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1. Introduction 
The theory of orthomodular ordered sets — or orthomodular posets — 

has been well developed and has found many applications (quantum logics, 
Hilbert spaces, generalized probability theory). In order to define ortho-
modular ordered sets one usually introduces an order relation; therefore, 
from an algebraic point of view, they are algebras with an additional rela-
tion. Thus direct applications of important algebraic theorems on varieties, 
free products and so on to orthomodular ordered sets become difficult — 
they do not belong to abstract algebras. Moreover, the usual morphisms 
between them — preserving the nullary constants, the unary operation and 
the binary relation — are not always adequate for the corresponding or-
thomodular algebras, which form with the usual homomorphisms between 
partial algebras a "nice" category, as we shall show in section 5. The aim 
of this paper is to show that we can formulate the theory of orthomodular 
ordered sets in the framework of partial algebras, where the general alge-
braic and model theoretic properties have been investigated in detail (see 
e.g. [B86] or [B93]). This enables us to apply the theory of partial algebras 
to these structures and consequently also to quantum logics. In particular 
we get an adequate concept of morphisms between orthomodular algebras 
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nika Warszawska and the Technische Hochschule Darmstadt. 
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(and therefore also between orthomodular ordered sets — however, in their 
original theory they would not be that easily describable). 

We formulate an axiom system for orthomodular algebras which turn 
out to be equivalent to orthomodular ordered sets, and we discuss some 
examples, e.g. orthomodular algebras derived from Boolean algebras. Next 
we prove a representation theorem for orthomodular algebras with a full 
set of probability measures. We also investigate numerical orthomodular 
algebras and give their simple characterization. We compare the category of 
orthomodular posets with that of orthomodular algebras, prove the existence 
of free orthomodular algebras, and discuss some properties of the category 
of orthomodular algebras with homomorphisms as morphisms. 

2. A n ax iom s y s t e m for orthomodular (partial) algebras 
Before formulating the axiom system we recall some basic definitions 

and terminology from the theory of partial algebras. Let T (X , Σ) be any 
term algebra of signature or type Σ on some set X , let t, t\, ¿2 E T(X, Σ) be 
any terms, and let A be any partial algebra of type Σ. Thus, in A there are 
defined some operations, among them there may be proper partial operations 
(the domain of which is not all of A n — η being the arity of the operation 
— but only some proper subset of An). We recall that an existence equation 
t\ = ¿2 holds in the partial algebra A, iff for every valuation ν : X —> A 
the induced — i.e., as usual, recursively defined, but now along the partial 
structure of A — interpretations v~(t\) and v~(Í2) of t\ and ti exist and 
are equal. It should be observed that as set X of variables from which the 
valuation starts one usually chooses the set of variables occurring freely in 
the formula, if not stated otherwise (compare the footnote 3 to axiom (AO) 
below). 

In particular, the term, existence statement t = t is satisfied in A with 
respect to a valuation ν : X —• A, iff the interpretation v~(t) exists. We 
shall abbreviate the term existence statement t = t by 3 t, i.e. 

3 t t = t . 

DEFINITION. By an orthomodular (partial) algebra1 we understand a 
partial algebra A := (A; , 0) of type (2,1,0) such that the following list 
of axioms is satisfied in A for all x, y, ζ G X for any given countably infinite 
set X of variables2 : 

1 We shall in what follows mostly omit the adjective "partial" and only speak of "or-
thomodular algebras". 

2 We have omitted brackets, when it does not influence understandability. It might be 
useful to compare the following axioms and facts with the usual definition of orthomodular 
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(AO) 3 0.3 

(ΑΙ) χ" = χ. 
(A2) χ φ χ' = 0'. (Notation: 0' =: •Λ). 
(A3) χ®0 = χ. 
(A4) 3 (χ ® y) => χ @ y = y ® χ. 
(Α5) 3 ((χ φ y) φ ζ) (χ φ y) φ ζ = χ φ (y φ Ζ). 
(Α6) 3 (χ φ y) Λ 3 (y' φ ζ) 3 (χ ® ζ). 
(Α7) 3 (χ φ y') Λ 3 (χ' φ y) => χ = y. 
(Α8) 3 (χ φ y) Λ 3 (y φ ζ) Λ 3 (χ φ ζ) => 3 (χ < S (y® ζ)). 
(Α9) 3 (χ ® y') χ φ (χ φ y')' = y. 

An orthomodular algebra shall be called rich, if the following additional 
richness axiom holds: 

(R)3 (χι Θ yi) Λ 3 (χι ® y2) A 3 (x2 ® yi) Λ 3 (x2 Θ y2) =>· 
(3z)(3 (χ ι φ ζ) Λ 3 (x2 ® ζ) Λ 3 ( V l φ ζ') Λ 3 (y2 φ ζ')). 

Observe that the operation "φ" is commutative by (A4) and associative 
by (A5) (in the sense of "strong equality" or "Kleene equality"). Directly 
from the above axioms we obtain moreover the following simple observations. 

FACTS. It follows that in each orthomodular algebra A 
(i) the unary operation ' is always a total bijection (see (Al)); a' is called 

the orthocomplement of α ζ A; 
(ii) for each α ζ Α, α φ a' always exists with the constant value 0' = 1 (see 

(A2)); 

ordered sets — as given e.g. in Beran [Be85], pages 144ÍF and 152 or in Kalmbach [K83]. 
There they are defined as (bounded) orthocomplemented (partially) ordered sets (Ρ ; < 
/ , 0,1), i.e. ordered sets satisfying for all a,b G Ρ that a < b implies b' < a', that a" = a, 
θ' = 1, and a U a' = 1; in addition they have to satisfy that , whenever α < b', then the 
supremum a U 6 always exists, and finally, that a < b always implies a U (a U 6')' = δ 
(orthomodularity ). 

Observe moreover that , since the logical operator "or" will be denoted by "V", the 
supremum operation of an orthomodular algebra will be denoted by the symbol "LI". And 
since the logical operator "and" will be denoted by "Λ", the infimum operation of an 
orthomodular algebra will be denoted here by "Π". 

3 Observe that in connection with this axiom only valuations starting from the empty 
set of variables are considered. Exactly this fact guarantees that in each model, say A, of 
(AO) the constant 0— really exists, and that in particular all models of (AO) are non-empty. 

4 For the effect of this axiom see Lemma 2. After a preprint of this note had appeared, 
S. Pulmannová has shown in [Pu93] that this axiom is the crucial one for orthomodular 
algebras, which has to be omitted in order to generalize our axiomatization to difference 
algebras and orthoalgebras, while all other axioms can be kept — and for orthoalgebras 
a weaker one has to be added. 
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(iii) the constant 0 always exists (see (AO)5), and, for each element α G A, 
α φ 0 always exists and yields a as value (see (A3)); 

(iv) the operation φ is commutative (see (A4)) and associative (see (A5)), 
whenever it exists6 ; we shall make use of these properties in what fol-
lows without explicitly mentioning them. 

