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1. Introduction and preliminaries 
In [13] a class of quadruple systems called tetrahedral quadruple systems 

(TQSs) was defined. TQSs represent a generalization of Mendelsohn triple 
systems different from generalizations in [9], [11]. A TQS of order ν is a pair 
(S,T) , where S is a finite set of ν elements and Τ is a family of directed 
quadruples (abcd),a,b,c,d distinct elements of 5, such that every ordered 
triple of distinct elements of S belongs to exactly one directed quadruple 
from T. A directed quadruple {abed} is the following set of 12 ordered triples 

(abed) = {(abc),(bca),(cab),(adb),(dba),(bad), 

(acd), (cda), (dac), (bde), (deb), (cbd)} . 

It was proved in [13] that TDSs are equivalent to generalized idempotent 
alternating symmetric (GIAS) 3-quasigroups, their properties were investi-
gated and some parts of the spectrum of TQSs determined. In [5] further 
investigation of TQSs was carried on and it was proved that the spectrum 
of TQSs consists of all υ such that ν Ξ 1,2,4,5,8,10 (mod 12). In [12] 
Mendelsohn triple systems derived from TQSs were considered. 

The sequence xm,xm+i,..., xn is denoted by {xj}"=77l or by χ I f m > 
η, then χ ^ will be considered empty. 
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An n-ary groupoid (n-groupoid) (Q; f ) is called an n-quasigroup if the 
equation / ( α ΐ _ 1 , x, α"+ι) = b has a unique solution χ for every a", b G Q and 
every i G { 1 , . . . , η}. 

By Sn we denote the symmetric group of degree η and by An its alter-
nating subgroup. 

If (Q; f ) is an n-quasigroup and σ G 5 η+ι » then the n-quasigroup ( Q ; f ) 
defined by 

Γ ( Κ ( « ) } " = ΐ ) = *σ(η+1) O / (*? ) = Zn+1 
is called a σ-conjugate (or simply conjugate) of / . The set of all σ such that 
/ = fa is a subgroup of 5n+i. 

An n-quasigroup (Q\f ) is called 
a) totally symmetric (TS) if / = f for all σ G 5η+ι> 
b) alternating symmetric (AS) iff / = f for all σ G Αη+χ. AS-n-quasi-

groups were introduced and investigated in [10]. 
An n-groupoid (Q; / ) is called alternating symmetric iff for every per-

mutation σ 6 An+\ 

1({χσ(ϊ)}ί=ΐ) = *σ(η+1) & /(®l) = ®n+l · 

It is not difficult to see that every AS-n-groupoid is necessarily an AS-n-
quasigroup. 

If (Q; / ) is an n-quasigroup and σ G 5 η +ι , σ - 1 ( η + 1) = k, then / = f 
iff for all s f G Q 

/({χσ(ί)}ί=ι >/(®")>{®σ(.·)}"=Λ+ΐ) = ®<τ(η+1)· 

Hence AS-n-quasigroups can be defined as n-quasigroups satisfying a system 
of identities. 

It is easy to see that an n-quasigroup ( Q ; / ) is an AS-n-quasigroup iff 
f = f for every σ G Γ, where Γ is a generating set of the group An+\. 

This implies that for η = 3 we have the following. 
A 3-groupoid (Q; f ) is AS iff the following identities are satisfied 

f f(x,y,z) = f(y,z,x), 
I / (y , / («>y ,*) ,z ) = χ-

Α. 3-groupoid ( Q \ f ) is called generalized idempotent (GI) iff for all 
x,y G S 

f(x,y,y) = f(y,x,y) = f(y,y,«) = 
An AS-3-groupoid which is GI is called a GIAS-3-groupoid. 
So, a 3-groupoid (Q ; / ) is a GIAS-3-groupoid iff it satisfies the following 
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identities 

. f(x,y,y) = χ-
Hence the class of all GIAS-3-groupoids is a variety. 
In [13] it is proved that finite GIAS-3-groupoids are equivalent to TQSs. 
If ( S , T ) is a TQS of order v, and / is defined for distinct elements 

x,y,z,ue S b y 

( 1 ) f ( x , y,z) = u<& (xyzu) G Τ 

and 

f(x,y,y) = f ( y , x , y ) = f ( y , y , x ) = χ, 
then (S, / ) is GIAS-3-groupoid of order v. Conversely, if (S, / ) is a GIAS-3-
groupoid of order v, then by (1) a TQS (S,T) of order ν is defined. 

