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Preliminaries 
We investigate the role symmetric groupoids and more general concepts 

used in different areas of mathematics. In chapter 1 we give a brief outline 
of [EL2], where we described the use of symmetric groupoids for discrete 
dynamical systems. In chapter 2 we introduce a new notion of extensions 
of symmetric groupoids, which allows a general description for homotopy 
sets of the kind [5* χ S ' ; S n ] (cf. (2.14)), where Sm, m ζ Ν, denotes the 
m-sphere. In chapter 3 we apply (n-)symmetric groupoids to the theory of 
topological groups and show, starting from two complete group topologies, 
how to get a complete infimum group topology (cf. (3.6)). This generalizes 
parts of the results in [E3]. 

For τι > 2, by the following definition we get generalizations of symmetric 
groupoids. The equivalence stated below is immediate. 

0.1 . DEFINITION/PROPOSITION. LetX be a set, · : X x X -> X a binary 
operation and η G Ν. We call the pair ( X , ·) an n-symmetric groupoid, if 
the following identities are satisfied for x,y,z £ X: 

( i ) χ · χ = χ (idempotency), 

( i i) χ · ( χ · ...» ( χ » y ) ...) = y (n-symmetry), ν * 

η times 
(ii i) (χ · y) · z — χ · (y · (χ · . . . · (χ · ζ ) . . . ) ) (n-antidistributivity). 

ν ν 
(η—l)times 

This paper has been presented at the Conference on Universal Algebra and its Appli-
cations, organized by the Institute of Mathematics of Warsaw University of Technology 
held at Jachranka, Poland, 8-13 June 1993. 
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The axioms (i), (ii), (iii) are equivalent to the system (i), (ii), (iii') with 

(ili') (χ · y) · (χ · ζ) = χ · {y · ζ) (left distributivity). • 

For χ ι , . . .Xk G Χ we agree to the notation 

Χι · X2 * X3 · . . . · Xfc := X\ · (X2 · (x3 · . . . · Xfc)). 
By (iii), any term can be written without brackets. 

The following result shows that lots of (quotients of) groups can be 
equipped with an η-symmetric structure. By calculation one can prove 

0 . 2 . PROPOSITION. Let η e Ν , X be a group, G < Χ , τ : Χ -»· Χ an 
endomorphism with τ (G) < G, and suppose one of the following conditions 
to be satisfied: 

(1) grig)-1 e Z{X) Vg e G, 
(2) τ(Χ) < AÍ(G), 

where Z(X) denotes the centre of X and Af(G) the normalizer of G. By the 
assignment 

X/G χ X/G 9 (xG,yG) ^ χτ{χ)~ιτ{ν)ΰ G X/G 

we get on the set X/G of left cosets a binary operation *, which is idempotent 
and left distributive. 

In addition, let re = r m (£, m € Ν) with r ° := ίάχ. Then * satisfies the 
identity 

xG * {xG * ... * (xG *yG) ...) = xG* (xG * ... * (xG *yG)...) Vx, y G Χ. 
Y Ν Ν 

ί times m times 

In particular, if τ is an automorphism of order n, i.e. τη = ίάχ, then * is 
η-symmetric, u 

For an η-symmetric groupoid X and a set Y, which are eventually 
equipped with basepoints xo resp. 3/0, the set of mappings XY, as well as 
the set ofbasepoint preserving mappings (X, xoYY 'y°\ become n-symmetric 
groupoids by componentwise definition, 

(f*g)(y):=f(v)»g(y), y e Y , f , g e x Y or e ( Χ , χ ο ) ^ · 

A further useful example of (2-) symmetric groupoids is given by the concept 
of symmetric spaces. A symmetric space consists of a topological space S 
together with a continuous binary operation · , which satisfies (0.1), (i)-(iii) 
for η = 2 and one additional topological axiom which is inessential for our 
purposes. 
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0.3. D E F I N I T I O N . For η G Ν, let (X, ·) be an η-symmetric groupoid, and 
e,x G X. By P(x,»,e) (or Ρ in short) we denote the minimal subset of X 
such that 

