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1. Introduction

The theory of orthomodular ordered sets — or orthomodular posets —
has been well developed and has found many applications (quantum logics,
Hilbert spaces, generalized probability theory). In order to define ortho-
modular ordered sets one usually introduces an order relation; therefore,
from an algebraic point of view, they are algebras with an additional rela-
tion. Thus direct applications of important algebraic theorems on varieties,
free products and so on to orthomodular ordered sets become difficult —
they do not belong to abstract algebras. Moreover, the usual morphisms
between them — preserving the nullary constants, the unary operation and
the binary relation — are not always adequate for the corresponding or-
thomodular algebras, which form with the usual homomorphisms between
partial algebras a “nice” category, as we shall show in section 5. The aim
of this paper is to show that we can formulate the theory of orthomodular
ordered sets in the framework of partial algebras, where the general alge-
braic and model theoretic properties have been investigated in detail (see
e.g. [B86] or [B93]). This enables us to apply the theory of partial algebras
to these structures and consequently also to quantum logics. In particular
we get an adequate concept of morphisms between orthomodular algebras

* The cooperation of the two authors has been supported by the Deutsche Akademische
Austauschdienst (DAAD) in connection with an exchange program between the Politech-
nika Warszawska and the Technische Hochschule Darmstadt.

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology
held at Jachranka, Poland, 8-13 June 1993.
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(and therefore also between orthomodular ordered sets — however, in their
original theory they would not be that easily describable).

We formulate an axiom system for orthomodular algebras which turn
out to be equivalent to orthomodular ordered sets, and we discuss some
examples, e.g. orthomodular algebras derived from Boolean algebras. Next
we prove a representation theorem for orthomodular algebras with a full
set of probability measures. We also investigate numerical orthomodular
algebras and give their simple characterization. We compare the category of
orthomodular posets with that of orthomodular algebras, prove the existence
of free orthomodular algebras, and discuss some properties of the category
of orthomodular algebras with homomorphisms as morphisms.

2. An axiom system for orthomodular (partial) algebras

Before formulating the axiom system we recall some basic definitions
and terminology from the theory of partial algebras. Let (X, X) be any
term algebra of signature or type X on some set X, let t,t;,%; € T(X, X) be
any terms, and let A be any partial algebra of type X. Thus, in A there are
defined some operations, among them there may be proper partial operations
(the domain of which is not all of A™ — n being the arity of the operation
— but only some proper subset of A™). We recall that an ezistence equation
t; = t, holds in the partial algebra A, iff for every valuation v : X — A
the induced — i.e., as usual, recursively defined, but now along the partial
structure of A — interpretations v~(t;) and v™~(t2) of t; and ¢, ezist and
are equal. It should be observed that as set X of variables from which the
valuation starts one usually chooses the set of variables occurring freely in
the formula, if not stated otherwise (compare the footnote 3 to axiom (A0)
below).

In particular, the term ezistence statement t = t is satisfied in A with
respect to a valuation v : X — A, iff the interpretation v~(t) exists. We
shall abbreviate the term existence statement ¢t = ¢ by 3 ¢, i.e.

Jtie=t=t.

DEFINITION. By an orthomodular (partial) algebra® we understand a
partial algebra A := (4;®,’,0) of type (2,1,0) such that the following list
of axioms is satisfied in A for all z,y,2z € X for any given countably infinite
set X of variables?:

1 We shall in what follows mostly omit the adjective “partial” and only speak of “or-
thomodular algebras”.

2 We have omitted brackets, when it does not influence understandability. It might be
useful to compare the following axioms and facts with the usual definition of orthomodular
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(A0)3 0.2

(A1) 2" £ z.

(A2)z@ ' =0 (Notation: 0' =: 1).
(A3)z @0 = .

(A)I(z@y) >2Dy=ydz.

(A5) 3 (z09)@2)= (t®Y) D 2= (y© 2).

A)I (AT (Y ®2)=>T(z2).

(AT) I (z@y)AI (' BDYy) >z =y.

(A8)I (zd AT (yO2)AIT (zD2)=> T (zd (y& 2))*
(A9YT (z0y)=2z0(z0 ') .

An orthomodular algebra shall be called rich, if the following additional
richness aziom holds:

(RIA(z1dy)A3 (210 )N (220 n)AT (228 p2) =
2 3@ (@10)AT (2202)AT (D 2)AT (32 8 2")).

Observe that the operation “@” is commutative by (A4) and associative
by (A5) (in the sense of “strong equality” or “Kleene equality”). Directly
from the above axioms we obtain moreover the following simple observations.

FacTts. It follows that in each orthomodular algebra A
(i) the unary operation ' is always a total bijection (see (A1)); a' is called
the orthocomplement of a € A;
(ii) for each a € A, a ® o' always ezists with the constant value 0' =1 (see

(A2));

ordered sets — as given e.g. in Beran [Be85), pages 144ff and 152 or in Kalmbach [K83].
There they are defined as (bounded) orthocomplemented (partially) ordered sets (P; <
,/,0,1), i.e. ordered sets satisfying for all a,b € P that a < b implies b’ < a’, that a” = a,
0’ =1, and a U e’ = 1; in addition they have to satisfy that, whenever a < b’, then the
supremum a LI b always exists, and finally, that ¢ < b always implies a U (a U¥') = b
(orthomodularity).

Observe moreover that, since the logical operator “or” will be denoted by “v”, the
supremum operation of an orthomodular algebra will be denoted by the symbol “U”. And
since the logical operator “and” will be denoted by “A”, the infimum operation of an
orthomodular algebra will be denoted here by “r”.

