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Preliminaries

We investigate the role symmetric groupoids and more general concepts
used in different areas of mathematics. In chapter 1 we give a brief outline
of [EL2], where we described the use of symmetric groupoids for discrete
dynamical systems. In chapter 2 we introduce a new notion of extensions
of symmetric groupoids, which allows a general description for homotopy
sets of the kind [S7 x §9; 5] (cf. (2.14)), where S™, m € N, denotes the
m-sphere. In chapter 3 we apply (n—)symmetric groupoids to the theory of
topological groups and show, starting from two complete group topologies,
how to get a complete infimum group topology (cf. (3.6)). This generalizes
parts of the results in [E3].

For n > 2, by the following definition we get generalizations of symmetric
groupoids. The equivalence stated below is immediate.

0.1. DEFINITION /PROPOSITION. Let X be a set, o : X XX — X a binary
operation and n € N. We call the pair (X, e) an n-symmetric groupoid, if
the following identities are satisfied for z,y,z € X:

(i) zez=2 (idempotency),
(ii) zo(zxe...0(zey)...)=y (n—-symmetry),
| .
n times

(i) (zey)ez==z ov(y o(ze...0(zez)..))) (n-antidistributivity).

(n—1)times
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The azioms (i), (ii), (iil) are equivalent to the system (i), (ii), (iii’) with
(iii’) (zoy)oe(zoz)=ze(yez)  (left distributivity). m
For z4,...z; € X we agree to the notation
Tiezyezze... 0z, :=z;0(z20(z30...02%)).

By (iii), any term can be written without brackets.

The following result shows that lots of (quotients of) groups can be
equipped with an n-symmetric structure. By calculation one can prove

0.2. PROPOSITION. Letn € N, X be a group, G < X, 7: X - X an
endomorphism with 7(G) < G, and suppose one of the following conditions
to be satisfied:

(1) gr(9) € 2(X) VgeG,
(2) T(X) < N(G),
where Z(X) denotes the centre of X and N(G) the normalizer of G. By the
assignment
X/G x X/G 3 (zG,yG) — z1(2)"7(y)G € X/G

we get on the set X /G of left cosets a binary operation *, which is idempotent
and left distributive.

In addition, let ¢ = ™ (£,m € N) with 7° := idy. Then * satisfies the
identity
zG * (2G#* ... (2G*yGq)...) = zG * (zG * ... * (¢G*yG)...) Vz,y€ X.

£ times m times

In particular, if T is an automorphism of order n, i.e. ™" = idx, then * is
n-symmelric. »

For an n-symmetric groupoid X and a set Y, which are eventually
equipped with basepoints z¢ resp. o, the set of mappings X7V, as well as
the set of basepoint preserving mappings (X, z)(Y'¥), become n-symmetric
groupoids by componentwise definition,

(feg)w):=f(y)eg(y), veY, f,ge X¥ or € (X,zo) Y%,

A further useful example of (2-) symmetric groupoids is given by the concept
of symmetric spaces. A symmetric space consists of a topological space §
together with a continuous binary operation e, which satisfies (0.1), (i)—(iii)
for n = 2 and one additional topological axiom which is inessential for our
purposes.
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0.3. DEFINITION. For n € N, let (X, o) be an n-symmetric groupoid, and
e,z € X. By P(z,e,¢) (or P in short) we denote the minimal subset of X
such that

(i) T,e € P,
(ii) a,be P=>aebe P,
and call P the set of integral powers of z with respect to (w.r.t.) e.
Now let n = 2, i.e. (X,e) is a symmetric groupoid. For k € Z we agree

to write
(zoee...0c0z, k>0,k=1(2),

o

k factors

zeeo...0z0e, k>0,k=0(2),

-

k factors

k) .
2k = eeze...0c0z, k<0,k=1(2),

lkH—l?actors
eoze...0z0e, k<0,k=0(2),

|k|4+1 factors

\

and call =%} the k-th power of z w.r.t. e.

In the situation of (0.3), clearly P forms an n-symmetric subgroupoid
of X. For the powers of a symmetric groupoid w.r.t. any chosen element it
can easily be verified

1. Power processes

For a skew field K and a left K—module V' we introduce the notion of
a k~th power z!¥ for elements z € V and k € Ng by means of symmetric
groupoids. In addition, if K is endowed with a valuation and V with a
norm, it is in place to investigate domains of boundedness of the iterative
k—th power process (k € Np)

Tyy1 = :cg‘] + ¢, where zo:=0€ V, v € Ny,

i.e. the set of all elements ¢ € V', where the given process remains bounded.
We shortly describe how to determine these domains for a certain type of
powers on complex vector spaces, where |-| : C — Ry is given by z — (22)%.

In this chapter, a field is not necessarily commutative. For a field K we
use the abbreviations cg := char K, Ck := centre K.