(i) x,e £ P, 
(ii) a,b G Ρ => α · 6 e Ρ, 

and call Ρ the set of integral powers of χ with respect to (w.r.t.) e. 
Now let η = 2 , i.e. 1X, ·) is a symmetric groupoid. For k G Ζ we agree 

to write 

'χ·β·...·β·χ, k>0,k = 1 ( 2 ) , 

k factors 

Ν ^ s k > 0,k = 0 ( 2 ) , 

* < f c > : = « 
k factors 

* < f c > : = « 

ν 
|fc|+l factors 

k < 0,k = 1 ( 2 ) , 

β · Χ · . . . · Χ · β , " ν ' 
k <0,k = 0 ( 2 ) , 

|fc|+l factors 

and call χ^ the k-th power of χ w.r.t. e. 

In the situation of (0.3), clearly Ρ forms an η-symmetric subgroupoid 
of X . For the powers of a symmetric groupoid w.r.t. any chosen element it 
can easily be verified 

. x w = x<2fc-'>, (x<fc>)«> = χ Μ ( Μ € ζ , * e χ ) . 

1. Power processes 
For a skew field Κ and a left /^-module V we introduce the notion of 

a fc-th power fpr elements χ G V and A; € No by means of symmetric 
groupoids. In addition, if Κ is endowed with a valuation and V with a 
norm, it is in place to investigate domains of boundedness of the iterative 
fc-th power process (k G No) 

x„+ i := χψ + c, where z0 := 0 € V, ν G N0, 

i.e. the set of all elements c G V, where the given process remains bounded. 
We shortly describe how to determine these domains for a certain type of 
powers on complex vector spaces, where | · | : C —* Rq" is given by ζ ^ (zz) 2. 

In this chapter, a field is not necessarily commutative. For a field Κ we 
use the abbreviations ck char I i , Ck '·= centre Κ . 

1 . 1 . D E F I N I T I O N . Let Κ be a field, J : Κ —> K an antiautomorphism, V 
a left Κ-module, and h :V χ V Κ a J-sesquilinear form (sqlf ). We call 
M h := {x G V : h(x,x) = 0} the nullspace ofV with respect to the J-sqlf h 
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and define ·Λ : V χ V \ Ν κ —• V by 

(«> y) ^ y X ì y + 

where a(x, y) := /i(a>, y ) + h(y, x). 

1.2. DEFINITION. l e í Κ be a field, cK φ 2, J : A' A' an antiauto-

morphism, V a left Κ-module, and h : V χ V Κ a J-sqlf. We call h a 

symmetrizing J-sqlf, if for x, y G V 

(i) a(x,y)£CK, 

(ii) h(x,x)J(h(y,y)) = J(h(x,x))h(y,y), 

(iii) h(x,x)J(a(x,y)) = J{h{x,x))a(x,y). 

It turns out that for a symmetrizing J-sqlf the antiautomorphism J is 
necessarily involutory ([EL2],(1.5)). Any symmetric bilinear form (bl f ) on 
vector spaces is symmetrizing. 

1.3. THEOREM. Let Κ be a field, CR φ 2, J : Κ —> Κ an antiautomor-

phism, V a left Κ-module, and h : V xV -*• Κ a symmetrizing J-sqlf. Then 

(V \Afh,*h) is a symmetric groupoid ([EL2], (1 .8) ) . • 

The following example of a symmetric groupoid arises from a special case 
of (1.3) and plays an important role in chapter 2. 

1.4. EXAMPLE. Let (· ; ·) be a nonsingular symmetric blf on K n + 1 , and 

S2 := {x G Rn+1 : (χ; χ) = α } , 0 φ a G R. 

Define x^y := — x , y G SThen ·) is a symmetric groupoid 

([L], p. 66). 

According to (0.3), for k Ε Ζ we can form fc-th powers of elements of 
V \ M h with respect to a certain e E V with h(e, e) φ 0. It can be proved 
that this formation of powers can be extended to whole V for non negative 
k ([EL2],(1.12)), and all powers of χ lie in the plane spanned by χ and e. 