3 Observe that in connection with this axiom only valuations starting from the empty
set of variables are considered. Exactly this fact guarantees that in each model, say A, of
(AO0) the constant 04 really exists, and that in particular all models of (A0) are non-empty.

4 For the effect of this axiom see Lemma 2. After a preprint of this note had appeared,
S. Pulmannova has shown in [Pu93] that this axiom is the crucial one for orthomodular
algebras, which has to be omitted in order to generalize our axiomatization to difference
algebras and orthoalgebras, while all other axioms can be kept — and for orthoalgebras
a weaker one has to be added.
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(iii) the constant 0 always ezists (see (A0)*), and, for each element a € A,
a ® 0 always ezists and yields a as value (see (A3));

(iv) the operation @ is commutative (see (A4)) and associative (see (A5)),
whenever it ezists®; we shall make use of these properties in what fol-
lows without ezplicitly mentioning them.

Moreover we have:

(v) If one defines a relation “<” on an arbitrary orthomodular algebra A
by

a<biffadb exists,’
then one easily realizes that from (A2) there follows reflezivity, that
(A6) implies transitivity, and that (A7) means asymmetry of the rela-
tion “<”, i.e. in any orthomodular algeba A the relation “<” defined
above is always a (partial) order relation on A; moreover, the aziom
(A8) — together with (A1) — implies that 1 (= 0') is the greatest
element of this order relation and 0 is its least element;

(vi) The azioms (A0) through (A9) are existence equations or “ezistentially
conditioned ezistence equations®”, and therefore they define a so-called
“BECE-variety®”, which we shall denote by OMA, the ECE-variety of
all othomodular algebras, while we shall denote the aziomatic subclass
of OMA of all rich orthomodular algebras by OMAR.

(vil) The fact that OMA is an ECE-variety is equivalent to saying that OMA
is closed with respect to the formation of reduced products (therefore
in particular w.r.t. direct products), (closed) subalgebras (i.e. relative
subalgebras on closed subsets) and closed homomorphic images!®. The

% Note that by (A2) or (A3) it would only follow that the constant 0 is always defined
in each non-empty orthomodular algebra, since the axioms (A1) through (A9) allow an
empty model.

6 Actually, in order to conclude the usual form of associativity, one would also have
expected the axiom

(A%) I=0r02))=> (=09)0z=26(yD2)
However, this follows from (A4) and (A5) (we argue here semantically):
Let a,b,c € A for some orthomodular partial algebra A, and let a @ (b @ c) exist, then,
by (A4), also (c ® b) @ a exists, and therefore one has by (AS5) and (A4) that c® (b & a)
exists, and that

(e®V)DPc=cO(PDa)=(cDb)Da=a®(PDc).

7 Observe that by the commutativity of @ and by (A1) this is also equivalent to b’ < a’.
8 They are briefly called ECE-equations.
® Compare [B82], see also [B86], section 8.
10 Observe that a mapping f : A — B is a homomorphism between the orthomodular
algebras A = (A;®,’,0) and B = (B;®,,0), if f(0) = 0, if, for all u,v € A, one has
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axiomatic structure of OMAR. is more complicated than that of OMA,
since (R) contains an ezistential quantifier — different from the one
hidden in existence equations.

(viii) Since OMA is closed in particular with respect to isomorphic copies,
subalgebras and direct products of orthomodular algebras, it forms an
epireflective subcategory of the category of all partial algebras of similar-
ity type (2,1,0) with homomorphisms as morphisms!. Therefore, for
each partial algebra P of type (2,1,0) there exists an OMA-universal
OMA -solution, say F(P,OMA), and the OMA-universal homomor-
phism, say rp.oma : P — F(P,OMA) is an epimorphism!?. However,
TP,OMA 1S injective — i.e. a monomorphism — only in those cases,
where P allows an injective homomorphism into at least one orthomod-
ular algebra. Therefore, in particular, for each set X the OMA-free
OMA-algebra F(X,0MA) OMA-freely generated by X ezists — and
Tx,0MA 1§ injective. Its structure will be characterized in section 5 of
this note.

The meaning of axioms (A8) and (A9) as well as that of the richness
axiom (R) will be discussed later, when we shall have more information
about the induced order relation in an orthomodular algebra.

We now prove some further properties about orthomodular algebras:

LEMMA 1. Each orthomodular algebra is non-empty. And an orthomod-
ular algebra is total iff it has exactly one element. '

Proof. Since by axiom (A0) the constant 0 always exists, each ortho-
modular algebra is non-empty. Let A be any total orthomodular algebra;
then, for any two elements a and b from A, a @ b’ and a' @ b exist, and
therefore one gets a = b by (A7). Since, by (A3), 03 0 (= 0) always exists,
each one-element orthomodular algebra is total. m

LEMMA 2. If, in an orthomodular algebra A with the related order re-
lation <, a @ b exists, then a® b = aU b, i.e. then the supremum a U b in
(A; L) ezists and is equal to a ® b. Moreover, (a ®b) = a’' b’ (de Morgan’s
law), i.e. the infimum a' Nb' of a’ and b’ then exists, too, and is equal to

(a @ b)'.

f(@') = f(u) and:
If u® v exists in A, then f(u) ® f(v) exists in B and one has f(u® v) = f(u) ® f(v).
fis a closed homomorphism, iff, in addition, the existence of f(u)® f(v) in B always
implies that u @ v exists in A. B is said to be a closed homomorphic image of A, if there
exists a closed and surjective homomorphism from A onto B.
11 Cf. [B86], subsection 5.11, or originally J.Schmidt [Sch66].
12 In this category the fact of being an epimorphism means that the image set of the
carrier of the source algebra generates the target algebra.
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In particular one always has aUa' = 1.

