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0. Introduction

Two well-known nonequivalent notions of k-compactness are considered
in this paper (k — an infinite cardinal). The central result is that the sets of
all k-compact / weakly x-compact elements of a Boolean algebra are ideals
of it. The paper is presented in two parts. The first part provides some useful
results concerning k-compactness, weak x-compactness and the behaviour of
the McNeille completion with respect to the compactness. In the second part
these notions are considered specifically in the context of Boolean algebras.
Finally, some open problems are presented.

I. The case of posets

1. Conventions. Throughout the text we will assume that P is a poset,

and k is an infinite cardinal. Let X C P. We will denote
(i)la={z€P,z<a}fora€eP.

(i) X* = {a € P;z < a for all z € X}, the set of all upper bounds of
X in P.

(iii) X' = {b € P;b < z for all z € X}, the set of all lower bounds of X
in P.

(iv) X* = (x¥).

(v) Cx(P) is the set of all k-compact elements of P (see Definition 2(i)).

(vi) W, (P) is the set of all weakly k-compact elements of P (see Defini-
tion 2(iii)).

Mathematics Subject Classification (1991). 06A23, 06 E99.
Keywords: algebraic lattice, Boolean algebra, compact element, MacNeille completion,
ordered set.



724 M. Mogambery, T. Sturm

(vii) ¢f(k) is the cofinality of x.

2. Definition. Let a € P.

(i) a is called a k-compact element of P if for every X C P, whenever
a € X! there exists a subset Y of X such that |Y| < k and a € Y¥.

(ii) X is called a k-directed subset of P if X # 0, and foreach Y C X
with |Y| < k there is an ¢ € X such that y < z for all y € Y. That is,
Y*nX #0.

(iii) a is called a weakly k-compact element of P if for every x-directed
subset X of P, whenever a € X* there is an z € X such that e < z.

Weakly wq-compact elements are defined in [2], but are referred to as
compact elements. The notion of x-compactness is considered in [5] and
[7). If P is a complete lattice (which is a typical assumption in universal
algebra), the relation @ € X* is equivalent to a < \/ X. Since we shall con-
sider k-compact elements for Boolean algebras in general, which need not
be complete, we have extended the usual definitions.

Before proceeding with the next Lemma, let us recall the following well-
known fact: A poset P is said to be join k-complete if for every X C P such
that 0 < | X| < &, there exists \/ X in P.

3. Lemma. Let P be a poset. Then
(i) Cx(P) C W,(P).
(ii) If & is a regular cardinal and P is a join k-complete. semilattice,
then we have C(P) = W,(P).

Proof. (i) Suppose a € Cx(P) and X is a k-directed subset of P such
that @ € X Then by the definition of k-compactness, there exists a subset
Y of X such that |Y] < x and @ € Y¥, Since X is s-directed, there exists
z € X such that y < z for all y € Y. Thus z € Y* and because a € Y* we
have that a < z. Hence a € W,(P).

(ii) Let @ € W,(P) and assume that a € X* for some X C P.If | X| <
then the condition of k-compactness is trivially satisfied for our X. Hence
we assume that k < |X| and define

U={VY;Y§XandO<]Y|<n}.

Then U is a k-directed of P (& is a regular cardinal), and U* = X* (see also
[5, Lemma 1.8]). Hence a € U Since a is weakly x-compact, there exists
y € U such that a < y. As y € U, we have that y = \/Y for some Y C X
with 0 < |Y| < k. Then @ €] VY = Y* and the k-compactness of a follows.

4. Lemma. Suppose X is a subset of a poset P such that \/ X exists
in P.
(i) If X C W,(P) and |X| < &, then \V X € W,(P).
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(ii) If X C Cx(P) and |X| < cf(x), then \/ X € C(P).

Proof. (i) Let V X € M¥ for some x-directed subset M of P. Then for
each z € X we have 2 € M“. In consequence of the weak k-compactness of
z, there is an f(z) € M satisfying z < f(z). Since f[X]d:f{f(:v);:c €X}C
M and |f[X]| < |X] < &, there exists m € M such that m € f[X]*. Then
also ¢ < f(z) < m for each z € X. Hence V X < m, and \V X € W,(P)
follows.

(i) Let V X € M for some subset M of P. Then for each z € X
we have z € M™. Since z is k-compact, there exists F(z) C M such that
|F(z)| < & and z € (F(z))*!. Define

§ = | {F(z),z € X}.

Since | X| < c¢f(x) and |F(z)| < k for each z € X, we have

15| < Y |F(a)] < &
T€X
Moreover, F(z)* C S for each z € X. Since z € F(z)¥ for every z € X,
we have z < s for each z € X and each (fixed) s € §*. Hence \/ X < s for
every s € §%, that is, \V X € §%!. The k-compactness of \/ X follows.