We denote fc-th powers of χ in V in the sense above by and call them 
the fc-th power of x w.r.t. h and e. The term "power" is in place, since 
our concept of a power in particular situations coincides with the notion of 
powers in fields or algebras, respectively: In the situation of (1.4), for the 
canonical inner product and a := 1, we get a continuous binary operation on 
the η-sphere Sn with the topology inherited from R n + 1 , which makes (5™, · ) 
a symmetric space. For η = 7, Sn consists of all Cayley numbers of norm 
1. Writing · for the Cayley multiplication, one can prove χ · y = χ · y-1 · χ 

(χ,y G S7) ([E2], (1.5)). From this one concludes by an easy calculation, 
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that powers w.r.t. · and e := ( 1 , 0 , . . . 0) G S7 are the same as powers w.r.t. 
the Cayley multiplication. 

Now we turn to normed complex vector spaces, where C is equipped 
with the usual absolute value, and consider iterative processes like that 
described above, with non negative powers w.r.t. a symmetric blf h and e 
with h(e,e) φ 0. Let k G No- Using a criterion for boundedness of subsets 
of a two dimensional subspace of a left A'-module over a complete valuated 
field ([ELI], (2.8)) we can show that for any complex vector space and given 
h and e the behaviour of (Χ^^Νο with respect to boundedness depends 
only on the values 7 : = , 6 := , 7 ,^ G C, i.e. is independent from 
both the blf and the chosen e ([EL2],(3.3)). Therefore, we have reduced the 
problem of determining domains of boundedness to finite dimensions. 

By means of a certain fc-th power process on a 2-dimensional C-vector 
space we can determine all pairs (7,^) G C X C, such that a k-th power 
process with 7 = δ = remains bounded (cf. [EL2],(3.4)ff.). 
Roughly speaking, we get something like universal domains of boundedness 
for ¿ - t h power processes with respect to symmetric blfs on normed complex 
vector spaces. 

2. H o m o t o p y theory 
For compactly generated topological spaces X and Υ, which are equipped 

with basepoints, we denote the set of homotopy classes [/] of continuous 
basepoint preserving mappings / from X to Y by [X; Y]. For sets of homo-
topy classes with symmetric spaces as a range it is easy to verify 

2.1 DEFINITION/PROPOSITION. Let X and S be topological spaces with 
basepoints, S a symmetric space with the binary operation ·, and f,g : X —• 
S continuous, basepoint preserving mappings. By 

[/] · M := [/ · 9Ì 
we define on [X; 5] a binary operation ·. The pair ([X; 5], · ) is a symmetric 
groupoid. m 

Our aim in this section is a description of the symmetric groupoids ([5PX 
£ n ] , · ) , where · is induced by (2.1) and the symmetric structure on Sn 

presented after (1.4). 

2.2. DEFINITION. Let (G,+) be an abelian group, R Ç G, and (R,·) a 
symmetric groupoid. We call the symmetric groupoid (R, ·) group related to 
(G, + ), if there is a map τ : R —• G such that 

a*b — a — r ( a ) + τ(δ), a,b G R-
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In the sequel, we call τ the map describing · . Without loss of generality, 
we can assume 0 G R, r ( 0 ) = 0, and r 2 = idß (cf. [El ] , after Prop. 6). 
Examples of group related symmetric groupoids are given by (0.2) with X 
abelian and r 2 = i d * . In particular, Ζ is a group related symmetric groupoid 
with r = —idg. 

2.3. DEFINITION. Let (R, ·) be a symmetric groupoid, a,b G R. We define 

a relation on R by 

a b : <=> 3 k G Ν 3 α ϊ , . . . a¿ G R : α^ · . . . · αχ · α = ό. 

The relation is an equivalence relation.- The structure of group re-
lated symmetric groupoids R was described in ( [El ] , Theorem 12) as a union 
of cosets by a certain subgroup U of G. By calculation one can show that 
any group related symmetric groupoid is a 5/E-groupoid, as well as the 
coincidence of the relation with the relation ~ on R determined by U 

( to be more precise, for r, s G R we define r ~ s iff r — s £ ZY), which are 
congruence relations w.r.t. the symmetric structure by ([R],(3.2)). It is not 
too hard to prove that ( [E l ] , Theorem 12) is a variant of a special case of 
([R],(4.3)); in other words, R forms an AG-sum of copies of U. 