Moreover we have: 
(v) If one defines a relation "<" on an arbitrary orthomodular algebra A 

by 
a <b i f f α φ 6' exists,7 

then one easily realizes that from (A2) there follows reflexivity, that 
(A6) implies transitivity, and that (A7) means asymmetry of the rela-
tion "<", i.e. in any orthomodular algeba A the relation "<" defined 
above is always a (partial) order relation on A; moreover, the axiom 
(A3) — together with (Al) — implies that 1 (= 0') is the greatest 
element of this order relation and 0 is its least element·, 

(vi) The axioms (AO) through (A9) are existence equations or "existentially 
conditioned existence equations8 and therefore they define a so-called 
"ECE-variety9 which we shall denote by OMA, the ECE-variety of 
all othomodular algebras, while we shall denote the axiomatic subclass 
of OMA of all rich orthomodular algebras by OMAR. 

(vii) The fact that OMA is an ECE-variety is equivalent to saying that OMA 
is closed with respect to the formation of reduced products (therefore 
in particular w.r.t. direct products), (closed) subalgebras (i.e. relative 
subalgebras on closed subsets) and closed homomorphic images10. The 

5 Note that by (A2) or (A3) it would only follow that the constant 0 is always defined 
in each non-empty orthomodular algebra, since the axioms (Al) through (A9) allow an 
empty model. 

6 Actually, in order to conclude the usual form of associativity, one would also have 
expected the axiom 

(A5') 3 ( i 0 (y φ ζ)) =>• (χ ® y) ® ζ = χ © (y φ ζ). 
However, this follows from (A4) and (A5) (we argue here semantically): 
Let a,b,c € A for some orthomodular partial algebra A, and let a φ (6 φ c) exist, then, 
by (A4), also (c φ 6) φ α exists, and therefore one has by (A5) and (A4) that c φ (6 φ α) 
exists, and that 

(α φ i) φ c = c φ (b φ a) = (c φ b) φ a = a φ (¡> φ c). 
7 Observe that by the commutativity of φ and by (Al) this is also equivalent to b' < a'. 

8 They are briefly called ECE-equations. 
9 Compare [B82], see also [B86], section 8. 

1 0 Observe that a mapping / : A —> Β is a homomorphism between the orthomodular 
algebras A = ( Λ ; φ , ' , 0 ) and Β = ( ΰ ; φ / , 0 ) , if / ( 0 ) = 0, if, for «ill it, ν Ç A, one has 
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axiomatic structure of OMAR is more complicated than that of OMA, 
since (R) contains an existential quantifier — different from the one 
hidden in existence equations. 

(viii) Since OMA is closed in particular with respect to isomorphic copies, 
subalgebras and direct products of orthomodular algebras, it forms an 
epireflective subcategory of the category of all partial algebras of similar-
ity type (2,1,0) with homomorphisms as morphisms11. Therefore, for 
each partial algebra Ρ of type (2,1,0) there exists an OMA-universal 
OMA-solution, say F ( P , OMA), and the OMA-universal homomor-
phism, say r^oMA : Ρ £(P> OMA) is an epimorphism12. However, 
ΓΡ,ΟΜΑ is injective — i.e. a monomorphism — only in those cases, 
where Ρ allows an injective homomorphism into at least one orthomod-
ular algebra. Therefore, in particular, for each set X the OMA-free 
OMA-algebra F_(X, OMA) OMA-freely generated by X exists — and 
rx,OMA is injective. Its structure will be characterized in section 5 of 
this note. 

The meaning of axioms (A8) and (A9) as well as that of the richness 
axiom (R) will be discussed later, when we shall have more information 
about the induced order relation in an orthomodular algebra. 

We now prove some further properties about orthomodular algebras: 

LEMMA 1. Each orthomodular algebra is non-empty. And an orthomod-
ular algebra is total i f f it has exactly one element. 

P r o o f . Since by axiom (AO) the constant 0 always exists, each ortho-
modular algebra is non-empty. Let A be any total orthomodular algebra; 
then, for any two elements a and b from A, a 0 ò' and α' φ b exist, and 
therefore one gets a = b by (A7). Since, by (A3), 0 φ 0 (= 0) always exists, 
each one-element orthomodular algebra is total. • 

LEMMA 2 . I f , in an orthomodular algebra A with the related order re-
lation <, α φ 6 exists, then α φ b = a U b, i.e. then the supremum a U 6 in 
(A; <) exists and is equal to α φ b. Moreover, (α φ b)' — α' Π (de Morgan's 
law), i.e. the infimum α' Π b' of a' and b' then exists, too, and is equal to 
(α φ b)'. 

/ ( « ' ) = / ( « ) ' and: 
If Μ φ υ exists in A, then /(Μ) φ f(v) exists in 5 and one has f(u φ υ) = f(u) φ f(v). 
f is a closed homomorphism, iff, in addition, the existence of f(u) φ f(v) in 5 always 

implies that « φ υ exists in A. B_ is said to be a closed homomorphic image of A, if there 
exists a closed and surjective homomorphism from A onto B. 

1 1 Cf. [B86], subsection 5.11, or originally J.Schmidt [Sch66], 
1 2 In this category the fact of being an epimorphism means that the image set of the 

carrier of the source algebra generates the target algebra. 
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I n p a r t i c u l a r o n e a l w a y s h a s a U a ' = 1 . 

P r o o f . Let us first observe that (A9) and (A4) imply that one always 
has 

if ( α φ b ) exists, then (α < α φ 6) and ( b < α φ b ) . 

Assume, now, that a < ζ and b < z . We have to show that α φ ò < ζ , i.e. 
that (α φ 6) φ ζ ' exists: However, we have by axiom (A8) that if α φ 6, α φ ζ ' 
and b @ z ' exist, then α φ (6 φ ζ ' ) ( = (α φ b ) φ ζ ' by (Α5)) exists, i.e. we get 
α φ b < z . This shows that α φ 6 is the supremum of a and b in { A \ < ) . In 
connection with axiom (A2) this implies in particular that for all α € A one 
has « U e ' = 0 ' = l . 

