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1. Introduction and preliminaries

In [13] a class of quadruple systems called tetrahedral quadruple systems
(TQSs) was defined. TQSs represent a generalization of Mendelsohn triple
systems different from generalizations in [9], [11]. A TQS of order v is a pair
(S,T), where S is a finite set of v elements and T is a family of directed
quadruples (abed),a,b,c,d distinct elements of .S, such that every ordered
triple of distinct elements of S belongs to exactly one directed quadruple
from T. A directed quadruple (abed) is the following set of 12 ordered triples

(abed) = {(abc), (bea), (cab),(adb), (dba),(bad),
(acd), (cda),(dac), (bdc), (dcb), (cbd)} .

It was proved in [13] that TDSs are equivalent to generalized idempotent
alternating symmetric (GIAS) 3-quasigroups, their properties were investi-
gated and some parts of the spectrum of TQSs determined. In [5] further
investigation of TQSs was carried on and it was proved that the spectrum
of TQSs consists of all v such that v = 1,2,4,5,8,10 (mod 12). In [12]
Mendelsohn triple systems derived from TQSs were considered.

The sequence Z,,Zm41,. ..,y is denoted by {z;}% . or by z%.If m >
n, then 27, will be considered empty.

AMS Mathematics Subject Classification (1980): 20N15, 05B30

Key words and phrases: Alternating symmetric 3-quasigroup, congruence, tetrahedral
quadruple system.

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, Organized by the Institute of Mathematics of Warsaw University of Technology
held at Jachranka, Poland, 8-13 June 1993.



734 Z. Stojakovié

An n-ary groupoid (n-groupoid) (@; f) is called an n-quasigroup if the
equation f(ai 1 x, al1) = b has a unique solution z for every af,b € @ and
every ¢ € {1,...

By S, we denote the symmetric group of degree n and by A, its alter-
nating subgroup.

If (Q; f) is an n-quasigroup and o € S,+1, then the n-quasigroup (Q; f7)
defined by

F {zan}iz1) = Tontr) & f(21) = Tnpa

is called a o-conjugate (or simply conjugate) of f. The set of all ¢ such that
f = f° is a subgroup of Sp+1.

An n-quasigroup (Q); f) is called

a) totally symmetric (TS) if f = f° for all 0 € Sp41,

b) alternating symmetric (AS) iff f = f7 for all o € Ap41. AS-n-quasi-
groups were introduced and investigated in [10].

An n-groupoid (Q; f) is called alternating symmetric iff for every per-
mutation 0 € A,

fHzs Y1) = 2o(nery & f(27) = Znta.
It is not difficult to see that every AS-n-groupoid is necessarily an AS-n-
quasigroup.
If (@; f) is an n-quasigroup and ¢ € Sp4+1,0~ (n +1) =k, then f = f°
iff for all z7 € @

f({zv(t) i=1 ’f(z;z) {xa( )}z—k+l) = To(n+1)-
Hence AS-n-quasigroups can be defined as n-quasigroups satisfying a system
of identities.
It is easy to see that an n-quasigroup (Q; f) is an AS-n-quasigroup iff
f = f° for every o € I', where I is a generating set of the group A,4;.
This implies that for n = 3 we have the following.
A 3-groupoid (Q; f) is AS iff the following identities are satisfied

{ f(z,9,2) = f(y,2,2),
f(y,f(z,y,z),z) =z
A 3-groupoid (Q; f) is called generalized idempotent (GI) iff for all
z,y€S
f(z,9,9) = f(y,2,9) = f(y,9,2) = .
An AS-3-groupoid which is GI is called a GIAS-3-groupoid.
So, a 3-groupoid (@; f) is a GIAS-3-groupoid iff it satisfies the following
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identities

(v, f(z,y,2),2) = =,
f(z,9,9) ==
Hence the class of all GIAS-3-groupoids is a variety.
In [13] it is proved that finite GIAS-3-groupoids are equivalent to TQSs.
If (5,T) is a TQS of order v, and f is defined for distinct elements
z,Y,2,U € S by
(1) f(z,9,2) =u & (zyzu) €T

and

{ f(x’ y,‘z) = f(y7 Z, x)’

f(zay,y) = f(y,z‘,y) = f(y,y,Z) =z,
then (S, f) is GIAS-3-groupoid of order v. Conversely, if (.5, f) is a GIAS-3-
groupoid of order v, then by (1) a TQS (5, T) of order v is defined.

Hence GIAS-3-groupoids coordinatize TQSs. Since GITS-3-quasigroups
are equivalent to Steiner quadruple systems, and every GITS-3-quasigroup
is also a GIAS-3-quasigroup, it follows that TQSs represent a generalization
of Steiner quadruple systems. Coordinatization of Steiner systems and their
corresponding algebras were considered in [3], [4], [6], [7], [8].

2. The algebra of GIAS-3-groupoids

THEOREM 1. Let U = (Q; f) be a GIAS-3-groupoid and let C(U) be the
congruence lattice of U. Then

a) If 0 € C(U), then each b-class is a subalgebra of U,

b) U has permutable congruences,

¢) U has regular congruences,

d) U has uniform congruences,

e) U has coherent congruences.