2.4. DEFINITION. Let (R, ·) be a symmetric groupoid, related to (G, +), 

and τ the respective describing map. A subgroup Η of G with H Ç R is 

called r-admissible, if 

We call the set of all r-admissible subgroups in R the τ-spectrum of R and 

write ST(R). 

lî H e ST(R), by ( i ) R is a union of cosets of G by H. Therefore, H 
defines an equivalence relation on R. For the coset space we write RjH := 
{r + H :r e R}. 

2.5. DEFINITION/PROPOSITION. Let{R,·) be a symmetric groupoid, re-

lated to (G, +), and τ the respective describing map. We put 

and call this set the τ-fan of R. Assigning 

(rx + H,r2 + Κ) » η · r2 + K, ru r2 G R; H, Κ G ST{R), 

a binary operation · τ : PT(R) χ J~T(R) —TT{R) is defined. The pair 

(JrT(R), · Τ ) is a symmetric groupoid. 

0 ) 

(Ü) 
( i i i ) 

R + H CR, 

T\h - idjf, 

r(r + h) = T(r) + r(h), (reR,heH). 

TT{R) := { r + Η : r G R,H G ST(R)}, 
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Proof. #T is well defined, since for ri,r2 G R and H,K G ST(R), h G H, 
k G Κ we calculate 

(ri + h) · (r2 + k) + Κ = η + h - τ ( η + Λ) + r(r2 + k) + K 
r1 + h - r ( r 1 ) - h + T(r2) + k + K 

(2.4),(ii),(iii) 

= ri- r ( r i ) + r(r2) + Κ 
= T\ · r2 + Ä". • 

2 . 6 . D e f i n i t i o n . Let ( R , · ) , ( 5 , · ' ) 6e group related symmmetric group-
oids, and τ ' ίΛβ map describing ·'; furthermore, let λ : Ä/ > ¿>T<(5) 
and h* : R χ R with h*(ri,r2) G S/X(q(r2)) 6e mappings, where 
q : R R/ denotes the canonical projection. We call (R, S, λ,/ι*) a /an 
extension of R by S, if 

( J f x (5/Λ(γ)) Ç R Χ 
reR/~t 

is a symmetric groupoid by means of 

(η, Si)·" (r2,s2) := (ri T2,SI ·τ< s 2 + Λ*(γι,γ2)). 

Now we come to the announced description of [5P X Sq',Sn]. To this 
end, we first gather results of [E2] concerning the homotopy classification 
of product mappings on spheres. For m,n G Ν, homotopy groups wm(Sn) 
are always abelian groups with [5m ; 5 n ] as underlying set. In ([E2],(2.5)) we 
show 

2 . 7 . T h e o r e m . ( [ 5 m ; 5 n ] , · ) is a symmetric groupoid, group related to 
7rm(5n), with describing map τ :— rm i J l , 

Tm,η : [Sm; Sn] Km(Sn), a » ((-l)nt„) Ο α, 
where ιη G πη(Ξη) denotes the homotopy class of the identity map. If we 
take πτη(5'η) (instead of [5m;5n]) as domain of τ, then τ proves to be an 
involutory group automorphism, m 

A first approximation to the homotopy classification of product map-
pings on spheres (cf. (2.13)) is given by the type of a mapping. 

2 . 8 . P r o p o s i t i o n / D e f i n i t i o n . Let u G ψ G [ S p x Sq; S n ] , denote by φι 
resp. φ2 the homotopy class of the compositions 

Sp ^ Sp x Sq A Sn resp. S" ^ Sp χ Sq A Sn, 

where we write ij resp. L2 for the canonical injection of Sp resp. Sq into 
Sp X Sq. The mapping 

t:[Spx Sq; 5 n ] [5P; Sn] χ [Sq; Sn], 
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defined by the assignment φ t-»· (φι,φζ), is a homomorphism of symmet-
ric groupoids, where the algebraic structure of the range of t is given by 
the direct product of the group related symmetric groupoids ([5P; 5n], · ) and 
([5®; 5n], ·) . We call ί{ψ) resp. t([u]) the type of the homotopy class φ resp. 
of the product map u; furthermore we agree to write 

T:=t([Sp χ 5 « ; 5 n ] ) . 