Proof. Let us first observe that (A9) and (A4) imply that one always
has

if (a @ b) exists, then (a < a® b) and (b < a®b).

Assume, now, that ¢ < z and b < z. We have to show that a ® b < z, i.e.
that (a ® b) @ 2’ exists: However, we have by axiom (A8) thatif a® b, a ® 2’
and b@ 2’ exist, then a ® (b® 2') (= (a ® b) ® 2’ by (A5)) exists, i.e. we get
a ®b < z. This shows that a @ b is the supremum of ¢ and b in (4;<). In
connection with axiom (A2) this implies in particular that for all @ € A one
hasaUd =0 =1.

Concerning the second part of the lemma, observe that we now have
a,b<aUb=a®hb, and therefore, observing footnote 7, (a ® b)' < a’ and
(a @ b) < b'. Now assume that, for some d € A, we have d < a’ and d < b'.
Then both d ® a and d ® b — as well as a @ b — exist. Hence axiom (A8)
implies that d @ (a @ b) exists. Therefore, d < (a @ b)’, showing that (a & b)’
is indeed the greatest lower bound of a’ and b'. w

LEMMA 3. a® a or a ® 1 exist in an orthomodular algebra A, iff a = 0;
in particular, in any at least two-element orthomodular algebra one always
has a # d', and the infimum aNa' exists and is equal to 0, the least element
of (4; <).

Moreover, if a ® b exists, then also the infimum aMb exists and is equal
to0:aNb=0.

‘Proof. 090 and 0@ 1 exist according to (A3) and (A2). If a®1 exists,
then a @ 0’ exists, i.e. a < 0. However, 0 is the least element of (4; <), and
we get a = 0.

If a ® a exists, then this means that a @ (a')’ exists, i.e. @ < @', and
therefore a U a’ = a'. However, since a ® a’ = 1, we have a U a’ = 1 by
Lemma 2, hence @’ =1 =0, i.e. ¢ = 0" = 0 by (Al).

By the second statement in Lemma 2 we have 0 = 1' = (a®a') = ¢’ Ma.

If, finally, a @ b exists, then, say, b < a’; and aMa’ = 0 therefore implies
afb=0.m

LEMMA 4. If a < b in an orthomodular algebra, then b= aU(aUb'). In
particular a ® b = 1 always implies b = a'.

Proof. Since a < b, a ® b’ exists, and consequently (a @ b')’ also exists.
From Lemma 2 there follows that (a®b')’ = (aUb’)’. Now a < aUb’, and this
implies that a®(a®b') exists. By Lemma 2 we get a®(a®b’)’ = a®(alb') =
al(aUb'). By axiom (A9) we infer that b=a ® (a® V') = al (aUd').
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Finally, if a,b € A with a® b = 1, then a < b'. Hence
b=aU(aubd")Y =au(aub) =aU(adbd)=aul’ =all=a.
Therefore, b= (') = a’. »

Lemma 4 shows that our partially ordered set (A; <) corresponding to
an orthomodular algebra (A4;®,’,0) is indeed orthomodular!®. Hence every
orthomodular (partial) algebra defines an orthomodular (partially) ordered
set. It turns out that both notions are equivalent. This is shown in the
following theorem.

THEOREM 1. Let (A;®,',0) be an orthomodular algebra. If we define
a<biffiad?d,

then (A;<,,0,1) is an orthomodular (partially) ordered set.
Conversely, if (A;<,’,0,1) is an orthomodular (partially) ordered set,
and if we define the partial operation @ by

a®b=c, whenevera<b' anda b = c,

then (A;®,',0) is an orthomodular algebra.
Moreover, going back and forth with these constructions starting from
either of the two kinds of structure always yields back the original one.

Proof. The first part of the theorem has been proved above. In order
to prove the second part it suffices to observe that the axioms (A1) through
(A9) are implied by the properties of orthomodular (partially) ordered sets.
The verification of these axioms is quite obvious and therefore omitted.

The last statement also easily follows from what has been shown so far
(e.g. from Lemmas 2 and 4) as well as from the definitions of the transi-
tions. =

3. Examples, Boolean algebras

It is well known that the order relation induced in an orthomodular
latticel, in particular in a Boolean algebra, always yields an orthomodular
ordered set, and since here suprema always exist, it is easily realized that

13 Compare footnote 2.

14 Recall that according to Beran [Be85] — where < designates the usual induced order
relation with a < biff aNb = a (iff altd = b) — (A;U,MN,0,1,’) is an orthomodular lattice,
iff it satisfies the axioms

o (A;u,M)is a lattice.

e Forevery a € Aone hasalla’ =1,aMa’ =0 and d” := (/) =a.
o If a <b, then b’ < o’ for any a,b € A.

e For any a,b € A one has that a < b implies a U (a’ Mb) = b.
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they also satisfy the richness axiom (R).

@ %) a b c a,b a,c¢ bec a,bec

0] 0] a b c a,b a,c byec a,b,c

a a - a,b a,c - - a,be

b b a,b - b,c -  a,be - -

c c a,c b,c -  a,be - - -
a,b a,b - -  a,bc - - - -
a,c a,c -  a,bc - - - - -
b, e b,e a,b,c - - - - - -

a,b,c a,bc - - - - - - -

Table 1: Composition table of @ in (P({a,bd,c}); ®,’,0) (- : undefined)

l=a,b,c

b,c

0=20
a. The order relation b. The domain of @

Figure 1: The Boolean algebra B; as an orthomodular algebra

As a particular example we consider the Boolean algebra B; with three
atoms in its representation as the power set of the set {a,b,c} (set theo-
retical brackets are omitted in the composition table!® for @ and in the
corresponding figures!®). In Figure 1a the usual (partial) order relation is
represented, and in Figure 1b the pairs in dom @ are connected by a line —

the unary operation / is just the set theoretical complementation.

