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1. Introduction

In [4], an axiom system for orthomodular partial algebras (OMA) is in-
troduced, and it is shown that orthomodular partial algebras are equivalent
to orthomodular partially ordered sets (orthomodular posets, OMP).

In this paper, we show that by weakening, resp. omitting one axiom in the
axiom system for orthomodular partial algebras, we obtain axiom systems of
partial algebras equivalent to orthoalgebras (OA), resp. difference partially
ordered sets (difference posets, D-posets, DP). The free algebras in both
latter cases exist and coincide with the free orthomodular algebra (see [4]).

We note that orthoalgebras have been found a useful tool into pursuit
of quantum mechanical constructions (see, e.g., [6, 7, 8, 12, 13]). Difference
posets have been introduced in [9] as a generalization of orthoalgebras (see
also [10]). An important example of a D-poset is the set of all effects (i.e., s.a.
operators A with 0 < A < I on a Hilbert space), which play an important
role in unsharp quantum measurements ([2, 5]).

2. Difference posets, orthoalgebras, orthomodular posets
Let us first recall the definition of a difference poset (see {9]).

DeriniTION 2.1. Let J be a partially ordered set with a partial order
<, greatest element 1, and with a partial binary operation 6 : J x J — J,
called a difference, such that, for a,b € J, b6 a is defined iff ¢ < b, and the
following three axioms hold for any a,b,c € J:

(DPi) a<b = b6a<
(DPii) a<b = b6 (b6a)=ugq;
(DPiii) a<b<c = c6b<cOaand (cSa)O(cOb)=b6a.



688 S. Pulmannovi

Then J is called a difference poset or a D-poset.
The following statements have been proved in [9]:

PROPOSITION 2.2. Let a,b,c,d be elements of a D-poset J. Then

(i) 161 is the least element of J, denoted by 0;

(ii) a© 0 = q;

(i) a©a = 0;

(iv) a<b=>(b6a=0<= b=a)

(V) a<b=>(b0a=b<= a=0);
(vi)a<b<c=>b0a<cOaand(c8a)o(b6a)=cOb;
(vi)) b<c,a<cBb=>b<c6aand(c6a)ob=(cOb)Oq;
(viii) a<b0<c=>a<cO(bOa)and (cO(bSa))Oa=cOb.

ProposiTION 2.3 [10]. A partially ordered set J with the least an greatest
elements 0 and 1, respectively, and with a partial binary operation © : J X
J — J such that bS a is defined iff a < b and the following two azioms hold
for any a,b,c € J:

(i) a6 0=gq;
(i) a<b<c=>cHb<cOaand (c0a)o(cOb)=b0Oaq;

is a D-poset.
Now let us recall the definition of an orthoalgebra (see [7]).

DEFINITION 2.4. Let K be a set containing two distinct elements 0,1
and let K be endowed with a partial binary operation @ which satisfies the
following four axioms:

(OA'1) if a®bis defined, then b @ a is defined and a® b =0 q;
(OAii) if b@ cis defined and a @ (b @ c) is defined, then a & b is defined,
(a®b)Dcis defined and a® (b D c) = (a D b) D ¢;
(OA iii) for every a € K there exists a unique b € K such that a @ b is
defined and a® b = 1;
(OA iv) if a® a is defined, then a = 0.

Then (K,0,1,®) is called an orthoalgebra.

Finally, let us recall the definition of an orthomodular poset (see, e.g.,
(1, 11]).

DEFINITION 2.5. Let L be a partially ordered set with a partial order <,
the greatest and least elements 1 and 0, respectively, and a unary operation
(orthocomplementation) ’ : L — L such that, for any a,b € L, the following
axioms are satisfied:
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(OM i) a" =g
(OMii) avd =1;
(OMiii)) a<b=b <d;
(OMiv) a<b = aVbexistsin L;
(OMiv) a<b=aV(aVb') =b (orthomodular law).

Then L is called an orthomodular poset.

Let us show the interrelations between D-posets, orthoalgebras and or-
thomodular posets.