2.9. REMARK. Since t is a homomorphism of symmetric groupoids, by 
definition of the relation follows for φ, φ' G [5P X Sq; 5n] 

φ φ' => t(φ) ί(φ'). 

In the following we shall use without further explanation two notions 
from algebraic topology, namely the seperation element of two product map-
pings of the same type, the properties of which one can find in [J], and the 
Whitehead product of two elements of homotopy groups of spheres [Wh]. 

2 . 1 0 . L E M M A / D E F I N I T I O N . Letp,q,n G Ν , and ω G Τ with ω = ( α ; ι , ω 2 ) , 
write ώ for the equivalence class of ω modulo in T, and denote by Αω < 
Wp+q(Sn) the subgroup generated by 

- [ « i , f ] + ( - i ) ' + 1 fo ,u* ] , ξ G K q + 1 ( s n u e w p + 1 ( s n ) , 
where [·, ·] stands for the Whitehead product. For Τ G Τ/ and χ, ω G Τ 
holds Δ χ = Δ ω ; thus Δ τ := Δ ώ := Δ ω is well defined ([Ε2], (3.5)). • 

2 . 1 1 . T H E O R E M . For ψ G [ S p χ S 9 ; 5 n ] holds 

tt, tt' € ψ d(u, u') G Δ-^y. 

If η is odd and u, u' G φ, we have the identity 

(-•¿n) 0 d(u, u') — ¿(ti, u'). 
This implies together with (2.7) that = ([BB]; [E2], (3.2); 
[E2], (3.8)(ii)). . 

2 . 1 2 . P R O P O S I T I O N / D E F I N I T I O N . Let s : Τ [ S p χ 5 ' ; 5 " ] be a right 
inverse of t, i.e. t o s = idT. We call s : [5P χ S? ;S n ] -»• [Sp χ S«;·?"], 
s := s o t, a type representing map. 

A type representing map satisfies (ψ, φ' G [5Ρ Χ Sq; 5η]) 

(1) t ( , ( ? ) ) = ί(φ), 
(2) ί(φ) = ί{φ') s(<p) = *(*/). 

Every right inverse of t determines a type representing map. For the 
following we fix such a map s, as well as representatives ηφ for any φ G 
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[5P X S 9 ; 5 n ] in a way that we can form the seperation element of any two 
representatives of the same type. 

Unfortunately, the seperation element of two representatives u, u' of ho-
motopy classes of the same type is not good enough for the homotopy clas-
sification of product mappings on spheres, since d(u, u') = 0 implies the 
homotopy of u and u', but not vice versa (cf. (2.11)). If we put ά(φ, φ') := 
ά(υ,ψ, u-ψι) for φ, φ' G [5P X Sq; S n ] of the same type, one can show (cf. [E2]) 
that at least the class ά(φ, φ') + A ^ y does not depend from our choice of 
representatives. 

2 . 1 3 . THEOREM. With the conventions and notations from above, 

[ S p χ S ' ; Sn] = ( J Γ χ 7 Γ ρ + ? ( 5 " ) / Δ τ . 

T e r 
Any φ £ [5P X 5'9;5'η] can be represented by a triple (φι,φ2,φ3) where 

(Φι,Φύ: = ΚΦ), 

Φ3-- = φ'ζ + Δ ^ and φ'3 := ά(φ, β(φ)). 