The following lemma will be used in the proof of the next theorem, in
which we want to characterize those orthomodular algebras belonging to

Boolean algebras:

15 See Table 1.
16 gee Figure 2.
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LEMMA 5. Let A be an orthomodular algebra, and assume that a = ¢;®cy,
b = c;Dca, and that c; D ez exists. Then the supremum aUb erists in (A; <),
and we have alU b = ¢; @ ¢y ® c3. — Moreover, the infimum a N b ezists in
(A4; L), and we have alNb = c,.

Proof. Namely, from Axiom (A8) and the assumptions it follows that
c1 @ (c2 @ c3) exists. From Lemma 2 we obtain ¢; @ (c; ® ¢3) = ¢ @ (c2 U
c3) =cpU(c2Ucez) = (g Uey)U(cgUes) = allb. Hence a U b exists, and
alb=cy &cy P cs.

In order to realize the second statement, let ¢4 := (¢ @ ¢2 @ ¢3)'. Then
(c1 ®c2® c3) @ cy = 1. Obviously c2 < a and ¢; < b. Therefore, assume
that, for some d € A, we haved < aand d < b. Then d®a' = (dDcy) D c3
and d® b = (dD cy) @ ¢ exist. Since, by assumption, ¢; @ c3 exists, we can
infer the existence of d ® ¢4 @ ¢1 @ c3, which implies d < (c; B ez Beq) = ca.
This shows that indeed ¢; is the infimum of @ and b. =

THEOREM 2. Let (A; ®,’,0) be an orthomodular algebra, and let < be the
induced order relation and 1 :=0'. Then (A;<,,0,1) is a Boolean algebra,
if and only if it satisfies

(*)  (V2,9)3z1,2,2)(z = 21 @ 22) A (Y= 22 B 23) A 3 (21 @ 23)).

Proof. It is obvious that for each Boolean algebra, say B the induced
orthomodular algebra satisfies (¥) — choose 2, 1= z My, 2 = z Nz},
z3:=yNz.

Let now (*) be satisfied, and consider a,b € A. From Lemma 5 it follows
that under the assumptions of Theorem 2 a U b always exists. We shall
show that a M b also exists. Assume that a = ¢; @ ¢y and b = ¢ @ ¢35 such
that ¢; @ c3 exists (in agreement with the assumptions of the theorem). Let
¢4 := (c1 @ c2 ® c3)'. We have by fact (ii) that ¢; @ c2 @ ¢z @ ¢4 = 1, hence
a'=(c1®c2) =c3®cq and b’ = (c2 ® c3) = c1 D ¢4 because of Lemma 4.
Hence, by Lemma 5, a’ U b’ exists, and we have a' Ub' = ¢; @ ¢3 ® c4. Now,
again by fact (ii) and Lemma 4, we have (a' Ub') = (c1 ® ez D cs) = ¢a
By de Morgan’s law!? we infer that a N b exists in A and is equal to (a’ U
b')'. Hence (A4;<,’,0,1) is an orthomodular lattice. Following the definition
from Beran in [Be85] we say that two elements a and b of an orthomodular
lattice commute, denoted by aCb, if a = (a M b) U (a N b'). It follows from
the assumption of the theorem and Lemma 1 that in (4;<,,0,1) any two
elements commute: In fact, let a,b € A and ¢;,¢2,¢3 and ¢4 be defined as
above, i.e. we have @ = ¢; @ ¢; and b = ¢ @ ¢3. Then by Lemma 5 and
the argumentation above we have a Ub = ¢; ® ¢c2 D c3, a1 b = ¢z, and

17 See Lemma 2
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with a similar argumentation, since b’ = ¢; @ ¢4, that a N b’ = ¢;. Hence
(anb)u(and') = caUe; = ¢1 @z = a and consequently aCb. It was shown by
Foulis in [F62] that, if in an orthomodular lattice any two elements commute,
then this lattice is distributive. Therefore (A4; <,’,0,1) is indeed a Boolean
algebra. m

F

Figure 2: Orthomodular subalgebras of Boolean algebras need not be Boolean

The following example, given in Figure 2, shows that, in the language
of orthomodular algebras, the axioms for Boolean algebras have to include
existential formulas. Namely the orthomodular algebra shown on the right
hand side, denoted by F, is easily realized — via the labelling — to be an or-
thomodular subalgebra of the Boolean algebra B, however, F is not Boolean,
and therefore the class of orthomodular algebras derived from Boolean al-
gebras is not closed with respect to (orthomodular) subalgebras.18

We conclude this section by observing that the example Jyg by M. Jano-
witz!?, which we have depicted in Figure 3 by a Greechie diagram as well as
by its order diagram, where the “ends” on the left and on the right have to

18 Cf. e.g. [Co81], Theorem 2.8.
19 See e.g. Beran [Be85], section IV .4, e.g. Fig. 39a. For “Greechie’s First Theorem”
quoted below see Theorem 49 in that section.
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be identified, represents the order of an orthomodular algebra, which is not
rich: If follows from “Greechie’s First Theorem” that Jig corresponds to an
orthomodular algebra, while an assignment like

Ty c, Ty g, pr—aand y e

yields a situation, where the assumptions of (R) are satisfied, but not the
conclusion. — Further examples of orthomodular algebras, which are not
derived from orthomodular lattices, can be obtained from the partial fields

of sets?0
1
/ b\ 9 f e
> e
a’ A a pY, > = al
0, \0‘0 ho bd
a /' ?'\. =a
& o )
a b c
0 The Greechie
The order relation of Jig diagram of Jig

Figure 3: The non-rich orthomodular algebra Jig

4. Probability measures on orthomodular algebras
Let A := (A4;®,’,0) be an orthomodular partial algebra.

DEFINITION. A mapping
m:A—[0,1]
is said to be a probability measure on A, if
m(a @ b) = m(a) + m(b),
whenever a @ b exists, and

m(a') =1-m(a); m(0)=0.