1.1. DEFINITION. Let K be a field, J : K — K an antiautomorphism, V
a left K~module, and h : V x V — K a J-sesquilinear form (sqlf). We call
Ny = {z € V:h(z,z) = 0} the nullspace of V with respect to the J-sqlf h
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and define ¢, : VXV \N, =V by

1
z,y)—» ——(~h(z,2)y + a(z,y)z
(2,9) h(yry)( (z,2)y + a(z,y)2),
where a(z,y) := h(z,y) + h(y, z).
1.2. DEFINITION. Let K be a field, cx # 2, J : K — K an antiauto-
morphism, V a left K-module, and h : V xV — K a J-sqlf. We call h a
symmetrizing J-sqlf , if forz,y € V

(l) a(a:, ?/) € CK,
(i) h(z,z)J(h(y,y)) = J(h(z,2))h(y,¥),
(iif) h(z,z)J(a(z,y)) = J(h(z,z))a(z,y).

It turns out that for a symmetrizing J-sqlf the antiautomorphism J is
necessarily involutory ({EL2],(1.5)). Any symmetric bilinear form (blf) on
vector spaces is symmetrizing.

1.3. THEOREM. Let K be a field, cx # 2, J : K — K an antiautomor-
phism, V a left K-module, and h : VXV — K a symmetrizing J-sqlf. Then
(V\ N, ep) is a symmetric groupoid ([EL2], (1.8)). =

The following example of a symmetric groupoid arises from a special case
of (1.3) and plays an important role in chapter 2.

1.4. EXAMPLE. Let (-;-) be a nonsingular symmetric blf on R*"t1, and
§t:={z e R""!:(z;2)=a}, 0 £ a €R.

Define oy := —y+2gfz z,z,y € ST. Then (ST, ) is a symmetric groupoid
([L], p. 66).

According to (0.3), for ¥ € Z we can form k-th powers of elements of
V \ NV}, with respect to a certain e € V with h(e,e) # 0. It can be proved
that this formation of powers can be extended to whole V for non negative
k ([EL2],(1.12)), and all powers of z lie in the plane spanned by z and e.
We denote k—~th powers of z in V in the sense above by z!¥ and call them
the k—th power of z w.r.t. h and e. The term “power” is in place, since
our concept of a power in particular situations coincides with the notion of
powers in fields or algebras, respectively: In the situation of (1.4), for the
canonical inner product and « := 1, we get a continuous binary operation on
the n—sphere S™ with the topology inherited from R"*!, which makes (5", )
a symmetric space. For n = 7, §™ consists of all Cayley numbers of norm
1. Writing - for the Cayley multiplication, one can prove zey =z -y~ .-z
(z,y € S7) ([E2], (1.5)). From this one concludes by an easy calculation,
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that powers w.r.t. ¢ and e := (1,0,...0) € S7 are the same as powers w.r.t.
the Cayley multiplication.

Now we turn to normed complex vector spaces, where C is equipped
with the usual absolute value, and consider iterative processes like that
described above, with non negative powers w.r.t. a symmetric blf ~» and e
with h(e,e) # 0. Let k € Ny. Using a criterion for boundedness of subsets
of a two dimensional subspace of a left K—module over a complete valuated
field ([EL1], (2.8)) we can show that for any complex vector space and given
h and e the behaviour of (z,),en, With respect to boundedness depends
only on the values v := 2223 , 6= ,’:g:g, v,6 € C, i.e. is independent from
both the blf and the chosen e ([EL2],(3.3)). Therefore, we have reduced the
problem of determining domains of boundedness to finite dimensions.

By means of a certain k—th power process on a 2-dimensional C-vector
space we can determine all pairs (v,8) € C x C, such that a k-th power
process with y = :Ezz;, 5= %:—:3, remains bounded (cf. [EL2],(3.4)ff.).
Roughly speaking, we get something like universal domains of boundedness
for k—th power processes with respect to symmetric blfs on normed complex
vector spaces.

2. Homotopy theory

For compactly generated topological spaces X and Y, which are equipped
with basepoints, we denote the set of homotopy classes [f] of continuous
basepoint preserving mappings f from X to Y by [X;Y]. For sets of homo-
topy classes with symmetric spaces as a range it is easy to verify

2.1 DEFINITION /PROPOSITION. Let X and S be topological spaces with
basepoints, S a symmetric space with the binary operation ¢, and f,g : X —
S continuous, basepoint preserving mappings. By

[f1e(g]:=[f o 4]
we define on [X; S| a binary operation e. The pair ([X; 5], ) is a symmetric
groupoid. m
Our aim in this section is a description of the symmetric groupoids ([S? x

$9;5"],e), where o is induced by (2.1) and the symmetric structure on S™
presented after (1.4).

2.2. DEFINITION. Let (G,+) be an abelian group, R C G, and (R,e) a
symmetric groupoid. We call the symmetric groupoid (R, e) group related to
(G,+), if there is a map 7 : R — G such that

aeb=a-r71(a)+7(b), a,b€R.
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In the sequel, we call 7 the map describing o. Without loss of generality,
we can assume 0 € R, 7(0) = 0, and 7% = idg (cf. [E1l], after Prop. 6).
Examples of group related symmetric groupoids are given by (0.2) with X
abelian and 7% = id x. In particular, Z is a group related symmetric groupoid
with 7 = —idz.