With another ψ ζ [5Ρ Χ 5 ? ; 5 η ] , we get the product formula 

φ · Φ = ψχ · χ Vi, ψ2 ·2 Φί ι ψ*3 *3 Φ'3 + d(s(<p) · s(ll>),s(<p · φ)) + Δ ^ , 

where according to (2.2) and (2.7), · ι , · 2 , * 3 are determined by τ\ := rP ) n , 
T2 := rg,„, r3 r p + î , n ([E2], (3.10)). • 

If we put 

A(t(V)) := Am, h*(i(<p),t(φ)) := d(s(<p) . s(t) ,s(<p· φ)) + 

then (2.13) becomes in view of (2.6) 

2 . 1 4 . COROLLARY. ( [ 5 p Χ 5" ' ; 5 " ] , · ) is isomorphic to a fan extension 
(.R, S, λ, h*), where R is group related to π ρ ( 5 " ) χ ^ (á" 1 ) , S = [S p + Î ; 5"1] is 
group related to 7 r p + g ( 5 n ) . For η = 0 ( 2 ) always holds 2h*(·,·) = 0 . • 

T h e las t asser t ion o f ( 2 . 1 4 ) h a s b e e n shown in ( [ E 2 ] , ( 3 . 1 2 ) ) . 

3. Completeness of group topologies 
For a group X and complete group topologies Ti and T2, their group 

topological infimum Τχ Λ T2 is not necessarily complete [R]. Under certain 
circumstances we get sufficient conditions for the transfer of completeness 
to the infimum topology, e.g. if it is possible to induce on X the structure of 
an n-symmmetric groupoid. This leads to an «-symmetric binary operation 
(by component-wise definition) on the set of self-mappings on X , which in 
addition carries the monoidal structure given by composition of maps. On 
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this set we investigate a certain relation which corresponds to the notion 
of being relatively prime in principal ideal domains. By means of ([E3], 
Lemma 1) and suitably chosen pairs of relatively prime power mappings we 
get the desired sufficient conditions. 

We describe how to proceed for the case η = 2. This procedure can be 
applied to the general case of an η-symmetric structure in an analogous but 
more complicated way and will be discussed elsewhere. 

3 . 1 D E F I N I T I O N . Let X be a set and*,® '· X X X X binary operations. 

(a) The triple (X,* ,®) is called a circlet, if 

(i) (X) ,®) is a monoid, 
(ii) χ ® (y * ζ) = (χ ® y) * (χ ® ζ) V x, y, ζ G X. 
We denote the neutral element w.r.t. the associative multiplication ® by e . 

(b) Let η G Ν, and (X,* ,®) be a circlet. If in addition, (X,*) is an 
η-symmetric groupoid, we call (X, *, ®) an n-circle. 

For an n-symmetric groupoid (Y, · ) and f,g G X := Υ γ (the set of 
self-mappings on Y), we let / ® g := g o / . Then (Χ, · , ®) is an n-circle. 

3 . 2 . D E F I N I T I O N . Let ne Ν . For a circlet (X,*,®), two elements a,b G 
X are called relatively prime, if there exist x, y G X s.th. 

(α ® χ) * (b®y) = e. 

For relatively prime elements a,b G X we write in short a \ b. 
Our next aim is to find pairs of relatively prime elements in a subset 

of self-mappings of an η-symmetric groupoid (arising from a group as de-
scribed in (0.2)) which is defined as follows. 

3.3. DEFINITION. For η G Ν, let ( X , · ) be an η-symmetric groupoid, 
e G Χ . By V(X,e) (or V in short) we denote the minimal subset of self-
mappings on X, s.th. 

(i) idx, const(e) G V, 

(ii) f,g ev f*g,f®g ev. 
We callV the set of power mappings on X w.r.t. e. 

It turns out that V(X,e) = P( id^ , · , const(e)) and / (e ) = e for all 
/ G V.- From now on, we restrict ourselves to the consideration of (2-) 
symmetric groupoids. By ( Z , · , · ) we understand the 2-circle equipped with 
• as defined after (2.2) and the canonical ring multiplication in Z. 

3 . 4 . P R O P O S I T I O N . Let X be a group with an involutory automorphism 
τ : X —»· X (i.e. τ2 = idx), and denote by e the neutral element of X w.r.t. 
the group multiplication. Then by (0.2), (X, · ) is a symmetric groupoid, if we 
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put χ · y := xr(x)~lr(y) (x,y G X ) . With the notation from above and the 
remark after (0.3), (V, ·, ®) is an epimorphic image of the 2-circle (Z, ·, ·), 
given by the assignment Ζ Β m >->• <p(m) G V, where ψ^(χ) :— x^m\ formed 
w.r.t. e. Furthermore, forp,q G Ζ we have 

ρ t q (in (Z, + , ·)) ·<=>· p \ g (m (Z, · , ·)) => Ψ(Ρ) t <P(q) (in (V, ·, ®)) . 

