms of the type 
r = (2). Substituting f(x, y) = x2 in the commutative law we obtain x2 » y2 
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and then using the idempotency we have χ « y. This means, no nontrivial 
semilattice can be pre-solid. 

Since the commutative law cannot be a hyperidentity there is no nontriv-
ial solid variety of commutative semigroups. By Proposition 4.1 and Propo-
sition 4.2 a pre-solid variety of commutative semigroups must satisfy the 
identity x2 « x4 . We ask for the greatest pre-solid variety of commutative 
semigroups. By Theorem 3.1 we have to determine the pre-hyperequational 
class generated by the associative and the commutative law. 

T H E O R E M 4.7: For every class Κ of semigroups the following proposi-
tions are equivalent: 

( i ) Κ Ç HpMod{F(F(x, y), z) « F(x, F(y, z)), F(x, y) « F(y, x ) } , 
( i i ) Κ Ç Mod{(xy)z « x(yz),xy « yx,xy2 « x2y,x2 « y2}. 

P r o o f . (i)=>(ii): Let S G Κ. Assume that (i) is satisfied. Substituting 
the binary term t\(x,y) = χ2 φ χ in the hyperidentity F(x,y) « F(y,x) we 
get χ2 ~ y2. With t2(x, y) = xy we obtain xy « y χ and £3(2, y) = xy2 leads 
to xy2 ~ x2y. The associative hyperidentity gives the associative identity. 
This shows that S € Mod{(xy)z « x(yz),xy « yx,xy2 « x2y,x2 « y2}. 

(ii)=>(i): Assume that (ii) is satisfied. By Proposition 4.1 Κ Ç Vus a n ¿ 
the associative law is a pre-hyperidentity satisfied in S. We show that the 
commutative law is a pre-hyperidentity too. Firstly, from the identities x2 « 
y2 and x2y « xy2 we get the identity x2y « x2y2 and then x2y « x2. Let 
now t(x, y) be a binary term different from a variable. Substituting t(x, y) in 
the pre-hypercommutative law and using the identities xy « yx,x2y « xy2, 
and x2y « χ2 we have 

a ) t(x,y) ~ xy ~ yx ~ t(y,x) or 
b ) t(x,y) « x2 « y2 « t(y, x). 
Therefore the commutative law is a pre-hyperidentity and 

S e Mod{F(F(x, y), ζ ) * F{x, F(y, ζ)), F(x, y) « F(y, χ)}. • 

W e se t Vpc '•= Mod{{xy)z « x(yz),xy « yx,xy2 ~ x2y,x2 « y2}· 
By Theorem 3.1 Vpc is the greatest pre-solid variety of commutative semi-
groups. 
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