Let a,b be two elements in an orthoalgebra K. We say that (i) a is
orthogonal to b and write a Lb iff a ® b is defined; (ii) a is less or equal b and
write a < b iff there exists an element ¢ € K such that a®c = b, (iii) b is the
orthocomplement of a iff b is the unique element of K such that a® b =1
and is written as a'. If @ < b, for the element ¢ such that a ® ¢ = b, we
write ¢ := b © a. The element ¢ is well-defined, because if ¢; is such that
a®cy=b,thenl1=(aPc)Pb =(aPc1)Pd =>cH(a®bd)=c1D(add),
and (OA iii) implies that ¢ = ¢; = (a ® b')’. When a difference © is defined
by b6 a = (a®b'), K becomes a D-poset. Indeed, (DP i) and (DP ii) are
trivially satisfied and (DP iii) can be derived as follows:

a<b<c=>b=ad(adb'),
c=bd (b)Y =(ad(ambt))® (b)),
whence v
cBa=(adbt)YBObd) =(b60a)d(cOD),
"which yields c6b0<cOa,and (c6a)B(c6b) =b6a.
In [10], it has been proved that a D-poset becomes an orthoalgebra iff
the following additional condition is satisfied:

(2.1) a<lfa=a=0.

If L is an orthomodular poset and we define a ®b=aV biff alb in L,
then L with 0,1, @® is an orthoalgebra (see, e.g., [7]). On the other hand, an
orthoalgebra K is an OMP iff a.Lb = a V b exists in K ({7, 8]).

The following proposition shows how the axioms of an orthoalgebra can
be weakened to define a D-poset.

PROPOSITION 2.6. Let J be a set with two particular elements 0 and 1,
endowed with a partial binary operation @ such that the azioms (OA i), (OA
ii), (OA iii) and, in addition, the following aziom is satisfied:

(iv) 1® a is defined = a = 0.
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Then J with the partial order defined by a < b iff a ® b’ ezists, where b’ is
the unique element such that b® b’ = 1, and with the difference operation ©
defined by bO a := (a @ V') iff a < b, becomes a D-poset.

Proof. We note that ¢ < b iff 3¢ such that a @ ¢ = b. Indeed, similarly
as in an orthoalgebra (see remarks after Definition 2.5), we show that ¢
is uniquely defined and ¢ = (a @ ¥’). If a @ b’ exists, then by (OA iii),

=a® (a®bd'). We have to show that < defines a partial order in J. By
(OA iii), ¢" = a, and a < a holds.

Now a®b = a holds iff b = 0. Indeed, for every ¢, 1 = (a'®a)B((a®a’))
implies by (OA iii) and (iv) that a = a® (a @ a')) = a® 0. Let a D b = a.
Then (a®b)Da' =(a®a")®b=16b, and by (iv), b= 0.

Let a < b and b < a. Then there are ¢,d such that b=a @ ¢, a = b P d.
Hence a = (a®c)®d = a® (c @ d), which implies ¢ ® d = 0, whence
d=cd®(chd)=1®d, and by (iv), d = 0, which yields that also ¢ = 0.
Consequently, a = b.

Ifa <b,b<c, thenb=add, c=bde. Hence c = (add)®e = a®(dPe),
which means that a < c.

We have proved that < defines a partial order in J and 0 < a < 1 for
any a € J. Now it suffices to prove (i) and (ii) of Proposition 2.3. 2.3 (i)
follows by a @ 0 = a. 2.3 (ii):

a<b<Lc=>c=bB(coOb)=(a®d(b6a)D(cODb)
>c0a=(b0a)®(cODb)
=>cHb<cHa
and
(coa)e(cob)=b6a. =

We note that (OA i), (OA ii), (OA iii), (iv) are satisfied in every D-poset

(see next section). Similarly as in orthoalgebras, we say that two elements

a,b in a D-poset J are orthogonal (a L b) if a @ b is defined. Clearly, a L b
iff a <¥'.

Remark. 2.7. Let J be a D-poset. Put

N={zeJ:zlzorz' Laz'}\{0,1}.

Clearly, z € N = ' € N, 0,1 ¢ N. Moreover,z Lz, y <z =y L yand
Lz, z<y=>9y Ly.

Let A := J\ N be equipped with the partial operation @4 defined as
follows: z @4 y is defined iff z @ y is defined and ¢ @ y € N, and then

rOay=2zDy.
Then (A,®4,0,1) is an orthoalgebra. Indeed, we have to verify the ax-
ioms (OA i)—(OA iv). (OA i), (OA iii) and (OA iv) are clear.
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(OAii):if @4 y and (2 D4 y) D4 z are defined, then 2@y ¢ N and
(z®y)®Dz € N. Therefore z@(ydz) ¢ N.If ydz € N, then (y®2) L (y®z2)
(since y@®z Lydzand y <ydz =y L y, contradicting y € A). But
yY02<z®(ydz)=>zd(y® z) € N, a contradiction. Therefore y @4 2 is
defined, and z B4 (y®a2) =B (yD2)= (2 Day) Da 2.

