

Zoran Stojaković

ON AN ALGEBRAIC EQUIVALENT
OF TETRAHEDRAL QUADRUPLE SYSTEMS

Dedicated to Professor Tadeusz Traczyk

1. Introduction and preliminaries

In [13] a class of quadruple systems called tetrahedral quadruple systems (TQSs) was defined. TQSs represent a generalization of Mendelsohn triple systems different from generalizations in [9], [11]. A TQS of order v is a pair (S, T) , where S is a finite set of v elements and T is a family of directed quadruples $\langle abcd \rangle$, a, b, c, d distinct elements of S , such that every ordered triple of distinct elements of S belongs to exactly one directed quadruple from T . A directed quadruple $\langle abcd \rangle$ is the following set of 12 ordered triples

$$\begin{aligned} \langle abcd \rangle = \{ & (abc), (bca), (cab), (adb), (dba), (bad), \\ & (acd), (cda), (dac), (bdc), (dcb), (cbd) \}. \end{aligned}$$

It was proved in [13] that TDSs are equivalent to generalized idempotent alternating symmetric (GIAS) 3-quasigroups, their properties were investigated and some parts of the spectrum of TQSs determined. In [5] further investigation of TQSs was carried on and it was proved that the spectrum of TQSs consists of all v such that $v \equiv 1, 2, 4, 5, 8, 10 \pmod{12}$. In [12] Mendelsohn triple systems derived from TQSs were considered.

The sequence x_m, x_{m+1}, \dots, x_n is denoted by $\{x_i\}_{i=m}^n$ or by x_m^n . If $m > n$, then x_m^n will be considered empty.

AMS Mathematics Subject Classification (1980): 20N15, 05B30

Key words and phrases: Alternating symmetric 3-quasigroup, congruence, tetrahedral quadruple system.

This paper has been presented at the Conference on Universal Algebra and its Applications, Organized by the Institute of Mathematics of Warsaw University of Technology held at Jachranka, Poland, 8–13 June 1993.

An n -ary groupoid (n -groupoid) $(Q; f)$ is called an n -quasigroup if the equation $f(a_1^{i-1}, x, a_{i+1}^n) = b$ has a unique solution x for every $a_1^n, b \in Q$ and every $i \in \{1, \dots, n\}$.

By S_n we denote the symmetric group of degree n and by A_n its alternating subgroup.

If $(Q; f)$ is an n -quasigroup and $\sigma \in S_{n+1}$, then the n -quasigroup $(Q; f^\sigma)$ defined by

$$f^\sigma(\{x_{\sigma(i)}\}_{i=1}^n) = x_{\sigma(n+1)} \Leftrightarrow f(x_1^n) = x_{n+1}$$

is called a σ -conjugate (or simply conjugate) of f . The set of all σ such that $f = f^\sigma$ is a subgroup of S_{n+1} .

An n -quasigroup $(Q; f)$ is called

- a) totally symmetric (TS) if $f = f^\sigma$ for all $\sigma \in S_{n+1}$,
- b) alternating symmetric (AS) iff $f = f^\sigma$ for all $\sigma \in A_{n+1}$. AS- n -quasigroups were introduced and investigated in [10].

An n -groupoid $(Q; f)$ is called alternating symmetric iff for every permutation $\sigma \in A_{n+1}$

$$f(\{x_{\sigma(i)}\}_{i=1}^n) = x_{\sigma(n+1)} \Leftrightarrow f(x_1^n) = x_{n+1}.$$

It is not difficult to see that every AS- n -groupoid is necessarily an AS- n -quasigroup.

If $(Q; f)$ is an n -quasigroup and $\sigma \in S_{n+1}$, $\sigma^{-1}(n+1) = k$, then $f = f^\sigma$ iff for all $x_1^n \in Q$

$$f(\{x_{\sigma(i)}\}_{i=1}^{k-1}, f(x_1^n), \{x_{\sigma(i)}\}_{i=k+1}^n) = x_{\sigma(n+1)}.$$

Hence AS- n -quasigroups can be defined as n -quasigroups satisfying a system of identities.

It is easy to see that an n -quasigroup $(Q; f)$ is an AS- n -quasigroup iff $f = f^\sigma$ for every $\sigma \in \Gamma$, where Γ is a generating set of the group A_{n+1} .

This implies that for $n = 3$ we have the following.