Concerning the second part of the lemma, observe that we now have 
a , 6 < a U 6 = a©£>, and therefore, observing footnote 7, ( α φ b ) ' < a ' and 
(α φ b ) ' < b ' . Now assume that, for some d £ A , we have d < a ' and d < b ' . 
Then both d φ a and d φ 6 — as well as α φ b — exist. Hence axiom (A8) 
implies that d φ (α φ 6) exists. Therefore, d < ( α φ b ) ' , showing that ( α φ b ) ' 
is indeed the greatest lower bound of a ' and b ' . m 

L E M M A 3 . α φ α or α φ 1 e x i s t i n a n o r t h o m o d u l a r a l g e b r a A , i f f a = 0; 
i n p a r t i c u l a r , i n a n y a t l e a s t t w o - e l e m e n t o r t h o m o d u l a r a l g e b r a o n e a l w a y s 
h a s α φ a ' , a n d t h e i n f i m u m ο Π a ' e x i s t s a n d i s e q u a l t o 0, t h e l e a s t e l e m e n t 
° f ( A ; < ) . 

M o r e o v e r , i f α φ b e x i s t s , t h e n a l s o t h e i n f i m u m α Π b e x i s t s a n d i s e q u a l 
t o 0: α Π b = 0. 

P r o o f . 0 φ 0 and 0 φ 1 exist according to (A3) and (A2). If α φ ί exists, 
then α φ 0' exists, i.e. a < 0. However, 0 is the least element of (A; < ) , and 
we get a = 0. 

If α φ α exists, then this means that α φ (α')' exists, i.e. a < a ' , and 
therefore α U a ' = a ' . However, since α φ a ' = 1, we have a U α' = 1 by 
Lemma 2, hence a' = 1 = 0', i.e. a = 0" = 0 by (Al ) . 

By the second statement in Lemma 2 we have 0 = 1' = (α φ a ' ) = α' Π a. 
If, finally, α φ b exists, then, say, b < a'; and αΠα' = 0 therefore implies 

α Π b = 0 . • 

L E M M A 4 . I f a < b i n a n o r t h o m o d u l a r a l g e b r a , t h e n b = A U ( A U Ò ' ) ' . I n 
p a r t i c u l a r α φ b = 1 a l w a y s i m p l i e s b = a ' . 

P r o o f . Since a < b , α φ b ' exists, and consequently (α φ b ' ) ' also exists. 
From Lemma 2 there follows that (αφό') ' = (aU6') ' . Now a < a U b ' , and this 
implies that οφ(αφ6 ' ) ' exists. By Lemma 2 we get αφ(αφό') ' = α©(αΙ_]&')' = 
o U ( « U &')'. By axiom (A9) we infer that b = α φ (α φ b ' ) ' = a U ( a U b ' ) ' . 
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Finally, if α, 6 G A with α φ b = 1, then a < b'. Hence 

6' = a U (a U b")' = a U (a U b)' = a U (α φ 6)' = a Ü l ' = a U 0 = a. 

Therefore, b = (&')' = a'. m 

Lemma 4 shows that our partially ordered set (A; <) corresponding to 
an orthomoduìar algebra {A\ φ , ' , 0) is indeed orthomoduìar13. Hence every 
orthomoduìar (partial) algebra defines an orthomoduìar (partially) ordered 
set. It turns out that both notions are equivalent. This is shown in the 
following theorem. 

T H E O R E M 1. Let ( Α ; φ , ' , 0 ) be an orthomoduìar algebra. If we define 

a<b i f f 3 α φ ό', 

then (A; </,0,1) is an orthomoduìar (partially) ordered set. 
Conversely, if {A\ <,', 0,1) is an orthomoduìar (partially) ordered set, 

and if we define the partial operation φ by 

α φ b = c, whenever a < b' and a U b = c, 

then (Α;φ,',0) is an orthomoduìar algebra. 
Moreover, going back and forth with these constructions starting from 

either of the two kinds of structure always yields back the original oner. 

P r o o f . The first part of the theorem has been proved above. In order 
to prove the second part it suffices to observe that the axioms (Al) through 
(A9) are implied by the properties of orthomoduìar (partially) ordered sets. 
The verification of these axioms is quite obvious and therefore omitted. 

The last statement also easily follows from what has been shown so far 
(e.g. from Lemmas 2 and 4) as well as from the definitions of the transi-
tions. • 

3. Examples, Boolean algebras 
It is well known that the order relation induced in an orthomoduìar 

lattice14, in particular in a Boolean algebra, always yields an orthomoduìar 
ordered set, and since here suprema always exist, it is easily realized that 

1 3 Compare footnote 2. 
1 4 Recall that according to Beran [Be85] — where < designates the usual induced order 

relation with α < δ ί ί ί α Π 6 = α (iff α Lió = 6) — (A; U, Π,0,1, ' ) is an orthomoduìar lattice, 
iff it satisfies the axioms 

• (J4; U, Π) is a lattice. 
• For every α £ A one has a U a' = 1, α Π a' = 0 and a" ~ (a')' = a. 
• If a < b, then b' < a' for any a, b g A. 
• For any a, b G A one has that a <b implies a U (α' Π 6) = b. 
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they also satisfy the richness axiom (R). 

Θ 0 a b c a, b a, c 6,c a,b,c 
0 0 a b c a, b a, c b,c a, b,c 
a a - a, b a, c - - a, b, c — 
b b a, b - b, c - a, b, c -

c c a,c b,c - a, 6, c - -

a,b a, b - - a, b, c - - -

a,c o, c - a, 6, c - - - -

b, c 6,c a, b, c - - - - -

a, 6, c a, b, c - - - - - -

Table 1: Composition table of φ in (<P({a, l·, c}); © / , 0) ( - : undefined) 

1 = a, b, c 1 = a, b, c 

As a particular example we consider the Boolean algebra Β 3 with three 
atoms in its representation as the power set of the set {a, b, c} (set theo-
retical brackets are omitted in the composition table15 for © and in the 
corresponding figures16). In Figure l a the usual (partial) order relation is 
represented, and in Figure l b the pairs in dom ® are connected by a line — 
the unary operation ' is just the set theoretical complementation. 

The following lemma will be used in the proof of the next theorem, in 
which we want to characterize those orthomodular algebras belonging to 
Boolean algebras: 

1 5 See Table 1. 
1 6 See Figure 2. 
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LEMMA 5. L e t A be a n o r t h o m o d u l a r a l g e b r a , a n d a s s u m e t h a t a = Ci©C2, 
b = c 2 ®C3, a n d t h a t c \ ©C3 e x i s t s . T h e n t h e s u p r e m u m aUò e x i s t s i n ( A ; < ) , 
a n d we h a v e a U b = Οχ φ C2 Θ — M o r e o v e r , t h e i n f i m u m α Π b e x i s t s i n 
( A ; < ) , a n d w e h a v e α Π b = C i . 

P r o o f . Namely, from Axiom (A8) and the assumptions it follows that 
ci φ (c2 φ C3) exists. From Lemma 2 we obtain ci φ (c2 φ C3) = ci φ (c2 U 
C3) = ci LI (c2 U C3) = (ci U C2) LI (c2 U C3) = a U 6. Hence α U i> exists, and 
a U 6 = ci φ c2 φ c3. 