Hence GIAS-3-groupoids coordinatize TQSs. Since GITS-3-quasigroups 
are equivalent to Steiner quadruple systems, and every GITS-3-quasigroup 
is also a GIAS-3-quasigroup, it follows that TQSs represent a generalization 
of Steiner quadruple systems. Coordinatization of Steiner systems and their 
corresponding algebras were considered in [3], [4], [6], [7], [8]. 

2. The algebra of GIAS-3-groupoids 

THEOREM 1. Let U = (Q;f ) be a GIAS-3-groupoid and let C(U) be the 
congruence lattice o f U . Then 

a) If θ € C(U), then each θ-class is a subalgebra of Μ, 
b) U has permutable congruences, 
c) U has regular congruences, 
d) U has uniform congruences, 

e)U has coherent congruences. 

P r o o f , a) Obvious. 
b) Follows from Mal'cev's theorem (a variety has permutable congruences 

iff it has a ternary polynomial f(x, y, z) such that f{x, y, y) = f ( y , y, x) = x. 
c) Let [α]θ, θ e C{U), be a 0-class. If χ Ξ y{9) then f ( x , y , a ) = 

f ( y , y , a ) ( e ) , hence a = f{x,y,a){9). Conversely, if a = f ( x , y , a ) ( 0 ) , then 
f{a,x,a) = f { f { x , y , a ) , x , a ) { 9 ) and since U is AS f ( f ( x , y , a ) , x , a ) = y, 
hence χ = y{0). We have proved that for all x,y G Q,x = y{9) iff a = 
f ( x , y , a ) ( 0 ) , so one 0-class defines the whole congruence. 

d) Let θ G C{U), a,beQ,a = 6(0). The mapping ψ : [α]θ -> [b]0 defined 
by φ ( χ ) = f(x,a,b) is a bijection. ψ is obviously 1-1, and if y G [b\9, then 
x = /(í/>¿>, a) G [a]0 is such that φ{χ) = f ( f ( y , b , a ) , a , b ) = y. 
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e) Let Β = (Β; f ) be a subalgebra of U which contains a congruence 
class C = [ά\θ. If we assume that there exist elements ρ € Q\B, q 6 B\C, 
such that ρ = <?(#), and if r is an arbitrary element from C, then since the 
mapping / : [τ\θ —• defined by ι κ / ( χ , r, q) is a bijection, it follows 
that there exist an element r\ G C such that f(r\,r,q) = p. But, since β is a 
subalgebra, ρ ζ Β, which is a contradiction. Hence all elements congruent to 
an element of Β belong to B, i.e. a subalgebra which contains a congruence 
class must be a union of congruence classes. 

We have proved that if a GIAS-3-groupoid has a nontrivial congruence, 
then that congruence is uniform and each congruence class is a subalge-
bra. Since factor algebra is also a GIAS-3-groupoid we have the following 
corollary. 

COROLLARY 1. A necessary condition that a finite GIAS-3-groupoid of 
order ν has nontrivial congruences, is that ν = V\V2, where v\, t>2 are integers 
greater than 1 such that V\,V2 = 1,2,4,5,8, lQ(modl2). 

In [2] Fraser and Horn studied variétés V with the property that for 
every Α,Β (Ξ V each congruence θ of Λ Χ Β is a product congruence θ\ χ θη,. 
A variety V of algebras has the Fraser-Horn property if for every Α, Β E V 
all congruences of Λ Χ Β are product congruences. A congruence of a direct 
product which is not a product congruence is called skew. 

T H E O R E M 2 . A variety of GIAS-3-groupoids does not have the Fraser-
Horn property. 

P r o o f . In [8] it is proved that the variety which coordinatizes Steiner 
quadruple systems has a skew congruence. Since this variety is a subvariety 
of the variety V of all GIAS-3-groupoids, it follows that V does not have 
the Fraser-Horn property. 