DEFINITION. A set M of probability measures on A is said to be full, if
the following condition (i) is satisfied:

20 For a given set X a partial field of sets is a family 91 of subsets of X satisfying:
D, X €M; A€ Mimplies X\ A€M; and A,B€e Mand ANB =0 imply AUB € M.
And in order to get an orthomodular algebra on 9 one defines as in [Go80] dom & :=
{(A,B)| A,BeM, AnB = 0}; (A, B) € dom @ implies A® B:= AU B; 0:=O; and
A € 9 implies A’ := X \ A.
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(i) forall a,be A
(for all m € M : m(a) + m(b) < 1) implies that a @ b exists.

M will be called unital, if it satisfies condition (ii) below:
(ii) for every a € A with a # 0 there exists m € M such that m(a) = 1.

Observe that in (i) the converse implication always holds. Namely, if a®b
exists, then m(a) + m(b) = m(a & b), i.e. m(a) + m(b) < 1. Morover the
orthomodularity axiom (A9) implies that

a® b’ exists, iff , for all m € M, m(a) < m(b) = m(a) + m((a ® b')"),

(e.g. a < b implies m(a) < m(b)). Consequently, property (i) above can be
replaced by the following one (for all a,b € A):

(for all m € M : m(a) < m(b))iff a < b.

DEFINITION. Let S be a non-empty set, and let L C [0,1]° be a set
of functions from § into [0,1]. L is said to be a numerical orthomodular
algebra, if it is an orthomodular algebra with respect to the partial operation
@ defined by

f@g:=f+giff f+g<1,

and the unary operation ’ given by f’ := 1 — f, with the constant 0 = 0F
being the function taking the value 0 for all z € §.

There arises the question, when a set L C [0,1]% of functions is an
orthomodular algebra. The answer is given in the following theorem:

THEOREM 3. Let L C [0,1]%, S # O, have the following properties:
(i) 0e L,

(i) feL=>1~-fel,

(ili) iff17f2’f3 € L7 and lffz + fJ S 1 fOT‘ l 7£ j, then fl + f2 + f3 c L.
Then L := (L; ®,’,0) is an orthomodular algebra with respect to the partial
operation f® g := f+¢g (if f+ g < 1), and the unary total operation
Pifefli=1-f.

Here < denotes the order between real functions: f < g iff f(z) < g(z)
forall z € S, + and — denote the (componentwise) addition and subtraction
of real functions, 1 denotes the function taking the real value 1 forall z € §.

Proof. We could verify all the axioms (A1) through (A9), but we can
also use the theorem of Maczyfiski and Traczyk in [MT73] to infer that
(L;<,,0,1) is a partially ordered orthocomplemented and orthomodular
set; and next, by Theorem 1, (L;<,',0,1) is equivalent to (L, <,’,0) with
fdg:=fug=f+gfor f <g',ie for f+ g < 1. Hence Theorem 3
holds. m ’
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We also have the following Representation Theorem:

THEOREM 4. Let (A;®,,0) be an orthomodular algebra, and let M be
a full set of probability measures on A. For everya € A, leta : M —
[0,1] be a function defined by a(m) := m(a) for all m € M. Then ({a |
a € A};®,',0) =: A is a numerical orthomodular algebra isomorphic to

(4;8,,0).

Proof. In order to show that A = (A4;®,’,0) is a numerical orthomodu-
lar algebra, we verify the properties (i) — (iii) of Theorem 3. Since m(0) = 0
for all m € M, the function 0 with 0(m) = m(0) = 0, belongs to A. Now, if
a € A, then 1 — @ belongs to A, since (1 — &)(m)=1-a(m)=1-m(a) =
m(a') for all m € M. Therefore 1 — @ = o’ € A.

Condition (iii) also holds. Namely, let a7, @z, a3 € A with @ +@; < 1 for
i # j. Then, for all m € M, and for all ¢ # j, @(m) + @;(m) = m(a;) +
m(a;) < 1. Since M is full, a; @ a; exists. Hence we get (ay + a3 +@3)(m) =
@i(m) + @z(m) + @(m) = m(a1) + m(az) + m(az) = m(a1 @ a2 ® a3) =
(a1 @ a; ® az)(m) for all m € M. Hence (iii) holds. In the proof we have
used the fact that m(a; @ a2 @ az) = m(a1) + m(az) + m(as). However,
this follows easily from axioms (A5) and (A8). Hence A = (A4;®,’,0) is an
orthomodular algebra.

The map ¢ : a — @ is clearly an isomorphism, since ¢(a @ b) = a®b=
a+b = p(a)+ ¢(b); p(a’) = a' = (¢(a)), »(0) = 0. It is one-to-one and
onto, since for @ = @; one has @;(m) = az(m) for all m € M. Hence
m(a1) = m(ay) for all m € M, and this implies a; < a; and a2 < a; (M
is full), i.e. aj = a;. Therefore ¢ is one-to-one. Since we deal with partial
algebras, we still have to show that the homomorphism ¢ is closed, i.e. that
a @ b exists, whenever @ + b exists (the latter meaning that for all m € M
a(m) + b(m) = m(a) + m(b) < 1). However, this is just guaranteed by the
assumption on M to be a full set of probability measures (see condition (i)
above defining fullness). This ends the proof of Theorem 4. m

For rich orthomodular algebras the representation theorem can be sim-
plified. First we have the following lemma.