In order to realize the second statement, let C4 := (οχ φ c 2 φ c 3 ) ' . Then 
(ci φ C2 φ C3) φ C4 = 1. Obviously C2 < a and c2 < b . Therefore, assume 
that , for some d £ A , we have d < a and d < b . Then d φ a' — ( d φ c4) φ C3 
and d φ b' = (d φ C4) φ Ci exist. Since, by assumption, ci φ C3 exists, we can 
infer the existence of d© C4 φ Cj φ C3, which implies d < (ci φ C3 φ C4)' = c2. 
This shows that indeed C2 is the infimum of a and b . m 

THEOREM 2. L e t ( A \ φ , ' , 0) be a n o r t h o m o d u l a r a l g e b r a , a n d l e t < be t h e 
i n d u c e d o r d e r r e l a t i o n a n d 1 := 0'. T h e n ( A ; < / , 0 , 1 ) i s a B o o l e a n a l g e b r a , 
i f a n d o n l y i f i t s a t i s f i e s 

( * ) ( V x , y ) ( 3 z 1 , z 2 , z 3 ) ( ( x = z \ 6 * 2 ) A ( y = z2®z3)a3 ( z t φ ζ 3 ) ) . 

P r o o f . It is obvious that for each Boolean algebra, say B_ the induced 
orthomodular algebra satisfies (*) — choose := χ Π y, z\ χ Π z'2, 
z z : = y r \ z ' 2 . 

Let now (*) be satisfied, and consider a , b G A . From Lemma 5 it follows 
that under the assumptions of Theorem 2 a U b always exists. We shall 
show that α Π b also exists. Assume that a = οχ φ c 2 and b = c 2 φ C3 such 
that ci φ C3 exists (in agreement with the assumptions of the theorem). Let 
C4 := (ci φ c 2 φ C3)'. We have by fact (ii) that ci φ c 2 φ φ c \ = 1, hence 
a' = (ci φ c 2 y = C3 φ c4 and b' = ( c 2 φ C3)' = ci φ c^ because of Lemma 4. 
Hence, by Lemma 5, a' LI b' exists, and we have a' U b' = c i φ C3 φ c4. Now, 
again by fact (ii) and Lemma 4, we have ( a ' U b ' ) ' = (c\ φ φ C4)' = c2 

By de Morgan's law17 we infer that α Π 6 exists in A and is equal to (a ' U 
b ' ) ' . Hence (A; < / , 0,1) is an orthomodular lattice. Following the definition 
from Beran in [Be85] we say that two elements a and b of an orthomodular 
lattice commute, denoted by a C b , if a = (α Π b ) U (α Π 6'). It follows from 
the assumption of the theorem and Lemma 1 that in ( A · , < / , 0 , 1 ) any two 
elements commute: In fact, let a , b G A and c i , c 2 , c s and C4 be defined as 
above, i.e. we have a = ci φ C2 and b = c 2 ® C3. Then by Lemma 5 and 
the argumentation above we have a ü i = c \ φ C2 φ C3, α Π b = C2, and 

1 7 See Lemma 2 
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with a similar argumentation, since b' = ci φ C4, that α Π 6' = ci. Hence 
(αΠό )υ (αΠό' ) = C 2 Ü C 1 = c i © c 2 = a and consequently aCb. It was shown by 
Foulis in [F62] that, if in an orthomodular lattice any two elements commute, 
then this lattice is distributive. Therefore (A; < / , 0 , l ) is indeed a Boolean 
algebra. • 

Figure 2: Orthomodular subalgebras of Boolean algebras need not be Boolean 

The following example, given in Figure 2, shows that, in the language 
of orthomodular algebras, the axioms for Boolean algebras have to include 
existential formulas. Namely the orthomodular algebra shown on the right 
hand side, denoted by F_, is easily realized — via the labelling — to be an or-
thomodular subalgebra of the Boolean algebra B_, however, F_ is not Boolean, 
and therefore the class of orthomodular algebras derived from Boolean al-
gebras is not closed with respect to (orthomodular) subalgebras.18 

We conclude this section by observing that the example Jjg by M. Jano-
witz19, which we have depicted in Figure 3 by a Greechie diagram as well as 
by its order diagram, where the "ends" on the left and on the right have to 

1 8 Cf. e.g. [C08I], Theorem 2.8. 
1 9 See e.g. Beran [Be85], section IV.4, e.g. Fig. 39a. For "Greechie's First Theorem" 

quoted below see Theorem 49 in that section. 
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be identified, represents the order of an orthomoduìar algebra, which is not 
rich: If follows from "Greechie's First Theorem" that J\g corresponds to an 
orthomoduìar algebra, while an assignment like 

χι h-> c, X2 9, 2/i o and yi i-> e 

yields a situation, where the assumptions of (R ) are satisfied, but not the 
conclusion. — Further examples of orthomoduìar algebras, which are not 
derived from orthomoduìar lattices, can be obtained from the partial fields 

of sets20 

The order relation of J is 

Figure 3: The non-rich orthomoduìar algebra Jig 

a b c 

The Greechie 
diagram of J is 

4. Probability measures on orthomoduìar algebras 

Let A := (A\ ©, ' , 0) be an orthomoduìar partial algebra. 

DEFINIT ION . A m a p p i n g 

m, : A [0,1] 

is said to be a probability measure on A, if 

m(a © 6) = τη(α) + m(6), 

whenever α φ 6 exists, and 

m(a') = 1 — m(a); m( 0) = 0. 

DEFINITION. A set M of probability measures on A is said to be full, if 
the following condition ( i ) is satisfied: 

20 For a given set X a partial field of sets is a family 971 of subsets of X satisfying: 
0, X e SDÌ; A € OT implies X \ A e 9JT; and A, Β e Wl and Α η Β = 0 imply A U Β 6 SDÌ. 

And in order to get an orthomoduìar algebra on 9Jt one defines as in [Go80] dom 0 := 
{(J4, Β) I A, Β e Α Π Β = 0}; (Α, Β) € dom Θ implies A ® Β := A U 5; 0 := 0; and 
A e QJl implies Al := X \ A. 
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(i) for all α, b G A 

(for all m G M : m(a) + m(b) < 1) implies that α φ b exists. 

M will be called unital, if it satisfies condition (ii) below: 
(ii) for every α G A with α φ 0 there exists m G M such that m(a) — 1. 

Observe that in (i) the converse implication always holds. Namely, if a©6 
exists, then m(a) + m(6) = m(a φ b), i.e. m(a) + m(b) < 1. Morover the 
orthomodularity axiom (A9) implies that 

α φ 6' exists, iff , for all m G M, m(a) < m(b) = m(a) + m((a φ b')'), 

(e.g. a < b implies m(a) < m(6)). Consequently, property (i) above can be 
replaced by the following one (for all a, b G Ä): 

(for all m € M : m(a) < m(b)) iff a < b. 