This shows that to every D-poset J there exists an associated orthoalge-
bra A;. For example, if J is the interval [0, 1] of real numbers with the usual
ordering and © defined as the difference of numbers, then Ay = {0,1}. On
the other hand, if J is the D-poset of all effects on a Hilbert space H, then
the orthoalgebra A contains all projections on H.

3. An axiom system for orthomodular, D-orthomodular and
A-orthomodular partial algebras

The aim of this section is to give a unified frame to the different axiom
systems from the preceding section.

In what follows, we use the notations from [4], with the exception that
suprema and infima will be denoted by V and A, respectively.

Before formulating the axiom systems we recall some basic definitions
and terminology from the theory of partial algebras ([3a, b]). Let (X, X)
be any term algebra of type X on some set X, let ¢,¢,t2 € T(X, X) be any
terms, and let A be any partial algebra of type X'. Thus, in A there are de-
fined some operations, among them there may be proper partial operations
(the domain of which is not all of A™ — n being the arity of the operation
- but only some proper subset of A”). We recall that an ezistence equation
t1 = t, holds in the partial algebra A, iff for every valuation v: X — A the
induced - i.e., as usual, recursively defined, but now along the partial struc-
ture of A — interpretations 9(t;) and #(¢;) of ¢; and ¢, exist and are equal.
As set X of variables from which the valuation starts one usually chooses
the set of variables occurring freely in the formula, if not stated otherwise
(e.g., in connection with axiom (A0) below, only valuations starting from
the empty set of variables are considered, see [4], footnote on p. 2).

In particular, the term ezistence statement t = t holds in A iff for every
valuation v : X — A the interpretation #(t) exists (i.e. ¢ induces in A a total
term operation). We shall abbreviate the term existence statement ¢ = ¢ by
3¢, i.e.,

Ne=t=t.

DEerINITION 3.1. ([4]) By an orthomodular partial algebra we understand
a partial algebra A := (A; ®;';0) of type (2, 1,0) such that the following list
of axioms is satisfied in A for any z,y, z € X for any given countably infinite
set X of variables:
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(A0) 3o.

(A1) z" = 2.
(A2) z@ 2’ = 0.
(A3) 20 = z.

(A4) 3z 0y=>20y=yoOe.

(A5) H(z09)B2) > (c0Y)D2=20 (¥ 2).

(A6) I(z@y)and Iy ®z) = I(z B 2).

(A7) (z@y)and Iz’ By) 2>z = y.

(A8) I(zDy)and I(y@2z) and Iz B 2) = Iz d (y D 2)).
(A9) Iz@y)=>z0(zdY) Zy.

Now we introduce the definitions of a D-orthomodular partial algebra
and an A-orthomodular partial algebra.

DEFINITION 3.2. By a D-orthomodular partial algebra we understand a
partial algebra A := (A4;®;';0) of type (2,1,0) such that the list of axioms
of Definition 3.1 is satisfied in A with the exception of the axiom (A8).

DEeFINITION 3.3 By an A-orthomodular partial algebra we understand
a partial algebra A := (A4, ®,’.0) of type (2,1,0) such that the list of axioms
of Definition 3.1 is satisfied in A with the exception of the axiom (A8), and,
in addition, the following axiom is satisfied:

(A10) Iz @z =z = 0.

In what follows, instead of “partial algebras” we will speak simply about
“algebras”.

The axioms (A0Q) through (A10) are existentially conditioned existence
equations, and they define ECE-varieties (see [4]); the ECE variety of all
orthomodular algebras has been denoted by OMA in [4]; the ECE variety of
A-orthomodular algebras will be denoted by AOMA; and the ECE variety
of all D-orthomodular algebras will be denoted by DOMA. We have OMA
C AOMA c DOMA. Indeed, AOMA C DOMA is clear. To prove OMA C
AOMA, we have to show that the axioms (A0) through (A9) imply (A10).
But it is shown in [4, Lemma 2.3].

The axiom in question is (A8), therefore all results derived from the
axioms (A0)-(A7) remain valid for DOMAs and AOMAs. In particular

(see [4]),

(i) the unary operation ' is a total bijection (see (Al)); a’ is called the
orthocomplement of a € A;
(ii) for each a € A, a @ a’ always exists with the constant value 0/ = 1

(see (A2));
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(iii) the constant 0 always exists (see (A0)), and, for each element a €
A, a ® 0 always exists and yields a as value (see (A3));

(iv) the operation @ is commutative (see (A4)) and associative (see (A5)),
whenever it exists.