5. The MacNeille completion. Let P be a poset. Then the mapping
vp : exp P — exp P defined by

vp(X)=X*for X C P

is the well known MacNeille closure operator on exp P. Therefore Np 4
vplexp P] is a complete lattice itself. The mapping np : P — Np defined by

np(z) =vp({z})={ z forz € P

is called the MacNeille completion of P. In particular, the mapping np is
an order embedding of P into Np. We shall frequently omit the subscript
P if P is fixed (in our proofs and remarks for instance).

Numerous properties of the MacNeille completion may be found in {1],
[4] and [6]. We note the well-known theorem proved by V.I. Glivenko (1929)
and M.H. Stone (1937): The MacNeille completion of a Boolean algebra is
a complete Boolean algebra (see [1] and [6]).

6. Theorem. Let n: P — N be the MacNeille completion of P. Then
for each element z of P,z € C,(P) iff n(z) € Cx(N).

Proof. =: Suppose that x € C(P) and n(z) < V5 in N for some
8§ C N. Then z € (JS)¥. Since z is k-compact in P, thereisaY C |JS
satisfying |Y| < x and z € Y*. For each y € Y there are elements of §
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containing y; we pick one of them and denote it by s,. Set T e {sy;y €Y}
Ther |T| < |Y| < &,T C S, and moreover, z € Y¥ C (UT)* = V5T, that
is, n(z) < VT in N. Now n(z) € Cx(N) follows.

<: On the contrary, let z € P — C,(P). Then there exists X C P such
thatz € X, and z ¢ Y¥ forany Y C X with |Y| < k. Then n(z) <V n[X]
in N although n(z) £ \/ Z in N for any Z C n[X] of cardinality less than
k. Hence n(z) € N — C«(N), and the implication follows.

7. Remark.
7.1 By the above theorem, the notion of k-compactness is “well-behaved”
with respect to the MacNeille completion. For a given P we have

n[Cx(P)] = Cu(N) N n[P],

that is, the k-compactness is both preserved and reflected here.

7.2 The situation is rather different for weak k-compactness. Take any
a € Wg(P) — Cx(P). Then n(a) ¢ C(N) by Theorem 6. If we assume
that & is a regular cardinal, then Cx(N) = W, (N) by Lemma 3(ii). Hence
n(a) ¢ Wi(N). Therefore the weak k-compactness, for regular &, is of a
conditional character. In the case of Boolean algebras, it depends on the
degree of the join completeness od a considered Boolean algebra.

7.3 In the case of a singular cardinal k, we note only the following: Since
a subset X of P is s-directed iff it is k*-directed where x* is the cardinal
successor of « (see (5, Lemma 1.9]), we have that W,(Q) = W,+(Q) for each
poser (. Especially,

Ci(N)C W,(N)=W,+(N)=Cr+(N)
since k* is a regular cardinal. It characterizes W,(N)Nn[P] in terms of the
well-behaved C+(N) N n[P], namely,
We(N) N n[P] = n[Cy+(P)).

However, we cannot say anything about n(a) for a € W,(P) — C(P) when
k is a singular cardinal.

II. The case of Boolean algebras

8. Lemma. Let M be a subset of a Boolean algebra B and let a € B.
(i) e e M¥ if a = \/(a A M).
(ii) If a is a weakly k-compact element of B and M C| a, then we have:
(a)if M is k-directed and if \/ M exists, then \/ M € M. (That is,
M has a greatest element.)
(b)If M is dually k-directed and if A M exists, then A M € M. (That
is, M has a least element.)
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Proof. (i) =>: Obviously a is an upper bound of aAM. Let b € (a AM)*.
Then for each m € M, we have

m=(mAa)V(mAd)<bv(mAad)<bvad.

Hence bV a’ € M*. Since a € M*, we have a < bV a'. Therefore a =
aA(vVa')=aAb,that is, a < b. Now a = \/(a A M) follows.

<«: Take any b € M*. Then b € (a A M)* and hence a < b. Therefore
a €M™,

(ii.a) Denote s = \/ M, and define, for z € M,

f(zy=an(sVz).

We now claim that f is an order isomorphism of M onto f[M]: Clearly, f is
an order preserving surjection of M onto f[M]. We shall show that f is or-
der reflecting. Assume z,y € M and f(z) < f(y). Then f(y) = f(z)V f(y).
That is,

fy=an('vy) =f@)V fy)=an(svavy).
AlsoaV(s'Vy)=aVs' sincey<a,andaV(s'VzVy)=aVs asz,y<a.
This together with the distributivity of the lattice B yields s'Vy = s'VzVy.
Then y = (sAS)V(sAy)=sA(s'VzVy) = (sAs)V(sA(zVy))=zVy.
That is, ¢ < y and hence f reflects the order. :
Now the assumed existence of \/ M yields

a=aA(s'Vs)=aA (s'VVM) :a/\\/(s'VM)
= \(an (' v ) = \/ fil

Moreover, f[M]is k-directed because it is isomorphic to the k-directed poset
M. Since a is weakly x-compact, there exists 2 € M such that ¢ = f(2).
Then f(z) is the greatest element of f[M]. Hence z must be the greatest
element of M. Especially, Y M = 2 € M.