DEFINITION. Let S be a non-empty set, and let L Ç [0 ,L]S be a set 
of functions from S into [0,1]. L is said to be a numerical orthomodular 
algebra, if it is an orthomodular algebra with respect to the partial operation 
φ defined by 

f®g:=f + gtitf + g<h 
and the unary operation ' given by / ' := 1 — / , with the constant 0 = 0L 

being the function taking the value 0 for all χ G S. 

There arises the question, when a set L Ç [0,1]5 of functions is an 
orthomodular algebra. The answer is given in the following theorem: 

THEOREM 3 . Let L Ç [0, l ] 5 , S φ 0 , have the following properties: 
(i) 0 G L, 

(ii) f e L = > i - f e L , 
(iU) if / h / 2 , / 3 6 L, and if f¡ + f j < 1 for i φ j, then fx + f2 + / 3 G L. 

Then L := (L; φ / , 0) is an orthomodular algebra with respect to the partial 
operation f φ g := / -f g (if f + g < 1), and the unary total operation 
' : / - / ' := 1 — / . 

Here < denotes the order between real functions: / < g iff f ( x ) < g(x) 
for all χ G S, + and — denote the (componentwise) addition and subtraction 
of real functions, 1 denotes the function taking the real value 1 for all χ G S. 

P r o o f . We could verify all the axioms (Al) through (A9), but we can 
also use the theorem of M^czynski and Traczyk in [MT73] to infer that 
( £ ; < , ' , 0 , 1 ) is a partially ordered orthocomplemented and orthomodular 
set; and next, by Theorem 1, ( L ; < / , 0 , 1 ) is equivalent to (L, < / , 0 ) with 
/ Φ g := fUg = f + g for / < g', i.e. for / + g < 1. Hence Theorem 3 
holds. • 
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We also have the following Representation Theorem: 

T h e o r e m 4 . Let ( Α ; φ , ' , 0 ) be an orthomodular algebra, and let M be 
a full set of probability measures on A. For every a G A, let a : M —> 
[0,1] be a function defined by a(m) m(a) for all m G M. Then ({α | 
a G Α};φ, ' ,0) =: A is a numerical orthomodular algebra isomorphic to 
(A; φ, ' ,0). 

Ρ roof . In order to show that A = (Ä\ φ , ' , Ö) is a numerical orthomodu-
lar algebra, we verify the properties (i) - (iii) of Theorem 3. Since m(0) = 0 
for all m € M, the function Ö with Ö(m) = m(0) = 0, belongs to Ä. Now, if 
à G Ä, then 1 - a belongs to Ä, since (1 - ö)(m) = 1 - ö(m) = 1 — τη(α) -
m(a') for all τη £ M. Therefore 1 - a = a' G Ä. 

Condition (iii) also holds. Namely, let 01,02,03 £ Ä with ôï + ô j < 1 for 
i φ j. Then, for all m G M, and for all i φ j, aï (m) + äj(m) = m(ai) + 
m(oj) < 1. Since M is full, a¿ ® dj exists. Hence we get (ä]" + ä7 + ä3)(ro) = 
ôï(m) + 02(771) + 03(771) -- τη(αι) + 771(02) + 772(03) — m(oi φ α2 φ 03) = 
(αχ φ û2 φ θ3)(τη) for all m G M. Hence (iii) holds. In the proof we have 
used the fact that m(a\ φ 02 φ α3) = m(oi) + 777(02) + 77ΐ(α3). However, 
this follows easily from axioms (A5) and (A8). Hence Ä = (Ä;©,',Ö) is an 
orthomodular algebra. 

The map ψ : a h-> ä is clearly an isomorphism, since φ(α φ ò) = ο φ b = 
ö + b = φ(α) + y(6); ψ{α') = α' = (<^(α))', </>(0) = 0. It is one-to-one and 
onto, since for ñ\ — CÏ2 one has aï(m) = oj(m) for all πι G M. Hence 
m(oi) = 771(02) for all m G M, and this implies a\ < 02 and a-i < a\ (M 
is full), i.e. a\ =02- Therefore ψ is one-to-one. Since we deal with partial 
algebras, we still have to show that the homomorphism ψ is closed, i.e. that 
α φ b exists, whenever ä + b exists (the latter meaning that for all m G M 
a(m) + 6(m) = m(a) + m(b) < 1). However, this is just guaranteed by the 
assumption on M to be a full set of probability measures (see condition (i) 
above defining fullness). This ends the proof of Theorem 4. • 

For rich orthomodular algebras the representation theorem can be sim-
plified. First we have the following lemma. 

L e m m a 6 . Let L = ( i ; φ , ' , 0 ) be a numerical orthomodular algebra. Then 
L is rich (i.e. it satisfies axiom (R)), i f f the following condition holds: 

(*) UΛ,/2,01,02 € L and max{/i, fi} < m i n 5 2 } , 
then there exists h G L such that max{/i , /2} < h < min{<7i, <72}· 

Here min{/, g} denotes the function defined by h(x) = min{/(a;), jf(x)} 
for every χ £ S (analogously for max{/,£f}). 
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P r o o f . Assume that (R) holds for χι = f i , x2 = h, y ι = 1 — 9i, 
Î/2 = 1 - 5 2 · Then χι φ yi exists, iff /χ < j i ; t i φ y2 exists, iff fi < g2; 
®2 θ 2/i exists, iff / 2 < gi] x2 Θ y2 exists, iff / 2 < g2. 

This means that ma.x{fi, f2} < min{<7i, <72}· By (R) there is ζ 6 L such 
that χι < 2', x2 < z', yi < z, and y2 < ζ; x\ < ζ', x2 < z', z' < y[, and 
z> < y'2· This means that max{ / i , /2} < h < min{<71,52} for h = ζ'. Hence 
condition (*) holds, and therefore we have "(R) =>· (*)". 

The converse implication "(*) =>• (R)" is also true, since in the above 
proof all the implications are in fact equivalences. Therefore Lemma 3.1 
holds. • 

We now have the following theorem. 

THEOREM 5. Let L Ç [0, l ] 5 be a set of functions with the following 
properties: 

Io. 1 € L. 
2 ° · ( V / G L ) ( f φ 0 => ( 3 α € 5 ) ( / ( α ) > Ì ) ) . 
3o. / , ge L, f + g < l ^ f + geL. 
4 f,ge L, f <g => g- f e L. 
5o . The property (*) from Lemma 3.1 holds. 

Then (L; φ , ' , 0) is a rich orthomodular algebra. 