(v) If one defines a relation “<” on an arbitrary D-orthomodular algebra
A by

a<b<= Iaob),

one easily realizes that from (A2) there follows reflexivity, that (A6)
implies transitivity and (A7) means asymmetry of the relation “<”,
i.e., in any D-orthomodular algebra A, the relation “<” defined above
is always a partial order relation on A; moreover, the axiom (A3) —
together with (A1) — implies that 1(= 0 ') is the greatest element and
0 is the least element.

Remark 3.4. The axioms (A0)-(A9) are not independent. Indeed, (A3)
follows from (A9), (A2) and (A1): Iz @2’ = z@(z®z')Y =z => 200 = z,
and (A6) follows from (A9), (A1), (A4) and (A5). Indeed, we get y' @ z =
(zD(z0Y))Dz=(zd2)®(z®y)'. Hence (A3) and (A6) are implied by
the other axioms not involving (A8).

In [4], the following statement has been proved.

THEOREM 3.5 [4]. Let (A; ;' ; 0) be an orthomodular algebra. If we define
(3.1) a<b<= Jaap?,

then (A; <;';0;1) is an orthomodular poset.
Conversely, if (A;<;';0;1) is an orthomodular poset, and we define the
partial operation @ by

(3.2) a®b=c whenevera <b andaVb=c,

then (A; ®;';0) is an orthomodular algebra.
Moreover, going back and forth with these constructions starting from
either of the two kinds of structures always yields back the original one.

We will prove similar statements for D-orthomodular algebras and D-
posets and for A-orthomodular algebras and orthoalgebras.

THEOREM 3.6. Let A = (A;®;';0) be a D-orthomodular algebra. If we
define

(3.1) a<b<= Jaap b
and the partial binary operation © by
(3.3) Bboaiffa<bandboa:=(add')

then (A, <,0,1), where 1 = 0, is a D-poset.
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Conversely, if (A;<;0;1) is a D-poset, and we define the unary opera-
tion' by

(3.4) a:=160a
and the binary operation @ by
(3.5) a®bezistsiffa<b anda®b:= (b' 6 a)’

then (A, ®;';0) , where 0 = 1' =161, is a D-orthomodular algebra.
Moreover, going back and forth with these constructions starting from
either of the two kinds of structures always yields back the original one.

Proof. If (A;®;';0) is a D-orthomodular algebra, we have already
proved that the relation “<” defined by (3.1) is a partial order relation
on A, 0 is the least and 1(= 0') is the greatest element of it. Therefore, it
suffices to prove (i) and (ii) of Proposition 2.3. By (A3) z' ® 0 £ 2/, so that
by (3.3), z © 0 = z, which proves 2.3(i). To prove 2.3(ii), observe first that
a® b= cimplies @ = ¢ © b. Indeed, by (A9), (A1) and (A4),

d=b00bda) =bdc =(coOb).

Moreover, a < a @ b holds whenever a @ b exists, since by (A9), Ja ® b =
Ja ® (a ® D).

Let a < b < c. By (3.1), (3.3) and (A9),

b=a®(bBa), c=bB(cOb)=(aP(b0a))D(cOb),
which implies that
cOa=(b6a)®(cOb),
hence
c6b<cHa, and (cOa)6(cOb) =bOa.

Conversely, let (A; <; ©;1) be a D-poset. Then (A0) holds by Proposition
2.2(i), (A1) holds by (DP ii).

(A2): z < =z = z @ 2’ exists, and by (3.5), (iii) of Proposition 2.2 and
(Al),z@z' =(z02) =0=1

(Ad: Jzdy=>z<y andzdy=(y6z) by (3.5).By (3.4),y 6z =
(1ey)ez = (162)6 y by Proposition 2.2 (vii). This implies, by (3.4) and
(3.5),that ydz =z D v.

(A5): Iz @yand I(zDy)®z=>2<y,and 2Py < 2’ by (3.5). Hence

<y, z2<(zdy) =y 02r=>2<y0O72
and

(yozoz=(y02)0=2
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by Proposition 2.2(vii). Applying (3.5) we obtain (y®z) 0z = (y@z) Oz,
and applying (3.5) again gives, together with (Al), that (y® 2) @z =
(y® ) ® z, Now (A4) yields the desired result.

(A7) holds by (3.5) and reflexivity of the partial order in A.