(ii.b) Consider the set a A M' where M’ U {m';m € M}. Takez,y € M.
If z < y, then a Ay < a Az'. Conversely, let a Ay’ < a A z'. Then
adVvy=(any) 2 (aAz') =d Vz. Therefore

y=aA(a' Vy)sincey<a]>aA(dVz)=nz.

We have just proved that the map z — a A 2’ for z € M, is a dual isomor-
phism of the poset M onto the poset a A M’. Therefore, since M is dually
k-directed, a A M' is a k-directed subset of | a. Also, since there exists the
infimum A M of M in B, we have

(a'V/\M),=a/\VM'= V(a/\M'),
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that is, the supremum \/(a A M') of a A M’ does exist in B. Then by part
(ii.a) of this lemma, the set a A M’ has a greatest element. Since M and
a A M' are antiisomorphic posets, M has a least element.

We are now in a position to prove the main theorem of this paper. But
before that we require the following definition:

9. Definition.

(i) A subset S of a Boolean algebra B is said to be hereditary in B if for all
b€ B and all s € S5,b< simplies that b € S.

(ii) A set I called a k-regular ideal in B if it is a hereditary subset of B and
if VX € I for each X C I with |X| < «, provided \/ X esists in B.
(Observe that every k-regular ideal is an ideal in B.)

10. Theorem. Suppose B is a Boolean algebra.
(i) W«(B) is a k-regular ideal od B.
(ii) Cx(B) is a cf(k)-regular ideal of B.

Proof. (i) To show that W, (B) is hereditary in B, we take ¢ € W(B)
and let a < ¢. Also assume that M is a k-directed subset of B such that
a € M*. Then aAM is a k-directed subset of | ¢. Moreover, by Lemma 8(i),
a = \/(a A M). Therefore by Lemma 8(ii.a), a € (a AM). Hence a =aAm
for some m € M, that is, a < m. Now a € W,(B) follows. That W, (B)
is a k-regular ideal of B is a simple consequence of Lemma 4(i) and the
definition of a k-regular ideal given in 9(ii).

(ii) Again we first show the heredity of C(B). Let ¢ € Cx(B) and a < c.
Take any M C B satisfying a € M*!. Then a = \/(a A M) by Lemma 8(i).
Define

g(z)=cA(a'Vz)forz e M.
Observe that g is an order isomorphism of M onto g[M] (as shown for f
in the proof of Lemma 8(ii.a)), and moreover, ¢ = \/ g[M]. Since ¢ is a «-

compact element of B, there exists K C M such that |K| < x and ¢ € g[K]*.
Hence by Lemma 8(i) we have ¢ = \/(¢ A g[K]) = V g[K]. Therefore

a = anc = an\[ g[K] = \[(ang[K]) = \[{aA(a'V2));z € K} = \[(anK).

Thus, by Lemma 8(i) again, a € K. So a € C(B) follows and the heredity
of C(B) is established. The rest is a consequence of Lemma 4(ii) and the
definition 9(ii) of the regularity of an ideal.

11. Remark. The situation is more or less clear in the case where
k = w(= wy). Using the usual terminology for w-compact and w-directed,
we state the following properties of each Boolean algebra B: Obviously,
W, (B) = C,(B). Moreover, for every element a of B, a is compact in B iff
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the set | a is finite iff a is the join of a finite set of atoms of B. The set of
all compact elements of B is the ideal of B which is generated by the set of
all atoms of B. Finally, B is an algebraic lattice iff it is isomorphic to the
power set algebra of a set.

12. Theorem. Let B be a Boolean algebra and let n : B — N be its
MacNeille completion.

(i) If X € Cx(N), then X C Cx(B) and X = Y* for some Y C X with
Y| < &.

(ii) f X C Cx(B) such that |X| < c¢f(x), then X € C(N).

Proof. (i) Let X € Cx(N). Then for each z € X we have n(z) C X¥ =
X. Hence n(z) € Cc(N) by Theorem 10(ii). Now by Theorem 6, z € C(B),
and X C C(B) follows.

Since X € N, we have X = X" Therefore X = \/yn|X|. By the
k-compactness of X in N, there is a set Y C X such that |[Y| < « and
X =\Vpyn|Y|=Y".