Observe that in this theorem condition (iii) of Theorem 3 is replaced 
by the weaker condition 3°. Condition (iii) involves three elements, condi-
tion 3° only two. However, in this case we have to assume the additional 
property (*). D.Strojewski has tried in [S85] to prove this theorem without 
the assumption (*), but his proof contains an error. His method of proof, 
however, can be used to prove Theorem 5. 

Ρ r o of. It suffices to show that conditions l°-5° imply conditions (i)-(iii) 
of Theorem 3. By first taking f = g — 1 in 4° we obtain 1—1 = 0 e L, thus (i) 
holds. Next taking in 4° g = 1, we obtain f e L =£· 1 — f e L, therefore (ii) 
holds. To show that (iii) holds, we first show that / , g e L, f + g <1 imply 
that f+g = fUg in the (partially) ordered set (£; <). Assume that, for some 
h e L, f < h. and g < h. We have m a x { / , < min{/ + g,h}; so, by 5°, we 
obtain that there exists h\ e L such that max{/,<7} < h\ < min{/ + g,h}. 
Hence f,g < hi < f + g. This implies \ + h\ — f — g<\, and consequently 
(1 - / ) + (hi -g)< 1. Now, by 4° and 3°, we obtain (1 - / ) + (hi - g) e L. 
If we define h2 := 1 — ((1 — / ) + — g)), then h2 e L and 0 < h2 < / , g. 
But this gives h2 < m i n { f , g } < min{/, 1 — / } < so, by 2°, h2 = 0. This 
implies that hi = f + g. Since hi < h, it follows that f + g < h. Hence 
/ U g = / + g. Now, in order to show that (iii) holds, let f i , f2, f^ e L with 
fi + f j < 1 for i φ j. Then fi U f2 exists, and fi + f2 = /1 Ü /2. Since 
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Λ , Λ < 1 - /a, we obtain Λ U / 2 < 1 - / 3 , i.e. ( / i U / 2 ) + / 3 < 1. By 3° this 
implies (/χ U / 2 ) + / 3 € L, that is fx + f2 + / 3 € L. Hence (iii) holds. This 
ends the proof of Theorem 5. • 

We now obtain the following representation theorem for rich orthomod-
ular algebras with a full set of probability measures. 

THEOREM 6. Every rich orthomodular algebra with a full and unital set 
of probability measures is isomorphic to a numerical orthomodular algebra 
of functions L Ç [0, l ] 5 satisfying the properties I o - 5°, where f®g = f + g 
and /' = 1 - / . 

P r o o f . Immediate from Theorems 4 and 5. In particular, the assump-
tion of unitalness of the set of probability measures yields property 2° of 
Theorem 5. • 

Observe that the property (*) from Lemma 3.1 is satisfied, when e.g. 
(L, <) is a semilattice (upper or lower), so it holds in every lattice. 

This property (*) can be given some probabilistic interpretation: We call 
the members of L questions, the members of S are called states. For each 
/ € L, f ( x ) is interpreted as the probability for the question / of being true 
in the state x. The property (*) can be interpreted as follows: 

If the probability of one pair of questions is always (i.e. in all states) 
less than the probability of another pair of questions, then there is a ques-
tion with probability between these two pairs. This means that the fact 
that max{/, g} < min{tf, v} can be experimentally verified by one question. 
Therefore, although by no means all questions are pairwise verifiable, still 
there are some pairs, which are verifiable with respect to some other pairs. 
This is a reasonable assumption to be made about quantum logic, which is a 
partially ordered orthocomplemented set with some regularity assumption. 

6. On the category of orthomodular algebras, free objects 
Comparison of categories 
In Theorem 1 we have shown that there exists — in a natural way — 

a bijection between the class of all orthomodular ordered sets and the class 
of all orthomodular algebras. This yields an embedding — in the sense 
of category theory — from the category with the class of all orthomodular 
algebras as class of objects and with the class of all homomorphisms — in the 
"weak sense" between partial algebras21 — as class of morphisms, into the 
category with the class of all orthomodular ordered sets as class of objects 
and the class of all order preserving, 0-preserving and orthocomplementation 

2 1 See Footnote 10. 
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preserving mappings between these objects as morphisms: however, this is 
not a so-called full embedding, as the following lemma shows: 

LEMMA 7 . Let A = ( j 4 ; ® , ' , 0 ) and B_ = ( 2 ? ; © / , 0 ) be orthomodular 
algebras, and let A' = (A ; 0/ ; <) and Β= (2?; 0,' ; <) be the corresponding 
orthomodular ordered sets. Moreover, let φ : A —• Β be any mapping. Then 
we have the following: 

(i) If ψ is a homomorphism from A into Β., then φ is an order preserving 
mapping (naturally also preserving 0 and the orthocomplementation). 

(ii) If ψ preserves the order relation <, the orthocomplementation ' and 
0, then φ need not necessarily be a homomorphism between ortho-
modular algebras. 

P r o o f . Ad (i): By assumption φ preserves 0 and the orthocomplemen-
tation. Assume a,b G A such that a < b. Then α φ 6' exists, since one has 
the relationship 

a < b if and only if α φ b' exists, 
and therefore one has 

φ(α φ b') = φ{α) φ = Φ(α) Φ φψ)'. 

This implies that φ(α) < φ(ό), and therefore φ is also order preserving. 
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Ad (ii): In order to realize this consider Figure 4, where φ is a mapping 
from the Boolean lattice B_ with four atoms a, b, c, d onto the orthomod-
ular ordered set which corresponds to the free orthomodular algebra 
£({i , j i} ,OMA), and which maps all points depicted by a black circle to 
Of, all those depicted by two circles to 1/r, and moreover u to χ, ν to y 
and therefore u' to x' and v' to y'. It is easy to check that φ preserves 0, 
the order relation and the orthocomplementation Moreover, in B_ we have 
a < c', and therefore α φ c exists with value v. However, φ(α) = φ(β) = 0^, 
and therefore 

0F = φ(α) φ V(c) < Φ(α ® b ) = y-

Thus φ does not preserve the partial operation φ. • 

Free objects 
The category of all orthomodular algebras with their homomorphisms 

is, however, a "very nice" category. First let us observe that, since by def-
inition OMA is an ECE-variety, it has, for each set X, a (relatively) free 
algebra F.(X, OMA) with the OMA-free generating set X 2 2 , and this has 
the following relatively simple structure: 

T H E O R E M 7. Let X be any set of variables, then the O M A - f r e e O M A -
algebra F_(X, O M A ) , O M A - f r e e l y generated by X can be described as fol-
lows23 

F(X, OMA) = XÚX*Ú{0,1}, 
dom@ 

{(0,0), (0,1), (1,0)} U (J {(*, 0), (0, x), (x\ 0), (0, x"), (x, x*), (x*, x)}, 
xex 

and 

0 φ 0 := 0; 0 φ 1 := 1 φ 0 := 1; 0 φ y := y φ 0 := y for all y e X U Χ*; 

χ φ χ* := χ* φ χ := 1 for all χ ξ. Χ. 