(A9): I(z @ y') implies z < y by (3.5). Applying (DP iii) to0 <z <y
gives (y©60)6 (yoz) =200, that is, y© (y © z) = z. By (3.5), it follows
that ' ® (¥’ ® z)) = 2’'. Since z < y <= y' < z’ by (3.4) and (DP iii)
applied to z < y < 1, (A9) is satisfied.

(A3) and (A6): see Remark 3.4.

The last statement easily follows from what has been done so far. =

THEOREM 3.7. Let (A; ®;';0) be an A-orthomodular algebra. If we define
(3.6) 1:=0

then (A; ®;0;1) is an orthoalgebra.

Conversely, if (A; ®;0;1) is an orthoalgebra, and we define, for every
a € A, a' as the unique element b in A such that a ® b = 1, then (A; ®; ;0)
is an A-orthomodular algebra.

Moreover, going back and forth with these constructions starting from
either of the two kinds of structures always yields back the original one.

Proof. If (A;®;';0) is an A-orthomodular algebra, then the axioms of
Definition 2.4 are satisfied. Indeed, (OA i) follows by (A4); (OA ii) follows
by (A5); (OA iii) follows by (A2) and the following implication: z @y = 1
implies by (A9), (A1) and (A3) that 2’ = y@® 1’ = y @ 0 = y, which proves
uniqueness of z’. (OA iv) follows by (A10).

Conversely, if (4; ®;0;1) is an orthoalgebra, then by [10], 4 is a D-poset
with the operation © defined as follows:

aObexistsifa<band a0 b= (b'Da)

satisfying the additional axiom (2.1). This implies that the axioms (A0)
through (A7) and (A9) are satisfied (see proof of Theorem 3.6), and (A10)
is satisfied owing to (2.1). The rest of the proof is straightforward. =

In [4], the following additional axiom for OM algebras has been intro-
duced:

Iz1 ®y1) and I(z1 @ y2) and I(z2 B y1) and I(z2 B y2)
(R) = (32)(3(z1 ® 2) and I(z2 @ 2) and I(y; D 2’) and I(y2 @ 2')).
An orthomodular algebra satisfying (R) is called rich.

ProprosITION 3.8. If an AOM algebra A satisfies (R), then A is an OM
algebra.
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Proof. By Theorem 3.7, A can be considered as an orthoalgebra. As-
sume that a @ b exists, and let ¢ be any upper bound of a,b. By (A9) and
(3.1), a® b is an upper bound of a,b. Consider the elements a,b,(a @ b)’, ¢'.
Then, owing to (R),

Ha®(a®bd))and Iadc')and I(bD (a®b))and (b )
= (32)((a ® 2) and 3(b® z) and I((a ® b)’ & 2’) and (' @ 2")).
By the definition of partial order, we have "
a<zZ,b<2, (a®b) <z <z

From 2’ < a @b, and the fact that a ® b is a minimal upper bound (see, e.g.,
[7]), we get 2’ = a @ b, and hence a @ b < c¢. This proves that a V b exists,
hence A is an orthomodular algebra. =

ExaMPLE 3.9. Let us consider the interval of real numbers [0,1]. With
the usual order and the operation b6 a = b—a for a < b, [0,1] is a D-poset
satisfying (R), which is not an orthoalgebra.

By definition, DOMA and AOMA are ECE-varieties. Hence, for each set
X, there exists a free algebra F(X,DOMA) and F(X,AOM A). Proof of
the following theorem is the same as the proof of Theorem 4.1 in [4].

THEOREM 3.10. Let X be any set of variables, then the DOMA free
DOMA algebra and the AOMA free AOMA algebra ezist and coincide with
the OMA free OMA algebra:

F(X;0MA) = XUX*U{0,1}
dom@ := {(0,0),(0,1),(1,0)}u
u U {(=,0),(0,2),(z*,0),(0,2%), (z,2%), (=", 2)},
z€X
and
060:=0,081:=1,190:=1,
00y:=y®0:=y forally € XUX™;
@z :=z*®z:=1forallz € X;
0':=1;1:=0;2' := 2*;(2*) :=z for all 2 € X.
0 is the least (and 1 is the greatest) element.

Remark 3.11. Let (L,<,/,0,1) be a partially ordered orthocomple-
mented set in which z V y exists provided that z < y'. It is not difficult
to prove that it can be characterized as an algebra A := (4; ®;’;0) of type

(2,1,0) such that axioms (A0)—(A8) are satisfied (note that in this case (A3)
and (A6) cannot be omitted — see Remark 3.4).
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4. Probability measures on orthomodular algebras
Let A := (A;®;';0) be a D-orthomodular, A-orthomodular, or ortho-
modular partial algebra.