A 3-groupoid $(Q; f)$ is AS iff the following identities are satisfied

$$\begin{cases} f(x, y, z) = f(y, z, x), \\ f(y, f(x, y, z), z) = x. \end{cases}$$

A 3-groupoid $(Q; f)$ is called generalized idempotent (GI) iff for all $x, y \in S$

$$f(x, y, y) = f(y, x, y) = f(y, y, x) = x.$$

An AS-3-groupoid which is GI is called a GIAS-3-groupoid.

So, a 3-groupoid $(Q; f)$ is a GIAS-3-groupoid iff it satisfies the following

identities

$$\begin{cases} f(x, y, z) = f(y, z, x), \\ f(y, f(x, y, z), z) = x, \\ f(x, y, y) = x. \end{cases}$$

Hence the class of all GIAS-3-groupoids is a variety.

In [13] it is proved that finite GIAS-3-groupoids are equivalent to TQSs.

If (S, T) is a TQS of order v , and f is defined for distinct elements $x, y, z, u \in S$ by

$$(1) \quad f(x, y, z) = u \Leftrightarrow \langle xyzu \rangle \in T$$

and

$$f(x, y, y) = f(y, x, y) = f(y, y, x) = x,$$

then (S, f) is GIAS-3-groupoid of order v . Conversely, if (S, f) is a GIAS-3-groupoid of order v , then by (1) a TQS (S, T) of order v is defined.

Hence GIAS-3-groupoids coordinatize TQSs. Since GITS-3-quasigroups are equivalent to Steiner quadruple systems, and every GITS-3-quasigroup is also a GIAS-3-quasigroup, it follows that TQSs represent a generalization of Steiner quadruple systems. Coordinatization of Steiner systems and their corresponding algebras were considered in [3], [4], [6], [7], [8].

2. The algebra of GIAS-3-groupoids

THEOREM 1. *Let $\mathcal{U} = (Q; f)$ be a GIAS-3-groupoid and let $C(\mathcal{U})$ be the congruence lattice of \mathcal{U} . Then*

- a) *If $\theta \in C(\mathcal{U})$, then each θ -class is a subalgebra of \mathcal{U} ,*
- b) *\mathcal{U} has permutable congruences,*
- c) *\mathcal{U} has regular congruences,*
- d) *\mathcal{U} has uniform congruences,*
- e) *\mathcal{U} has coherent congruences.*

P r o o f. a) Obvious.

b) Follows from Mal'cev's theorem (a variety has permutable congruences iff it has a ternary polynomial $f(x, y, z)$ such that $f(x, y, y) = f(y, y, x) = x$).

c) Let $[a]\theta$, $\theta \in C(\mathcal{U})$, be a θ -class. If $x \equiv y(\theta)$ then $f(x, y, a) \equiv f(y, y, a)(\theta)$, hence $a \equiv f(x, y, a)(\theta)$. Conversely, if $a \equiv f(x, y, a)(\theta)$, then $f(a, x, a) \equiv f(f(x, y, a), x, a)(\theta)$ and since \mathcal{U} is AS $f(f(x, y, a), x, a) = y$, hence $x \equiv y(\theta)$. We have proved that for all $x, y \in Q$, $x \equiv y(\theta)$ iff $a \equiv f(x, y, a)(\theta)$, so one θ -class defines the whole congruence.

d) Let $\theta \in C(\mathcal{U})$, $a, b \in Q$, $a \equiv b(\theta)$. The mapping $\varphi : [a]\theta \rightarrow [b]\theta$ defined by $\varphi(x) = f(x, a, b)$ is a bijection. φ is obviously 1-1, and if $y \in [b]\theta$, then $x = f(y, b, a) \in [a]\theta$ is such that $\varphi(x) = f(f(y, b, a), a, b) = y$.

e) Let $\mathcal{B} = (B; f)$ be a subalgebra of \mathcal{U} which contains a congruence class $C = [a]\theta$. If we assume that there exist elements $p \in Q \setminus B$, $q \in B \setminus C$, such that $p \equiv q(\theta)$, and if r is an arbitrary element from C , then since the mapping $f : [r]\theta \rightarrow [q]\theta$ defined by $x \mapsto f(x, r, q)$ is a bijection, it follows that there exist an element $r_1 \in C$ such that $f(r_1, r, q) = p$. But, since \mathcal{B} is a subalgebra, $p \in B$, which is a contradiction. Hence all elements congruent to an element of B belong to B , i.e. a subalgebra which contains a congruence class must be a union of congruence classes.