0' := 1; 1' := 0; χ' := χ*, (χ*)' := χ for all χ e Χ . 

0 is the least (and 1 the greatest) element. 

Moreover, each O M A - f r e e O M A - a l g e b r a F ( X , O M A ) is rich, and there-
fore — for every set X •— it is also an O M A R - f r e e OMAR-algebra over X: 

F(X, OMAR) = F(X, OMA). 

2 2 This means that every mapping from X into any orthomodular algebra, say A, has 
an extension to a homomorphism from Fj[X, OMA) into A. 

2 3 Here X* := {χ* | χ € X } designates a set disjoint from and in one-to-one correspon-
dence to X . Compare Figure 5. 
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The order relation 
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χ = 

' and the domain of φ ( " — Η 

Figure 5: OMA-free OMA-algebra on X: £ ( { x , y,z,...}, OMA) 

P r o o f . Because of the axioms (AO) through (A9) a free OMA-algebra 
has to contain Fx := {0 } U {0 ' } U X U X*, and the axioms do not imply 
any identifications, and they do not enforce the existence of any further ele-
ment in order to make it an object from OMA. It is easy to realize that the 
indicated structure really yields an orthomodular algebra on F(X, OMA) 
— as a matter of fact one gets an orthomodular algebra induced by the 
orthomodular lattice often denoted by MOX. Moreover, since this ortho-
modular algebra contains exactly the elements and the structure enforced 
by the axioms and the fact that it has to be generated by X , it really has to 
be (isomorphic to) the OMA-free OMA-algebra on X . It is also quite easy to 
realize that every mapping from X to any orthomodular algebra B_ is always 
extendable to a homomorphism from F_(X, OMA) into B_. — One can also 
easily see that the free OMA-algebra on one free generator has exactly four 
elements, and that F(X, OMA) is the coproduct in the category OMA24 of 
the family { £ ( { x } , OMA) | χ e Χ } . 

It is quite obvious, too, that F ( X , OMA) — as defined in the theorem 
— is rich. Namely the structure of F_(X, OMA) as indicated in Figure 1 is 
so "poor" that, whenever one tries to realize the premise of (R) by four 
elements αχ, α2,όι,&2 from F(X, OMA), then either they have to form a 
subset of {0 ,0 ' } or there has to exist χ € X such that they form a subset of 

2 4 See the next subsection (on category theoretical constructions). 
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the three-element set {x,x*,0}. In both cases an element ζ £ F(X, OMA) 
can easily be found such that ζ also satisfies the conclusion of (R). E.g. 
assume that αχ = 0, ü2 = x, = 0, 62 = x*) then one has to choose ζ := χ*. 
The other cases can be treated in a similar way. 

Since OMAR is a subclass of OMA, and since therefore every OMA-free 
partial algebra over X is also OMAR-freely generated by X , this shows that 
£ ( X , O M A ) = F_(X, OMAR). • 

We know from Lemma 1 that the only total algebras in OMA as well 
as in OMAR are the one-element orthomodular algebras, and both classes 
contain partial algebras with more than one element. However, in an exis-
tence equationally defined class (a so-called E-variety) Â of partial algebras 
every member of Â with at least two elements is fully embeddable into a 
total ^-algebra25. Therefore, neither OMA nor OMAR can be defined by ex-
istence equations only; yet, only Ε-varieties can be said "to be determined 
by their free (partial) algebras". 

Let us recall, in addition, that in an axiomatic class, say of par-
tial algebras Ä-free ^-algebras — whenever they exist — carry the weakest 
structure allowed by the axioms. Namely, every mapping from X into any 
^-algebra has to have a homomorphic extension; and therefore the structure 
of F(X, Â) must not be too rich. Since the precise image set of a homomor-
phism need not be a closed subset of the target algebra, the free partial 
algebras only give you a measure of what has to be generated at least by a 
subset of a given Ä-algebra, but in general it does not give full information 
about the generated subset and its structure. 

In particular, already in connection with an ECE-variety Λ of partial 
algebras and a given set X of generators, one may consider for every X-gen-
erated relative subalgebra, say P, of the term algbra over X its universal 
solution Ä). One gets in this way a usually infinite set, say Τχ^ of 
partial algebras, which are non-isomorphie over the identity mapping idx 
of X such that this set can be considered in some way as another substitute 
for the Ä-free ^-algebra on X from the total case: Namely one then has that 
for every ^-algebra, say K_ and for every mapping / : X —»· Κ there exists 
exactly one partial algebra, say F_j in such that / extends to a closed 
homomorphism from F_j onto the subalgebra of K_ generated by the image 
set f ( X ) · However, while it is in many cases not too difficult to provide a 
description of the single partial algebra it is usually a very hard 
task to get a description of the set — of which Â) is in some 
sense the smallest element. It might be an interesting — but very likely also 
very hard — project to determine ^"χ,ομα (at least for finite sets X). 

2 5 See [B73], 
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Some category theoretical constructions in OMA 
We want to conclude this note by briefly discussing some of the category 

theoretical properties of the category OMA of all orthomodular algebras 
as objects and all homomorphisms as morphisms. It is well known that re-
flective subcategories of complete and cocomplete categories are themselves 
complete and cocomplete26. Since OMA is a full and epireflective subcat-
egory27 of the complete and cocomplete category Alg(2,1,0) of all partial 
algebras of type (2,1,0) with homomorphisms as morphisms, it is therefore 
itself complete and cocomplete. In what follows we only want to discuss 
some of the most common constructions in this category, although in this 
connection the facts also mainly follow from the general theory. 

Since OMA is closed with respect to direct products, which are the prod-
uct objects in Alg(2,1,0), the products in OMA are the usual direct prod-
ucts (in which the partial sum is defined componentwise, whenever it is 
defined in all the components) with the canonical projections as projection 
morphisms. 

If fi9 '· A M. are homomorphisms, then the subset Af<g = {α € A | 
/ (a ) = g(a)} is a closed subset of A and therefore the carrier set of the 
equalizer (A¡ g,id,A¡ g) of / and g, where id^f g is the identity embedding 
of A j g into A, which is a closed homomorphism. 

Obviously the total one-element algebra of type (2,1,0) is a terminal 
object of the category OMA. 

It is known from the theory of orthomodular ordered sets or can easily 
be realized directly, that, for any family 3" of orthomodular algebras, the 
"disjoint union of the algebras with identification of all zeros and all ones, 
respectively" yields the coproduct object for the family J , and the "canonical 
injections" are in this category really (closed and) injective homomorphisms. 