Proof. a) Obvious.

b) Follows from Mal’cev’s theorem (a variety has permutable congruences
iff it has a ternary polynomial f(z,y, z) such that f(z,y,y) = f(y,y,2) = z.

c) Let [a]8, 8 € C(U), be a O-class. If £ = y(6) then f(z,y,a) =
f(y,y,a)(6), hence a = f(z,y,a)(8). Conversely, if a = f(z,y,a)(8), then
f(a,2,0) = £(f(z,9,0),,0)(9) and since U is AS f(f(z,y,a),2,a) = y,
hence z = y(0). We have proved that for all z,y € Q,z = y(0) iff a =
f(z,y,a)(8), so one #-class defines the whole congruence.

d) Let 8 € C(U), a,b € Q, a = b(#). The mapping ¢ : [a]d — [b]0 defined
by ¢(z) = f(z,a,b) is a bijection. ¢ is obviously 1-1, and if y € [b]6, then
z = f(y,b, a) € [a]0 is such that ¢(z) = f(f(y,b,a),a,b) = y.



736 Z. Stojakovié

e) Let B = (B, f) be a subalgebra of & which contains a congruence
class C = [a]6. If we assume that there exist elements p€ Q@ \ B, ¢ € B\ C,
such that p = ¢(8), and if r is an arbitrary element from C, then since the
mapping f : [r]0 — [q]f defined by z — f(z,7,q) is a bijection, it follows
that there exist an element 7y € C such that f(ry,r,q) = p. But, since Bis a
subalgebra, p € B, which is a contradiction. Hence all elements congruent to
an element of B belong to B, i.e. a subalgebra which contains a congruence
class must be a union of congruence classes.

We have proved that if a GIAS-3-groupoid has a nontrivial congruence,
then that congruence is uniform and each congruence class is a subalge-
bra. Since factor algebra is also a GIAS-3-groupoid we have the following
corollary.

COROLLARY 1. A necessary condition that a finite GIAS-3-groupoid of
order v has nontrivial congruences, is that v = vy vy, where vy, vy are integers
greater than 1 such that vi,v2 = 1,2,4,5,8,10(mod12).

In [2] Fraser and Horn studied varietes V' with the property that for
every A, B € V each congruence 8 of A x B is a product congruence 6, X ;.
A variety V of algebras has the Fraser-Horn property if for every A,B€ V
all congruences of A X B are product congruences. A congruence of a direct
product which is not a product congruence is called skew.

THEOREM 2. A variety of GIAS-3-groupoids does not have the Fraser—
Horn property.

Proof. In [8] it is proved that the variety which coordinatizes Steiner
quadruple systems has a skew congruence. Since this variety is a subvariety
of the variety V of all GIAS-3-groupoids, it follows that V does not have
the Fraser—-Horn property.

Using a theorem of Birkhoff ([1]) which states that if every algebra from
a variety has permutable congruences and singleton subalgebras, then every
finite algebra from that variety has a decomposition into a direct product
of directly irreducible algebras which is unique up to isomorphism of the
factors and up to their sequence, by Theorem 1 we get the next theorem.

THEOREM 3. Fach finite GIAS-3-groupoid has a decomposition into a di-
rect product of directly irreducible factors which is unique up to isomorphism
of the factors and up to their sequence.

Now we shall consider normal subalgebras of GIAS-3-groupoids (a subal-
gebra is called normal if it is a congruence class) and establish some criterions
for a subalgebra to be normal. By the preceding results a normal subalgebra
of a GIAS-3-groupoid determines the whole congruence. If B is a normal
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subalgebra of a GIAS-3-groupoid U, then by z = y(B) we denote that z is
congruent to y in a congruence determined by B.

THEOREM 4. LetU = (Q; f) be a GIAS-3-groupoid, B = (B; f) a subal-
gebra inU and 8 € C(U). B is normal with respect to 8 in U iff

(2) z=y(f) ¢ (Ja € B)f(a,z,y) € B.

Proof. Let B be normal. If z = y(8), then f(a,z,z) = f(a,z,y)(8),
hence f(a,z,y) € B.

Conversely, if there is a € B such that f(a,z,y) € B, then f(a,z,a) =
f(f(a,z,y),z,a)(0). Since f(f(a,z,y),2,a) =y,z = y(6)

If (2) is valid, then obviously B is a congruence class.

We note that it is not difficult to see that

z=y(0) < (Ja € B)f(a,z,y) € B & (Ya € B)f(a,z,y) € B.

THEOREM 5. A subalgebra B = (B; f) of a GIAS-3-groupoid U = (Q; f),
is normal iff for all 23,43 € Q and all a € Bf(a,z;,y;) € B,i = 1,2,3
imply f(a, f(z3y} € Q and all @ € Bf(a,zi,ys) € B,i = 1,2,3 imply
f(a, f(2}), f(3})) € B.

Proof. Let B be normal. If f(a,z,,y;) € B,i=1,2,3, then by Theorem
4 z; = yi(B), hence f(z3) = f(y3)(B).