Proof We first show that the two notions of being relatively prime are 
equivalent. 

"=>·" Let α, β G Ζ and pa + qß = 1. If a or β is even, the implication is 
trivial. In case a = 1(2) Ξ β, exactly one of p, q, say q, is odd. Therefore, 
a + q is even, and by 

p(a + q) + q(ß-p) = l 

we get 

( ρ ψ ) ' ( * ρ - « ) = i, 

which shows that ρ | q in (Z, · , ·).- is trivial. 
In order to show the second assertion, let p,q,a,ß £ Ζ and (pa) · (qß) = 

1. By the remark after (0.3) we have 

x = χ(Ρ°)·(9β) = . (χηβ V Î Ç X , 

which yields 

id x = (φ { ρ ) ® φ { α ) ) · (<f {q) ® φ { β ) ) . u 

In order to make this chapter self-contained, we formulate ([E3], Lemma 
1) according to our purposes. 

3.5. LEMMA. Let X be an abelian group, Τχ and T2 group topologies on 
X , and f : ( Χ χ Χ, Τχ Χ T 2 ) (Χ, Τχ Λ Τ 2 ) a continuous surjection. If there 
is a right inverse i : l - > l x l , which is uniformly continuous w.r.t. the 
uniformities belonging to Τχ Λ T2 and Τχ Χ T 2 , the completeness of ( X , T i ) 
and ( Χ , T 2 ) implies the completeness of ( Χ , Τχ Λ T 2 ) . • 

We note that any group topology on an abelian group uniquely deter-
mines a uniformity ([RD],(2.1)). For the uniformity belonging to the infimum 
of two group topologies, cf. ([RD],(2.3)). Now (3.4) yields in combination 
with (3.5). 

3.6. THEOREM. Let X be an abelian group, Τ χ , T2 group topologies on 

X, and τ : X —• X a Hi-continuous involutory automorphism (i = 1,2). 
For η G Ζ, by resp. T(n) we denote the initial resp. final group topology 

on X w.r.t. Τχ and ψ(η)· If are complete topologies, and there are 

p,q G Ζ with ρ] q, such that T ^ Ç 12 Ç then X is Τχ AT2-comp/eíe. • 
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P r o o f . The binary operation · : Χ χ X —• X induced by r makes (X, ·) 
a symmetric groupoid and is (Τχ χ T2 , Τχ Λ T2 )-continuous as a composition 
of continuous mappings, given by 

( Χ , Τ ι ) X - X ( X M , (x,v) ~ ( χ φ ) - 1 , ^ ) - 1 ) , 

(Χ,Τχ) Χ (X,T2) - (Χ,Τχ ΛΤ2), (χ, y) ~ xy- 1 , 

the latter being continuous by ([RD],(5.24)(b)). For p, q £ Ζ as above define 
t : X —• Χ χ X , assigning χ (V(p>(̂ )> iP(q){x))· Since ρ f q, (3.4) implies 
y?(p) t V(g)> hence t is a right inverse for · . Since Ç T2, and ψ^ : 
( X , l ( p ) ) (Χ,Τχ) is continuous, cp(p) : ( Χ , Τ ί ) —• (Χ,Τχ) is continuous. 
A similar argument shows that φ ^ : (Χ, Τχ) —> (X,T2) is continuous as 
well. In addition, both mappings are homomorphisms and continuous also 
w.r.t. Τ,· (i = 1,2). Since continuous homomorphisms of abelian groups are 
uniformly continuous, we conclude that 1 is uniformly continuous w.r.t. the 
uniformities determined by Τχ ΛΤ2 and Τχ X T2. Applying (3.5) completes 
the proof. • 

Finally, the author wishes to express his thanks to the referee for a 
valuable hint which gave rise for the remark between (2.3) and (2.4). 
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