The two-element OMA-free OMA-algebra F (0 , OMA), OMA-freely gen-
erated by the empy set represents the initial object — as usual in categories 
with free objects. 

The description of coequalizers is a little more involved, since OMA is 
not closed w.r.t. homomorphic images in general, but one can only guarantee 
closedness w.r.t. closed homomorphic images. However, the construction of 
coequalizers can be described in general as follows: 

Let / , g : A —»• B_ be any two homomorphisms between the orthomodular 
algebras A and B_, let Θ f t 9 be the congruence relation on B_ generated by 
the set { ( f ( a ) , g ( a ) ) | a € A}, let nat&f : B_ —» B_/Qftg be the quotient 
h o m o m o r p h i s m , a n d let tbjq¡ 9,OMA : B_/Qf,g E{B./Qf,g, O M A ) b e t h e 

2 6 Cf. e.g. [HS73], section 36. 
2 7 Compare e.g. J. Schmidt [Sch66]. 
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OMA-universal OMA-solution of this quotient algebra. Then fB/e}¡g,OMA 0 

n a t : B_ —• F_{B_/Q ft3, OMA) represents a coequalizer of / and g. In order 
to realize this, one should observe that (ηαί©/ g,B_/Qf,g) is a coequalizer of 
/ and g in Alg(2,1,0). 

Since natQj g need not be a closed homomorphism, one cannot say more 
without deeper investigations, which we did not carry through so far. In this 
connection we want to add some remarks concerning the closedness of OMA 
w.r.t. closed homomorphic images. This means that it can be guaranteed 
that, for any closed conguence relation28, say Θ, on some orthomodular 
algebra A, every partial algebra, say isomorphic to the quotient algebra 
Α/Θ is again an orthomodular algebra. However, this does not say that 
B_ cannot be an orthomodular algebra, if Θ is not closed. E.g. the one-
element total algebra, say of type (2,1,0) is orthomodular, and it is a 
homomorphic image of any other orthomodular algebra, say A. However, 
the corresponding surjective homomorphism — and therefore its kernel — 
is closed, iff A has only one element, too. 

For those, who do not know partial algebra theory so well, we add that 
in any partial algebra, say A, (of finitary type) there exists a largest closed 
congruence relation, say Qc, and that the ideal gererated by 0C in the con-
gruence lattice of A only consists of closed congruence relations. 0C is iden-
tical with the largest congruence relation A X A of A, iff each fundamental 
operation of A is either total or empty. 

Observe that, in any orthomodular algebra, say A, with more than two 
elements, no element, say a, different from 0 can be identified with 0 by a 
closed congruence relation, since 0 © 1 exists, while α φ 1 does not exist. For 
a similar reason, a cannot be identified with 1 by a closed congruence, if 
αφ \ — since then α' φ 0' does not exist, while V φ 0' exists. 

References 

[Be85] L. Beran, Orthomodular Lattices — Algebraic Approach, D. Reidei Pubi. Com-
pany, 1985. 

[B73] P. B u r m e i s t e r , An embedding theorem for partial algebras and the free com-
pletion of a free partial algebra within a primitive class, Algebra Universalis 3 
(1973), 271-279. 

2 8 A congruence relation, say Θ of some partial algebra A is said to be closed, iff the 
induced natural projection nat© : A —^ AJQ is a closed homomorphism. For a general 
intrinsic characterization cf. e.g. [B86], subsection 2.5; for an orthomodular algebra A 
a congruence relation Θ is closed, iff in addition to the usual compatibility with the 
fundamental operations one has that (a, a'), (b, b') Ε Θ and the existence of α φ i always 
imply the existence of α' φ b'. 



722 P. B u r m e i s t e r , M. M ^ c z y ñ s k i 

[B82] P. B u r m e i s t e r , Partial algebras — survey of a unifying approach towards a 
two-valued model theory for partial algebras, Algebra Universalis 15 (1982), 306-
358. 

[B86] P. B u r m e i s t e r , A Model Theoretic Oriented Approach to Partial Algebras. 
Introduction to Theory and Application of Partial Algebras — Part I, Mathe-
matical Research Vol. 32, Akademie-Verlag, Berlin, 1986. 

[B93] P. B u r m e i s t e r , Partial Algebras — An Introductory Survey, In: Algebras and 
Orders: Proceedings of the NATO Advanced Study Institute and Séminaire des 
Mathématiques, Montreal, Canada (Eds.: G. Sabidussi, I. Rosenberg), Kluwer 
Pubi. Co., 1993. 

[Co81] P. M. C o h n , Universal Algebra, D.Reidel Publishing Co., 2 n d ed., 1981 (1s t ed. 
1965.) 

[F62] D. J. F o u l i s , A note on orthomodular lattices, Portugaliae Math. 21 (1962), 
65-72. 

[Go80] R. G o d o w s k i , Commutativity in orthomodular posets, Reports on Mathemat-
ical Physics 18 (1980), 347-351. 

[HS73] H. H e r r l i c h , G. E. S t r e c k e r , Category Theory — An Introduction, Allyn and 
Bacon Inc., 1973. 

[K83] G. K a l m b a c h , Orthomodular Lattices, Academic Press, 1983. 
[MT73] M. M ^ c z y n s k i , T. T r a c z y k , A characterization of orthomodular partially or-

dered sets admitting a full set of states, Bull. Polon. Acad. Ser. Sci. Math. Astr. 
Phys. 21 (1973), 3-9. 

[M73] M. M ^ c z y ñ s k i , On some numerical characterization of Boolean algebras, Col-
loq. Math. 27 (1973), 207-210. 

[Pu93] S. P u l m a n n o v á , A remark on orthomodular partial algebras, Manuscript, 1993. 
[Sch66] J. S c h m i d t , A general existence theorem on partial algebras and its special 

cases, Colloq. Math. 14 (1966), 73-87. 
[S85] D. S t r o j e w s k i , Numerical representations of orthomodular lattices and Boolean 

algebras with infinite operations, Bull. Polon. Acad. Ser. Sci. Math. Astr. Phys. 
33 (1985), 341-348. 

Peter Burmeister 
FACHBEREICH MATHEMATIK 
ARBEITSGRUPPE ALLGEMEINE ALGEBRA 
TECHNISCHE HOCHSCHULE DARMSTADT 
Schloßgartenstr. 7 

D-64289 DARMSTADT, GERMANY; 

Maciej Mqczynski 
DEPARTMENT OF MATHEMATICS 
WARSAW UNIVERSITY OF TECHNOLOGY 
Plac Politechniki 1 
PL-00-661 WARSZAWA, POLAND 

Received September 15, 1993. 