(ii) If X C Ck(B) such that | X| < ¢f(k), then for each z € X,n(z) €
C«(N) by Theorem 6. Hence n[X] C C«(N). By Lemma 4(ii), \V y n[X] €
Cx(N). Therefore X* € C(N).

13. Corollary. Suppose B is a Boolean algebra and n : B — N is its
MacNeille completion.

(i) Let & be a regular cardinal. Then for each X € N,X € Ci(N) iff
X CCx(B) and X = Y for some Y C X of cardinality less than .

(ii) Let v be the least regular cardinal less than k. Then for each X €
N, X e W(N)iff X C Cy(B) and X = Y* for some Y C X of cardinality
less than v.

Proof. (i) The necessary condition is obviously satisfied by the first part
of the above theorem. For sufficiency we need only to note that x = cf(x)
for regular &, and apply the second part of Theorem 12.

(if) From Remark 7.3, we have W(N) = W,(N) = C,(B), and hence
Corollary 13(ii) reduces to Corollary 13(i) since v is regular.

14. Remark. With respect to the set W,(B)—-C,(B), a natural question
to ask is, whether the set is empty for each Boolean algebra B? Trivially,
since wy is regular and B is join wy-complete, we have Lemma 3(ii), that
Weo(B) = C,,(B). However, in general, this is not the case, as is shown in
the corollary to the following example.

Suppose A is the finite-cofinite algebra over a set S, i.e.

A={XCS;|X|<wpor|S—X|<uw}.
Then the following facts hold.
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(i) For each M C A, M¥ = {X € A; X C|JM}. Therefore JM € A
iff there exists \/ , M; then UM =V , M.

(it) Every element of A is weakly w;-compact.

(iii)) X € A is k-compact in A iff | X| < &.

Proof. (i) Obviously M* = {Y € A; UM C Y}. Therefore {X €
A; X C UM} € M¥. Conversely, let Z be a set such that Z ¢ {J M.
Take a € Z —|JM. Then Z € S — {a} € M*. Hence Z ¢ M*'. Now the
reverse inclusion M¥ C {X € A; X C |J M} follows since X* C A. The
subsequent assertions are obvious.

(ii) Take any T € A and an wj-directed system M C A such that T €
M. Then by Lemma 8(i) and part (i) of this example, T = J{X NT; X €
M?}. Hence for each t € T there exists X; € M satisfying ¢t € X;. Let us
denote

W= {X; teT}.

If T is finite, then there exists X € M such that W C X by the w;-
directedness of M. Then of course, T C X. So let T be infinite and take
any denumerable Ty C T'. By the w,-directedness of M, there exists X € M
such that X; C X for each ¢t € Ty. Then X is infinite. Hence both the sets
S—Xand T - X C §— X are finite. Therefore {X}U{X; t € T — X}
is a finite subsystem of M, and as such has an upper bound Y € M. Then
T CY and the weak w;-compactness of T follows.

(iii) This fact is a direct consequence of (i): Take Y d=f{{:c}, ze X} CA,
and any proper subset Z of Y. Then X € Y% as X = [JY; nevertheless
X ¢ Z* because X € |J Z. Therefore X is not a k-compact element for any
infinite cardinal k < |X]|.

Now for some V' C A assume that X € V¥, that is, X C |JV. Then for
each z € X thereis W, € V such that z € W,. Then Udzf{WI; z€X}isa
subsystem of V of cardinality at most |X|, and X € U* because X C |JU.
Hence X is a max{|X|*,wp}-compact element (|X|* is the cardinal succes-
sor of | X|). Especially, X € Cx(A) for each infinite cardinal k¥ > | X]|.

15. Corollary. For each uncountable cardinal x there is a Boolean al-
gebra B such that W, (B) — C«(B) # 0.

Proof. Let x be an uncountable cardinal, and A, be the finite-cofinite
algebra over k. Obviously, W,(B) C W,(B) and C,(B) C C,(B) for any
Boolean algebra B and any infinite cardinals v < u. This, together with (ii)
and (iii) of Example 14 yields

W Ax) = Cu(Ax) D Wy (Ax) = Cu(Ax) = {X C 5; |5 — X| < wo} # 0.
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16. Open problems.

(i) In view of Theorem 10 we are prompted to question the nature of
the quotient algebra B/C(B) (or B/W(B)). Section 2.5.5 of [3], as well as
subsequent volumes of the same publication, offers some rather nontrivial
results about expw/Cy(expw).

(ii) A Boolean algebra B is said to be k-algebraic if

z= V(CK(B)F‘I } z) for each z € B.

It is well-known that a Boolean algebra B is algebraic (= w-algebraic) iff it
is isomorphic to the power set algebra P(5) of a set 5. The problem is to
find a characterization of x-algebraic Boolean algebras.
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