We have proved that if a GIAS-3-groupoid has a nontrivial congruence, then that congruence is uniform and each congruence class is a subalgebra. Since factor algebra is also a GIAS-3-groupoid we have the following corollary.

COROLLARY 1. *A necessary condition that a finite GIAS-3-groupoid of order v has nontrivial congruences, is that $v \equiv v_1 v_2$, where v_1, v_2 are integers greater than 1 such that $v_1, v_2 \equiv 1, 2, 4, 5, 8, 10 \pmod{12}$.*

In [2] Fraser and Horn studied varieties V with the property that for every $\mathcal{A}, \mathcal{B} \in V$ each congruence θ of $\mathcal{A} \times \mathcal{B}$ is a product congruence $\theta_1 \times \theta_2$. A variety V of algebras has the Fraser–Horn property if for every $\mathcal{A}, \mathcal{B} \in V$ all congruences of $\mathcal{A} \times \mathcal{B}$ are product congruences. A congruence of a direct product which is not a product congruence is called skew.

THEOREM 2. *A variety of GIAS-3-groupoids does not have the Fraser–Horn property.*

P r o o f. In [8] it is proved that the variety which coordinatizes Steiner quadruple systems has a skew congruence. Since this variety is a subvariety of the variety V of all GIAS-3-groupoids, it follows that V does not have the Fraser–Horn property.

Using a theorem of Birkhoff ([1]) which states that if every algebra from a variety has permutable congruences and singleton subalgebras, then every finite algebra from that variety has a decomposition into a direct product of directly irreducible algebras which is unique up to isomorphism of the factors and up to their sequence, by Theorem 1 we get the next theorem.

THEOREM 3. *Each finite GIAS-3-groupoid has a decomposition into a direct product of directly irreducible factors which is unique up to isomorphism of the factors and up to their sequence.*

Now we shall consider normal subalgebras of GIAS-3-groupoids (a subalgebra is called normal if it is a congruence class) and establish some criterions for a subalgebra to be normal. By the preceding results a normal subalgebra of a GIAS-3-groupoid determines the whole congruence. If \mathcal{B} is a normal

subalgebra of a GIAS-3-groupoid \mathcal{U} , then by $x \equiv y(\mathcal{B})$ we denote that x is congruent to y in a congruence determined by \mathcal{B} .

THEOREM 4. *Let $\mathcal{U} = (Q; f)$ be a GIAS-3-groupoid, $\mathcal{B} = (B; f)$ a subalgebra in \mathcal{U} and $\theta \in C(\mathcal{U})$. \mathcal{B} is normal with respect to θ in \mathcal{U} iff*

$$(2) \quad x \equiv y(\theta) \Leftrightarrow (\exists a \in B)f(a, x, y) \in B.$$

Proof. Let \mathcal{B} be normal. If $x \equiv y(\theta)$, then $f(a, x, x) \equiv f(a, x, y)(\theta)$, hence $f(a, x, y) \in B$.

Conversely, if there is $a \in B$ such that $f(a, x, y) \in B$, then $f(a, x, a) \equiv f(f(a, x, y), x, a)(\theta)$. Since $f(f(a, x, y), x, a) = y$, $x \equiv y(\theta)$.

If (2) is valid, then obviously B is a congruence class.

We note that it is not difficult to see that

$$x \equiv y(\theta) \Leftrightarrow (\exists a \in B)f(a, x, y) \in B \Leftrightarrow (\forall a \in B)f(a, x, y) \in B.$$

THEOREM 5. *A subalgebra $\mathcal{B} = (B; f)$ of a GIAS-3-groupoid $\mathcal{U} = (Q; f)$, is normal iff for all $x_1^3, y_1^3 \in Q$ and all $a \in B$ $f(a, x_i, y_i) \in B, i = 1, 2, 3$ imply $f(a, f(x_1^3 y_1^3) \in Q$ and all $a \in B$ $f(a, x_i, y_i) \in B, i = 1, 2, 3$ imply $f(a, f(x_1^3), f(y_1^3)) \in B$.*

Proof. Let \mathcal{B} be normal. If $f(a, x_1, y_i) \in B, i = 1, 2, 3$, then by Theorem 4 $x_i \equiv y_i(\mathcal{B})$, hence $f(x_1^3) \equiv f(y_1^3)(\mathcal{B})$.