Using a theorem of Birkhoff ([1]) which states that if every algebra from 
a variety has permutable congruences and singleton subalgebras, then every 
finite algebra from that variety has a decomposition into a direct product 
of directly irreducible algebras which is unique up to isomorphism of the 
factors and up to their sequence, by Theorem 1 we get the next theorem. 

T H E O R E M 3 . Each finite GIAS-3-groupoid has a decomposition into a di-
rect product of directly irreducible factors which is unique up to isomorphism 
of the factors and up to their sequence. 

Now we shall consider normal subalgebras of GIAS-3-groupoids (a subal-
gebra is called normal if it is a congruence class) and establish some criterions 
for a subalgebra to be normal. By the preceding results a normal subalgebra 
of a GIAS-3-groupoid determines the whole congruence. If Β is a normal 
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subalgebra of a GIAS-3-groupoid U, then by χ = y (Β) we denote that χ is 
congruent to y in a congruence determined by B. 

THEOREM 4 . LetU = ( Q ] f ) be a GIAS-3-groupoid, Β = ( B ; f ) a subal-
gebra in U and θ G C(U). Β is normal with respect to θ in U i f f 

( 2 ) χ = y{6) Ο ( 3 α G B)f{a, χ, y) G Β. 

P r o o f . Let Β be normal. If χ = y(0), then / ( α , χ , χ ) = f(a,x,y)(0), 
hence f ( a , x , y ) G B. 

Conversely, if there is α G Β such that f(a,x,y) G 5 , then / ( α , χ , α ) = 
f ( f ( a , x , y ) , x , a ) ( 0 ) . Since f ( f ( a , x , y ) , x , a ) = y,x = y{9) 

If (2) is valid, then obviously Β is a congruence class. 
We note that it is not difficult to see that 

χ = ν(θ) & ( 3 a € B)f(a,x,y) G Β & (Va € B)f(a,x,y) £ Β. 

THEOREM 5. A subalgebra Β = ( 5 ; / ) of a GIAS-3-groupoid U = (Q; / ) , 
is normal i f f for all Xi,yf € Q and all a € B f ( a , x,·, j/¿) G Β, i = 1 , 2 , 3 
imply f ( a , f ( x \ y \ G Q and all a G Bf(a,X{, yi) G Β, i = 1 , 2 , 3 imply 
f { a , f { x \ ) , f { y l ) ) e B . 

P r o o f . Let Β be normal. If f(a,x\,yi) G B,i = 1,2,3, then by Theorem 
4 x¿ = Vi(B), hence / ( a? ) = /(y?)(fl) . 

Conversely, let the implication from the theorem be valid. Then the 
relation Ξ defined by equivalence (2) is obviously reflexive. If there is a G Β, 
f ( a , x , y ) = αχ G Β, then f ( a \ , y , x ) = a G Β, hence there is αχ G -S 
such that / (αχ ,y , χ ) G Β i.e. = is symmetric. If there exists a G Β such 
that f ( a , x , y ) G Β and f ( a , y , z ) G Β, then f ( a , f { x , y , y ) , f ( y , z , y ) ) = 
f(a,x,z) G JB, i.e. = is transitive, hence it is an equivalence relation. 

From f(a,Xi,yi) ζ B, i = 1,2,3, we get f { a , f ( x \ ) , f ( y l ) ) G Β, i.e. 
f { x \ ) = f ( y i ) ( B ) which means that = is a congruence. 

THEOREM 6. Every subalgebra of a finite GIAS-3-groupoid U = (Q;f ) 
of order \Q\/2 is normal. 

P r o o f . Let Β = ( 5 ; / ) be a subalgebra of order |Q|/2, Ρ = Q \ B , 
and let = be an equivalence relation on Q having two equivalence classes Β 
and P . 

First we shall prove that 

χ = y o (Va G B ) f ( a , χ, y) G B. 

If χ = y, then χ, y G B or x, y G P. If x, y G B, then obviously (Va G 
B ) f ( a , x , y ) G B. If x , y G P , then (Va G #)(3χχ G £ ) / ( ® i , a , y ) = 
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since the mapping ζ f(z, a, y) is a bijection of Β onto P. This implies 
f(a,x,y) = xi G Β. 