LEMMA 6. Let L = (L; ®,’,0) be a numerical orthomodular algebra. Then
L is rich (i.e. it satisfies aziom (R)), iff the following condition holds:

(*) If f1, f2,91,92 € L and max{fi, f} < min{gy, g2},
then there erists h € L such that max{fi, fo} < h < min{g;,92}.

Here min{f, g} denotes the function defined by h(z) = min{f(z), g(z)}
for every x € S (analogously for max{f,g}).
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Proof. Assume that (R) holds for z; = f1, 22 = fo, n = 1 - g1,
y2 = 1 — g2. Then z; @ yy exists, iff fi < g1; 1 @ ¥y exists, iff fH < gg,
T2 @ yy exists, iff fo < g1; 22 @ o exists, iff fo < gs.

This means that max{ fi, fo} < min{g;,92}. By (R) thereis z € L such
that z; <2/, 22 <2, < z,and 92 < 2521 < 2/, 23 < 2/, 2’ < 9q, and
2! < y5. This means that max{f;, f2} < h < min{g;, g2} for A = 2’. Hence
condition (*) holds, and therefore we have “(R) = (%)”.

The converse implication “(*) => (R)” is also true, since in the above
proof all the implications are in fact equivalences. Therefore Lemma 3.1
holds. =

We now have the following theorem.

THEOREM 5. Let L C [0,1]° be a set of functions with the following
properties:

1°. 1€ L.

2°. (VfeL)(f#£0 = (BaeS)(f(e)>1}):

3°. f,g€L, f+9<1 = f+gel.

4°, f,ge L, f<g => g—felL.

5°. The property (*) from Lemma 3.1 holds.
Then (L; ®,',0) is a rich orthomodular algebra.

Observe that in this theorem condition (iii) of Theorem 3 is replaced
by the weaker condition 3°. Condition (iii) involves three elements, condi-
tion 3° only two. However, in this case we have to assume the additional
property (*). D.Strojewski has tried in [S85] to prove this theorem without
the assumption (%), but his proof contains an error. His method of proof,
however, can be used to prove Theorem 5.

Proof. It suffices to show that conditions 1°-5° imply conditions (i)-(iii)
of Theorem 3. By first taking f = ¢ = 1in 4° we obtain 1-1 = 0 € L, thus (i)
holds. Next taking in 4° ¢ = 1, we obtain f € L = 1— f € L, therefore (ii)
holds. To show that (iii) holds, we first show that f,g € L, f+ ¢ < 1imply
that f+g¢ = fuUg in the (partially) ordered set (L; <). Assume that, for some
he L, f < hand g <h. We have max{f, g} < min{f + g,h}; so, by 5°, we
obtain that there exists hy € L such that max{f,g} < hy < min{f + g, h}.
Hence f,g < hy < f+ g. This implies 1 + A, — f — g < 1, and consequently
(1—f)+(h1 —g) < 1. Now, by 4° and 3°, we obtain (1 - f)+ (hy —g) € L.
If we define hy :=1—((1 = f)+ (h1 — g)), then hy € L and 0 < by < f, g.
But this gives hy < min{f,¢} < min{f,1 - f} < I, so, by 2°, hy = 0. This
implies that hy = f + ¢. Since hy < h, it follows that f + g < h. Hence
fuUg= f+g. Now, in order to show that (iii) holds, let fi, f2, f3 € L with
fi+ fi £1for i # j. Then f; U f, exists, and f1 + fo = fi1 U f2. Since
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fi,f2 £1— f3, weobtain fiuf, <1- f3,ie. (fiU f2)+ f3 < 1. By 3° this
implies (fi U f2) + f3 € L, that is fi + fo + f3 € L. Hence (iii) holds. This
ends the proof of Theorem 5. =

We now obtain the following representation theorem for rich orthomod-
ular algebras with a full set of probability measures.

THEOREM 6. Every rich orthomodular algebra with a full and unital set
of probability measures is isomorphic to a numerical orthomodular algebra
of functions L C [0,1]° satisfying the properties 1° - 5°, where f®dg = f+g
and f'=1- f.

Proof. Immediate from Theorems 4 and 5. In particular, the assump-
tion of unitalness of the set of probability measures yields property 2° of
Theorem 5. =

Observe that the property (%) from Lemma 3.1 is satisfied, when e.g.
(L, <) is a semilattice (upper or lower), so it holds in every lattice.

This property (*) can be given some probabilistic interpretation: We call
the members of L questions, the members of S are called states. For each
f € L, f(z)is interpreted as the probability for the question f of being true
in the state z. The property (%) can be interpreted as follows:

If the probability of one pair of questions is always (i.e. in all states)
less than the probability of another pair of questions, then there is a ques-
tion with probability between these two pairs. This means that the fact
that max{f,g} < min{u, v} can be experimentally verified by one question.
Therefore, although by no means all questions are pairwise verifiable, still
there are some pairs, which are verifiable with respect to some other pairs.
This is a reasonable assumption to be made about quantum logic, which is a
partially ordered orthocomplemented set with some regularity assumption.

6. On the category of orthomodular algebras, free objects

Comparison of categories

In Theorem 1 we have shown that there exists — in a natural way —
a bijection between the class of all orthomodular ordered sets and the class
of all orthomodular algebras. This yields an embedding — in the sense
of category theory — from the category with the class of all orthomodular
algebras as class of objects and with the class of all homomorphisms — in the
“weak sense” between partial algebras?! — as class of morphisms, into the
category with the class of all orthomodular ordered sets as class of objects
and the class of all order preserving, 0-preserving and orthocomplementation

21 Gee Footnote 10.
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preserving mappings between these objects as morphisms: however, this is
not a so-called full embedding, as the following lemma shows:

LEMMA 7. Let A = (A;®,,0) and B = (B;®,,0) be orthomodular
algebras, and let A' = (A;0,';<) and B’ = (B;0,'; <) be the corresponding
orthomodular ordered sets. Moreover, let ¢ : A — B be any mapping. Then
we have the following:

(i) If ¢ is a homomorphism from A into B, then v is an order preserving

mapping (naturally also preserving 0 and the orthocomplementation).