Conversely, let the implication from the theorem be valid. Then the
relation = defined by equivalence (2) is obviously reflexive. If thereis a € B,
f(a,z,y) = a1 € B, then f(ay,y,2) = a € B, hence there is a; € B
such that f(a;,y,z) € B i.e. = is symmetric. If there exists ¢ € B such

f(a,z,z) € B, i.e. = is transitive, hence it is an equivalence relation.

From f(a’,zivyi) € B7 i = 1,2,3, we get f(a?f(z?)’f(y%)) € Ba Le.
f(23) = f(y3)(B) which means that = is a congruence.

THEOREM 6. Every subalgebra of a finite GIAS-3-groupoid U = (Q; f)
of order |Q|/2 is normal.

Proof. Let B = (B; f) be a subalgebra of order |Q|/2, P = @ \ B,
and let = be an equivalence relation on ¢ having two equivalence classes B
and P.

First we shall prove that
t=y & (Ya € B)f(a,z,y) € B.

If x =y, then 2,y € B or z,y € P. If z,y € B, then obviously (Va €
B)f(a,z,y) € B. If z,y € P, then (Ya € B)(3zy € B)f(z1,a,y) = z,
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since the mapping z — f(z,a,y) is a bijection of B onto P. This implies
f(a,z,y) = z1 € B.

Now let (Va € B)f(a,z,y) = b € B, and assume z # y. Then z € B,
y € P (or z € P,y € B), and f(a,z,y) = b implies f(a,b,z) = y, which,
since f(a,b,z) € B and y € B, is a contradiction.

It remains to prove that = is a congruence.

If 23 € Q, we shall determine to which equivalenbce class f(z3}) belongs.
If at least one of the elements z3 belongs to B, say z; € B, then if 3 belong
to the same class (i.e. z; = z3), we have

z2 = 23 & (Va € B)f(a,z2,23) € B,

and f(z3) € B, but if 23 are not in the same class, then f(z3) € P.
If 23 € P, then the assumption that f(z3) = a € B implies f(a,z2,71) =
z3 € P, hence z; # z,, which is a contradiction. So, in this case f(z3) € P.
If z; = y;,i = 1,2,3, then from the preceding it follows that f(z3) and
f(¥3}) belong to the same equivalence class, that is = is a congruence.

THEOREM 7. If a finite GIAS-3-groupoid U = (Q; f) has a proper subal-
gebra B = (B; f) of order b, then |Q| > 2b.

Proof. Since B is a proper subset of Q, there is p € @ \ B. If a mapping
¢ is defined by ¢(z) = f(z,a,p), where a € B is fixed, then for all z € B,
e(z) € @\ B (since ¢(z) = f(z,a,p) = ¢ € B implies a contradiction
f(z,c,a) =p,z,c,a € B), hence ¢ : B— Q \ B.

Since f is a 3-quasigroup, ¢ is 1-1.

THEOREM 8. If 6 is a congruence of a GIAS-3-groupoid (Q; f) and S
and T two congruence classes, then SUT is a subalgebra od (Q; f).

Proof. For singleton congruence classes the theorem is obviously true.
Let a,b € S, ¢,d € T. We have to prove that f(a,b,c), f(b,a,c), f(a,c,d),
f(a,d,c) € SUT. Since a = b(0) f(a,a,c) = f(a,b,c)(d), hence f(a,b,c) €
T. Similarly for other cases.

COROLLARY 2. If  is a congruence of a finite GIAS-3-groupoid (Q; f)
having more then two congruence classes, then for all a € Q

4|[a]6] > |Q].

Proof. Follows from Theorems 7 and 8.

THEOREM 9. Let (Q; f) be a GIAS-3-groupoid and A, B, C its subalgebras
such that AUB and AUC are also subalgebras. Then (Ja € A)(3b € B)(Ic €
C)f(a,b,c) € AUBUC iff at least one of the sets AN B, ANC and BNC
s nonempty.
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Proof. Assume that f(a,b,¢) = a3 € A. Then f(a,a;,b) = ¢, and since
AU B is a subbalgebra ¢ € Aorc € B, hence ANC #@or BNC # 0.
Similarly, if any of the sets ANB, ANC or BNC is nonempty, say ANB # 0,
then for any a; € ANB,a € A,c€ C, f(a,a;,¢) € AUC C AUBUC, since
AUC is a subalgebra. If BN C # @, then for any b € BNC,a € A, b€ B,
f(a,b,b,) € AUB C AU BUC. Analogously in the case when ANC # 0.

A corollary of the preceding theorems is that the union of three congru-
ence classes of a GIAS-3-groupoid is never a subalgebra.

THEOREM 10. A complement B of a subalgebra A of a finite GIAST-3-
groupoid is a subalgebra iff |A| = |B|.

Proof. If |A] = |B|, then by Theorem 6 A is normal, hence B is a
congruence class and by Theorem 1 it is a subbalgebra.

Let B = Q \ A be a subalgebra and let a € A, b € B. If we assume that
|A| > |B|, then the mapping f : A — B defined by f : 2 — f(z,a,b) is
1 — 1, which is a contradiction. Analogously if |A| < |B|.
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