DEFINITION 4.1. A mapping
m:A—[0,1]
is said to be a probability measure on A if
m(a®b) = m(a) + m(b),
whenever a @ b exists, and
m(a') = 1 — m(a); m(0) = 0.
DEFINITION 4.2. (i) A set M of probability measures on A is said to be
full if, for any a,b € A,
(Vm € M : m(a) + m(b) < 1) = a @ b exists.
(ii) A set M of probability measures on A is unital if for any a € 4,
a#0=>3meM:m(a)=1).
(iii) A set M of probability measures on A is strong (or rich) if, for any
a,be A,
a®b' does not exist = (Im € M : m(a) = 1,m(b) # 1).

We note that a strong set of probability measures is both full and unital.
Indeed, let m(a) + m(b) < 1 Vm € M and let a @ b do not exist. Then
there is m € M with m(a) = 1, m(b') # 1, hence m(a) = 1, m(b) # 0, a
contradiction with m(a)+m(b) < 1. Taking b = 0 in (iii) yields unitality. The
following definition generalizes the definition of a numerical OMA (see [4]).

DEFINITION 4.3. Let S be a nonempty set, and let L C [0,1]° be a set
of functions from S into [0, 1]. L is said to be a numerical Y-orthomodular
algebra (where Y stands for D or A)if it is an Y-orthomodular algebra with
respect to the partial operation @ defined by

foeg=Ff+giff f+g<1,
and the unary operation ' given by
fl=1-f,

with the constant 0 = 0y, being the function taking the value 0 for all z € S.

THEOREM 4.4. Let L C [0,1]°, § # @ have the following properties:

1 )1el;

(i) f,ge L, f<g=>g-felL.

Then (L; ®;1;0) becomes a numerical DOMA.
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2 (H1el;
(ii) fige L, f<g=>g~felL;
(i) (V€ L) f# 0= (Fa € S: f(a)>1)).
Then (L; ®;';0) becomes a numerical AOMA.

3 (N1el;
(i) g€ L, f<g=>g-fel;
(iii) if f1, fo, fa € L and if fi+ f; < 1 fori # j, then fi+ o+ f5 € L.
Then (L; @;' ;0) becomes a numerical OMA.

4 ()1el;
(i) (Vf € L)(f #0 = (3a € §)f(a) > 1))
(i) f,g €L, f<g=>g-f€l;
(iv) if f1,f2,91,92 € L and max{f1, fo} < min{g,,g2} then there
exists h € L such that max{fy, fo} < h < min{g;,¢:}-

Then (L, ®,’',0) becomes a rich numerical OMA.

Proof. 1 see [9]; 2 see [9] and [10] (observe that f @ f exists, resp.
f <16 f, is equivalent to f < 1); 3 and 4 see [4] (we note that 3° in [4]
Theorem 5 is redundant, it follows from 4° and 1°). =

Let (A;®;;0) be an orthomodular algebra and let M be a full set of
probability measures on A. For every a € A, let @: M — [0,1] be a function
defined by @(m) := m(a) for all'm € M. The set of all functions ({@ :
a € A};®;';0) with @ and ’ defined as in Definition 4.3, will be called a
numerical realization of A. Next theorem generalizes the results obtained
in [4].

THEOREM 4.5. The following statements hold true:

=

Fvery DOMA with a full set of probability measures is isomorphic to
a numerical DOMA.
Every DOMA with a full and unital set of probability measures is
isomorphic to a numerical AOMA.
Every OMA with a full set of probability measures is isomorphic to a
numerical OMA.
FEvery rich OMA with a full and unital set of probability measures is
tsomorphic to a numerical rich OMA.

5 Every DOMA with a strong set of probability measures is isomorphic
to a numerical OMA.

1o [ &)

|

Proof. 1. Consider the numerical realizations {@: a € A}. It is straight-
forward to check that the conditions 1 (i) and (ii) of Theorem 4.4 are satis-
fied.
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2. Observe that unitality guaranties 2 (iii) of Theorem 4.4.

3 and 4 have been proved in [4].

5. Let M be the strong set of probability measures on an DOMA A. Let
@y,d2,d3 besuch that @; +@; < 1fori# j. Thenay <1-ay,a3 <1-a
gives @3(m) = 1 = (@ + @2)(m) = 0. Since M is strong, this yields @3 <
1 - (@ + @), which implies 3 (iii) of Theorem 4.4. =
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