(ii) If ¢ preserves the order relation <, the orthocomplementation ' and

0, then ¥ need not necessarily be a homomorphism between ortho-
modular algebras.

Proof. Ad (i): By assumption 1 preserves 0 and the orthocomplemen-
tation. Assume a,b € A such that a < b. Then a @ b’ exists, since one has
the relationship

a < bif and only if a @ b’ exists,
and therefore one has
P(a®b') = p(a) ® P(b') = ¥(a) ® Y(b)".
This implies that ¥(a) < 1(b), and therefore 9 is also order preserving.

Figure 4: Order and complementation preserving, but no homomorphism
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Ad (ii): In order to realize this consider Figure 4, where 1 is a mapping
from the Boolean lattice B with four atoms a,b,c,d onto the orthomod-
ular ordered set F, which corresponds to the free orthomodular algebra
F({z,y},OMA), and which maps all points depicted by a black circle to
OF, all those depicted by two circles to 1r, and moreover u to z, v to y
and therefore u’ to z’ and v’ to y'. It is easy to check that 1 preserves 0,
the order relation and the orthocomplementation ’. Moreover, in B we have
a < ¢, and therefore a @ c exists with value v. However, ¢(a) = ¢(c) = OF,
and therefore

0p = ¥(a) @ ¥(c) < Y(a® b) = .
Thus 9 does not preserve the partial operation @. m

Free objects

The category of all orthomodular algebras with their homomorphisms
is, however, a “very nice” category. First let us observe that, since by def-
inition OMA is an ECE-variety, it has, for each set X, a (relatively) free
algebra F(X,0MA) with the OMA-free generating set X22, and this has
the following relatively simple structure:

THEOREM 7. Let X be any set of variables, then the OMA-free OMA -
algebra F(X,0MA), OMA-freely generated by X can be described as fol-
lows?3

F(X,0MA) = XuXx*u{o0,1},
dom®
= {(0’ O)a (0,1), (1’ 0)} U U {(I’ 0),(0,z),(z*,0),(0,z%), (=, :l:*), (z7, :l:)},
z€X
and

0060:=0; 09p1:=1600:=1; 0Qy:=yDO0:=y forallye XUX™;
2@z :=x*®z:=1forallz e X.
0':=1; 1':=0; 2’ :=2%, (z*):=z forallz € X.
0 is the least (and 1 the greatest) element.

Moreover, each OMA-free OMA-algebra F(X,0MA) is rich, and there-
fore — for every set X — it is also an OMAR-free OMAR-algebra over X:

F(X,0MAR) = F(X,0MA).

22 This means that every mapping from X into any orthomodular algebra, say A, has
an extension to a homomorphism from F(X,O0MA) into A.

23 Here X* := {z* | £ € X} designates a set disjoint from and in one-to-one correspon-
dence to X. Compare Figure 5.
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! and the domain of & Iy

Figure 5: OMA-free OMA-algebra on X: F({z,y,z,...}, OMA)

Proof. Because of the axioms (A0) through (A9) a free OMA-algebra
has to contain Fx := {0} U {0’} U X U X*, and the axioms do not imply
any identifications, and they do not enforce the existence of any further ele-
ment in order to make it an object from OMA. It is easy to realize that the
indicated structure really yields an orthomodular algebra on F(X,0MA)
— as a matter of fact one gets an orthomodular algebra induced by the
orthomodular lattice often denoted by MOX. Moreover, since this ortho-
modular algebra contains exactly the elements and the structure enforced
by the axioms and the fact that it has to be generated by X, it really has to
be (isomorphic to) the OMA-free OMA-algebra on X. It is also quite easy to
realize that every mapping from X to any orthomodular algebra B is always
extendable to a homomorphism from F(X,0MA) into B. — One can also
easily see that the free OMA-algebra on one free generator has exactly four
elements, and that F(X,OMA) is the coproduct in the category OMA2* of
the family {F({z},OMA) |z € X}.

It is quite obvious, too, that F(X,0MA) — as defined in the theorem
— is rich. Namely the structure of F£(X,0MA) as indicated in Figure 1 is
so “poor” that, whenever one tries to realize the premise of (R) by four
elements ai,az,b1,b; from F(X,0OMA), then either they have to form a
subset of {0,0'} or there has to exist z € X such that they form a subset of

24 See the next subsection (on category theoretical constructions).
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the three-element set {z,z*,0}. In both cases an element z € F(X,0OMA)
can easily be found such that z also satisfies the conclusion of (R). E.g.
assume that a; = 0, a3 = z, b, = 0, by = z*; then one has to choose z ;= z*.
The other cases can be treated in a similar way.

Since OMAR is a subclass of OMA, and since therefore every OMA-free
partial algebra over X is also OMAR-freely generated by X, this shows that
F(X,0MA) = F(X,0OMAR). =

We know from Lemma 1 that the only total algebras in OMA as well
as in OMAR are the one-element orthomodular algebras, and both classes
contain partial algebras with more than one element. However, in an ezis-
tence equationally defined class (a so-called E-variety) £ of partial algebras
every member of £ with at least two elements is fully embeddable into a
total R-algebra?®. Therefore, neither OMA nor OMAR can be defined by ex-
istence equations only; yet, only E-varieties can be said “to be determined
by their free (partial) algebras”.