Conversely, let the implication from the theorem be valid. Then the relation \equiv defined by equivalence (2) is obviously reflexive. If there is $a \in B$, $f(a, x, y) = a_1 \in B$, then $f(a_1, y, x) = a \in B$, hence there is $a_1 \in B$ such that $f(a_1, y, x) \in B$ i.e. \equiv is symmetric. If there exists $a \in B$ such that $f(a, x, y) \in B$ and $f(a, y, z) \in B$, then $f(a, f(x, y, y), f(y, z, y)) = f(a, x, z) \in B$, i.e. \equiv is transitive, hence it is an equivalence relation.

From $f(a, x_i, y_i) \in B, i = 1, 2, 3$, we get $f(a, f(x_1^3), f(y_1^3)) \in B$, i.e. $f(x_1^3) \equiv f(y_1^3)(\mathcal{B})$ which means that \equiv is a congruence.

THEOREM 6. *Every subalgebra of a finite GIAS-3-groupoid $\mathcal{U} = (Q; f)$ of order $|Q|/2$ is normal.*

Proof. Let $\mathcal{B} = (B; f)$ be a subalgebra of order $|Q|/2$, $P = Q \setminus B$, and let \equiv be an equivalence relation on Q having two equivalence classes B and P .

First we shall prove that

$$x \equiv y \Leftrightarrow (\forall a \in B)f(a, x, y) \in B.$$

If $x \equiv y$, then $x, y \in B$ or $x, y \in P$. If $x, y \in B$, then obviously $(\forall a \in B)f(a, x, y) \in B$. If $x, y \in P$, then $(\forall a \in B)(\exists x_1 \in B)f(x_1, a, y) = x$,

since the mapping $z \mapsto f(z, a, y)$ is a bijection of B onto P . This implies $f(a, x, y) = x_1 \in B$.

Now let $(\forall a \in B)f(a, x, y) = b \in B$, and assume $x \neq y$. Then $x \in B$, $y \in P$ (or $x \in P, y \in B$), and $f(a, x, y) = b$ implies $f(a, b, x) = y$, which, since $f(a, b, x) \in B$ and $y \in B$, is a contradiction.

It remains to prove that \equiv is a congruence.

If $x_1^3 \in Q$, we shall determine to which equivalence class $f(x_1^3)$ belongs. If at least one of the elements x_1^3 belongs to B , say $x_1 \in B$, then if x_2^3 belong to the same class (i.e. $x_2 \equiv x_3$), we have

$$x_2 \equiv x_3 \Leftrightarrow (\forall a \in B)f(a, x_2, x_3) \in B,$$

and $f(x_1^3) \in B$, but if x_2^3 are not in the same class, then $f(x_1^3) \in P$.

If $x_1^3 \in P$, then the assumption that $f(x_1^3) = a \in B$ implies $f(a, x_2, x_1) = x_3 \in P$, hence $x_1 \neq x_2$, which is a contradiction. So, in this case $f(x_1^3) \in P$.

If $x_i \equiv y_i, i = 1, 2, 3$, then from the preceding it follows that $f(x_1^3)$ and $f(y_1^3)$ belong to the same equivalence class, that is \equiv is a congruence.

THEOREM 7. *If a finite GIAS-3-groupoid $\mathcal{U} = (Q; f)$ has a proper subalgebra $\mathcal{B} = (B; f)$ of order b , then $|Q| \geq 2b$.*

Proof. Since B is a proper subset of Q , there is $p \in Q \setminus B$. If a mapping φ is defined by $\varphi(x) = f(x, a, p)$, where $a \in B$ is fixed, then for all $x \in B$, $\varphi(x) \in Q \setminus B$ (since $\varphi(x) = f(x, a, p) = c \in B$ implies a contradiction $f(x, c, a) = p, x, c, a \in B$), hence $\varphi : B \rightarrow Q \setminus B$.

Since f is a 3-quasigroup, φ is 1-1.

THEOREM 8. *If θ is a congruence of a GIAS-3-groupoid $(Q; f)$ and S and T two congruence classes, then $S \cup T$ is a subalgebra of $(Q; f)$.*

Proof. For singleton congruence classes the theorem is obviously true. Let $a, b \in S, c, d \in T$. We have to prove that $f(a, b, c), f(b, a, c), f(a, c, d), f(a, d, c) \in S \cup T$. Since $a \equiv b(\theta) f(a, a, c) \equiv f(a, b, c)(\theta)$, hence $f(a, b, c) \in T$. Similarly for other cases.