Now let (Va G B)f(a, x,y) = b G B, and assume χ φ y. Then χ G Β, 
y G Ρ (or χ G Ρ, y G Β), and f(a,x,y) = b implies /(α, 6,χ) = y, which, 
since /(α, δ, χ) G Β and y G Β, is a contradiction. 

It remains to prove that = is a congruence. 
If Χι G Qi we shall determine to which equivalenbce class f(x\) belongs. 

If at least one of the elements xf belongs to B, say x\ G B, then if xf belong 
to the same class (i.e. x2 = X3), we have 

x2 Ξ x3 (Va G B)f(a,x2,x3) G Β, 

and f(x\) G Β, but if x\ are not in the same class, then f(x\) G P. 
If £1 G Ρ, then the assumption that f(x\) = a G Β implies f(a,x2,^1) = 

£3 G Ρ, hence x\ φ x2 , which is a contradiction. So, in this case /(xf) G P. 
If Xj = jft,t = 1,2,3, then from the preceding it follows that f(x\) and 

f(yî) belong to the same equivalence class, that is Ξ is a congruence. 

T H E O R E M 7 . If a finite GIAS-3-groupoid U — (Q; f ) has a proper subal-
gebra Β = (Β; f ) of order b, then \Q\ > 2b. 

P r o o f . Since Β is a proper subset of Q, there is ρ G Q \ B. If a mapping 
φ is defined by φ(χ) = f(x,a,p), where α G Β is fixed, then for all χ G Β, 
φ(χ) eQ\B (since φ(χ) — f(x,a,p) = c G Β implies a contradiction 
/(x, c, α) = ρ, χ, c, a G Β), hence φ : Β —> Q \ B. 

Since / is a 3-quasigroup, ψ is 1-1. 

T H E O R E M 8 . If θ is a congruence of a GIAS-3-groupoid (Q;f ) and S 
and Τ two congruence classes, then S U Τ is a subalgebra od (Q;f ). 

P r o o f . For singleton congruence classes the theorem is obviously true. 
Let a,b ξ S, c,d Ç T. We have to prove that f(a,b,c),f(b,a,c),f(a,c,d), 
f(a, d, c) G S U T. Since α = 6(0) /(α, α, c) = /(α, b, c)(0), hence /(α, b, c) G 
T. Similarly for other cases. 

C O R O L L A R Y 2 . If θ is a congruence of a finite GIAS-3-groupoid (Q;f ) 
having more then two congruence classes, then for all a G Q 

4\[α]θ\ > \Q\. 

P r o o f . Follows from Theorems 7 and 8. 

T H E O R E M 9 . Let (Q; / ) be a GIAS-3-groupoid and Α, Β, C its subalgebras 
such that Al)Β and AUC are also subalgebras. Then (3a G A)(3b G -B)(3c G 
C)f(a, b,c) e AU BUC iff at least one of the sets Α Π Β, Α Π C and Β DC 
is nonempty. 
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P r o o f . Assume that / ( a , 6 , c ) = αχ £ A. Then / (α , αχ,6) = c, and since 
A U Β is a subbalgebra c € A or c € 5 , hence A n C / 0 o r 5 f l C ^ 0 . 
Similarly, if any of the sets ΑΠΒ, Af\C or Β DC is nonempty, say ΑΠΒ φ 0, 
then for any αχ G ΑΠΒ, a Ç A, c e C, / ( α , α χ , ο ) G A\JC C AuBliC, since 
A U C is a subalgebra. If Β (Ί C φ 0, then for any δχ G Β Π C, α G A, 6 G B, 
f(a, b,bi) e AU Β Ç AU Β UC. Analogously in the case when A DC φ Φ. 

A corollary of the preceding theorems is that the union of three congru-
ence classes of a GIAS-3-groupoid is never a subalgebra. 

THEOREM 10. A complement Β of a subalgebra A of a finite GIAST-3-
groupoid is a subalgebra = |-S|. 

P r o o f . If \A\ = then by Theorem 6 A is normal, hence Β is a 
congruence class and by Theorem 1 it is a subbalgebra. 

Let Β = Q \ A be a subalgebra and let α G A, 6 G Β. If we assume that 
|A| > then the mapping f : A —y Β defined by f : χ t-y f(x,a,b) is 
1 — 1, which is a contradiction. Analogously if |A| < |2?|. 
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