Let us recall, in addition, that in an axiomatic class, say K, of par-
tial algebras £-free f-algebras — whenever they exist — carry the weakest
structure allowed by the axioms. Namely, every mapping from X into any
RK-algebra has to have a homomorphic extension; and therefore the structure
of F(X, f) must not be too rich. Since the precise image set of a homomor-
phism need not be a closed subset of the target algebra, the free partial
algebras only give you a measure of what has to be generated at least by a
subset of a given K-algebra, but in general it does not give full information
about the generated subset and its structure. .

In particular, already in connection with an ECE-variety & of partial
algebras and a given set X of generators, one may consider for every X-gen-
erated relative subalgebra, say P, of the term algbra over X its £-universal
solution F(P,R). One gets in this way a usually infinite set, say Fx g, of
partial algebras, which are non-isomorphic over the identity mapping idx
of X such that this set can be considered in some way as another substitute
for the R-free R-algebra on X from the total case: Namely one then has that
for every R-algebra, say K and for every mapping f : X — K there exists
exactly one partial algebra, say F; in Fx g such that f extends to a closed
homomorphism from F'; onto the subalgebra of K generated by the image
set f(X). However, while it is in many cases not too difficult to provide a
description of the single partial algebra F(X,R), it is usually a very hard
task to get a description of the set Fx g — of which F(X,£) is in some
sense the smallest element. It might be an interesting — but very likely also
very hard — project to determine Fx oma (at least for finite sets X).

25 See [BT73)].
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Some category theoretical constructions in OMA

We want to conclude this note by briefly discussing some of the category
theoretical properties of the category OMA of all orthomodular algebras
as objects and all homomorphisms as morphisms. It is well known that re-
flective subcategories of complete and cocomplete categories are themselves
complete and cocomplete?6. Since OMA is a full and epireflective subcat-
egory?” of the complete and cocomplete category Alg(2,1,0) of all partial
algebras of type (2,1,0) with homomorphisms as morphisms, it is therefore
itself complete and cocomplete. In what follows we only want to discuss
some of the most common constructions in this category, although in this
connection the facts also mainly follow from the general theory.

Since OMA is closed with respect to direct products, which are the prod-
uct objects in Alg(2,1,0), the products in OMA are the usual direct prod-
ucts (in which the partial sum is defined componentwise, whenever it is
defined in all the components) with the canonical projections as projection
morphisms.

If f,g: A — B are homomorphisms, then the subset Ay, = {a € A |
f(a) = g(a)} is a closed subset of A and therefore the carrier set of the
equalizer (A ,,id4,,) of f and g, where id,, , is the identity embedding
of A, , into A, which is a closed homomorphism.

Obviously the total one-element algebra of type (2,1,0) is a terminal
object of the category OMA.

It is known from the theory of orthomodular ordered sets or can easily
be realized directly, that, for any family § of orthomodular algebras, the
“disjoint union of the algebras with identification of all zeros and all ones,
respectively” yields the coproduct object for the family §, and the “canonical
injections” are in this category really (closed and) injective homomorphisms.

The two-element OMA-free OMA-algebra F(@, OMA), OMA-freely gen-
erated by the empy set represents the initial object — as usual in categories
with free objects.

The description of coequalizers is a little more involved, since OMA is
not closed w.r.t. homomorphic images in general, but one can only guarantee
closedness w.r.t. closed homomorphic images. However, the construction of
coequalizers can be described in general as follows:

Let f,g: A — B be any two homomorphisms between the orthomodular
algebras A and B, let Of be the congruence relation on B generated by
the set {(f(a),g(a)) | @ € A}, let nate,, : B — B/Oy,, be the quotient
homomorphism, and let 7/, , oma : B/Of 4 — F(B/Of 4, OMA) be the

28 Cf. e.g. [HST73], section 36.
27 Compare e.g. J. Schmidt [Sch66].
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OMA-universal OMA-solution of this quotient algebra. Then rg/e, ,,oma ©
nate,, : B — F(B/Oy,,, OMA) represents a coequalizer of f and g. In order
to realize this, one should observe that (nate, ,,B/Oj ) is a coequalizer of
f and g in Alg(2,1,0).

Since natg, , need not be a closed homomorphism, one cannot say more
without deeper investigations, which we did not carry through so far. In this
connection we want to add some remarks concerning the closedness of OMA
w.r.t. closed homomorphic images. This means that it can be guaranteed
that, for any closed conguence relation?®, say @, on some orthomodular
algebra A, every partial algebra, say B, isomorphic to the quotient algebra
A/O is again an orthomodular algebra. However, this does not say that
B cannot be an orthomodular algebra, if © is not closed. E.g. the one-
element total algebra, say T, of type (2,1,0) is orthomodular, and it is a
homomorphic image of any other orthomodular algebra, say A. However,
the corresponding surjective homomorphism — and therefore its kernel —
is closed, iff A has only one element, too.

For those, who do not know partial algebra theory so well, we add that
in any partial algebra, say A, (of finitary type) there exists a largest closed
congruence relation, say O., and that the ideal gererated by O, in the con-
gruence lattice of A only consists of closed congruence relations. 0, is iden-
tical with the largest congruence relation A X A of A, iff each fundamental
operation of A is either total or empty.

Observe that, in any orthomodular algebra, say A, with more than two
elements, no element, say a, different from 0 can be identified with 0 by a
closed congruence relation, since 0 ® 1 exists, while a @ 1 does not exist. For
a similar reason, a cannot be identified with 1 by a closed congruence, if
a # 1 — since then a’ & 0’ does not exist, while 1’ @ 0’ exists.
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