COROLLARY 2. *If θ is a congruence of a finite GIAS-3-groupoid $(Q; f)$ having more then two congruence classes, then for all $a \in Q$*

$$4|[a]\theta| \geq |Q|.$$

Proof. Follows from Theorems 7 and 8.

THEOREM 9. *Let $(Q; f)$ be a GIAS-3-groupoid and A, B, C its subalgebras such that $A \cup B$ and $A \cup C$ are also subalgebras. Then $(\exists a \in A)(\exists b \in B)(\exists c \in C)f(a, b, c) \in A \cup B \cup C$ iff at least one of the sets $A \cap B$, $A \cap C$ and $B \cap C$ is nonempty.*

Proof. Assume that $f(a, b, c) = a_1 \in A$. Then $f(a, a_1, b) = c$, and since $A \cup B$ is a subalgebra $c \in A$ or $c \in B$, hence $A \cap C \neq \emptyset$ or $B \cap C \neq \emptyset$. Similarly, if any of the sets $A \cap B$, $A \cap C$ or $B \cap C$ is nonempty, say $A \cap B \neq \emptyset$, then for any $a_1 \in A \cap B$, $a \in A$, $c \in C$, $f(a, a_1, c) \in A \cup C \subseteq A \cup B \cup C$, since $A \cup C$ is a subalgebra. If $B \cap C \neq \emptyset$, then for any $b_1 \in B \cap C$, $a \in A$, $b \in B$, $f(a, b, b_1) \in A \cup B \subseteq A \cup B \cup C$. Analogously in the case when $A \cap C \neq \emptyset$.

A corollary of the preceding theorems is that the union of three congruence classes of a GIAS-3-groupoid is never a subalgebra.

THEOREM 10. *A complement B of a subalgebra A of a finite GIAST-3-groupoid is a subalgebra iff $|A| = |B|$.*

Proof. If $|A| = |B|$, then by Theorem 6 A is normal, hence B is a congruence class and by Theorem 1 it is a subalgebra.

Let $B = Q \setminus A$ be a subalgebra and let $a \in A$, $b \in B$. If we assume that $|A| > |B|$, then the mapping $f : A \rightarrow B$ defined by $f : x \mapsto f(x, a, b)$ is $1-1$, which is a contradiction. Analogously if $|A| < |B|$.

References

- [1] G. Birkhoff, *Lattice theory*, 3rd edition, Amer. Math. Soc. Colloquium Publications, Vol. XXV, 1967.
- [2] G. A. Fraser, A. Horn, *Congruence relations in direct products*, Proc. Amer. Math. Soc. 26 (1970), 390–394.
- [3] B. Ganter, H. Werner, *Equational classes of Steiner systems*, Algebra Universalis 5(1975), 125–140.
- [4] B. Ganter, H. Werner, *Co-ordinatizing Steiner systems*, Ann. Discrete Math. 7(1980), 3–24.
- [5] A. Hartman, K. T. Phelps, *The spectrum of tetrahedral quadruple systems*, Utilitas Math. 37(1990), 181–188.
- [6] R. W. Quackenbush, *Algebraic speculation about Steiner systems*, Ann. Discrete Math. 7(1980), 25–35.
- [7] R. W. Quackenbush, *Varieties of Steiner loops and Steiner quasigroups*, Canad. J. Math., 28, 6(1976), 1187–1198.
- [8] M. J. de Resmini, *On congruences on Steiner ternary algebras. A class of resolvable SQS's*, Boll. Un. Math. Ital. (5) 17-A (1980), 74–81.
- [9] R. G. Stanton, N. S. Mendelsohn, *Some results on ordered quadruple systems*, Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computing, Utilitas Math. Publ. (1970), 297–309.
- [10] Z. Stojaković, *Alternating symmetric n -quasigroups*, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 18(1983), 259–272.

- [11] Z. Stojaković, *A generalization of Mendelsohn triple systems*, Ars Combinatoria 18(1984), 131–138.
- [12] Z. Stojaković, *Derived Mendelsohn triple systems*, Bull. Austral. Math. Soc. (to appear).
- [13] Z. Stojaković, R. Madaras, *On tetrahedral quadruple systems*, Utilitas Math. 29(1986), 19–26.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF NOVI SAD
Trg D. Obradovića 4
21 000 NOVI SAD, YUGOSLAVIA

Received October 18, 1983.