2.3. DEFINITION. Let (R, o) be a symmetric groupoid, a,b € R. We define
a relation ~; on R by

ar~pbi:<= IkeNTay,...ar€R:are...0a,0a=5b.

The relation ~, is an equivalence relation.— The structure of group re-
lated symmetric groupoids R was described in ([E1], Theorem 12) as a union
of cosets by a certain subgroup i of G. By calculation one can show that
any group related symmetric groupoid is a SIE-groupoid, as well as the
coincidence of the relation ~, with the relation ~ on R determined by ¥
(to be more precise, for r,s € R we define r ~ s iff r — s € U), which are
congruence relations w.r.t. the symmetric structure by ([R],(3.2)). It is not
too hard to prove that ([E1}], Theorem 12) is a variant of a special case of
([R],(4.3)); in other words, R forms an AG—sum of copies of U.

2.4. DEFINITION. Let (R,e) be a symmetric groupoid, related to (G, +),
and T the respective describing map. A subgroup H of G with H C R is
called T-admissible, if

(i) R+ H CR,
(i) Tl = ids,
(iii) r(r+h)=7(r)+7(h), (r€ R,he H).

We call the set of all T-admissible subgroups in R the T—spectrum of R and
write S,;(R).

If H € §;(R), by (i) R is a union of cosets of G by H. Therefore, H
defines an equivalence relation on R. For the coset space we write R/H :=

{r+ H:r € R}

2.5. DEFINITION /PROPOSITION. Let (R, o) be a symmetric groupoid, re-
lated to (G, +), and T the respective describing map. We put

F(R):={r+H:r€R,H € S,(R)},
and call this set the T—fan of R. Assigning
(ri+H,r2+K)—rier + K, r,72 € R; H,K € §;(R),

a binary operation e, : F,.(R) X F,(R) — F.(R) is defined. The pair
(F+(R),e;) is a symmetric groupoid.
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Proof. e, is well defined, since for 74,7 € R and H,K € S;(R),h€ H,
k € K we calculate
(rm+h)e(re+k)+ K=ri+h—-1(r1i+h)+7(re+k)+ K
= rm+h—1(r)—h+1(r)+k+ K
(2.4),(ii), (iii) () (r2)

=r—71(r1)+7(r2)+ K
=rery+ K. m
2.6. DEFINITION. Let (R,9), (5, 9') be group related symmmetric group-
oids, and 7' the map describing o'; furthermore, let A : R ~;— S§.(5)
and h* : R x R — F(S) with h*(r1,7r2) € S/A(g(r2)) be mappings, where
q¢: R — R/ ~; denotes the canonical projection. We call (R, S, )\, h*) a fan
eztension of R by S, if

I 7x(S/A(F) C R x Fu(S)
FER/~y
is a symmetric groupoid by means of
(r1,81) ®" (r2,82) 1= (71 @ T2, 81 0,1 82 + h*(71,72)).

Now we come to the announced description of [§? x §9;5"]. To this
end, we first gather results of [E2] concerning the homotopy classification
of product mappings on spheres. For m,n € N, homotopy groups 7,(S™)
are always abelian groups with [$™; §"] as underlying set. In ([E2],(2.5)) we
show

2.7. THEOREM. ([S™;S"],e) is a symmetric groupoid, group related to
Tm(S™), with describing map 7 := T n,
Tmn P [ST5 5™ = 7n(S™), ar ((-1)",)oa,
where 1, € m,(S™) denotes the homotopy class of the identity map. If we

take m,(S™) (instead of [S™; S"]) as domain of T, then T proves to be an
involutory group automorphism. m

A first approximation to the homotopy classification of product map-
pings on spheres (cf. (2.13)) is given by the type of a mapping.

2.8. PROPOSITION /DEFINITION. Let u € ¢ € [SP x §9; S™], denote by ¢,
resp. @, the homotopy class of the compositions

SP 3 6P x §95 6™ pesp. §93 5P x 595 S,
where we write 1; resp. 1y for the canonical injection of SP resp. §? into
S? x §9. The mapping
t:[SP x §9;8"] — [SP; S"] x [S§%; 57,
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defined by the assignment ¢ — (¢1,92), is a homomorphism of symmet-
ric groupoids, where the algebraic structure of the range of t is given by
the direct product of the group related symmetric groupoids ([S?; §"], ) and
([S9; 8™], ). We call t(p) resp. t([u]) the type of the homotopy class ¢ resp.
of the product map u; furthermore we agree to write
T :=([S? x §%, 8™)).

2.9. REMARK. Since t is a homomorphism of symmelric groupoids, by

definition of the relation ~, follows for ¢,¢' € [S? x §%; 8"

P ~e P = 1) ~e U(Y).

In the following we shall use without further explanation two notions
from algebraic topology, namely the seperation element of two product map-
pings of the same type, the properties of which one can find in [J], and the
Whitehead product of two elements of homotopy groups of spheres [Wh].

2.10. LEMMA /DEFINITION. Let p,q,n € N, andw € T withw = (wy,w2),
write & for the equivalence class of w modulo ~; in T, and denote by A, <
Tptq(S™) the subgroup generated by

_[wbE] + (_1)q+1["’7w2], 6 € 7rq+l(sn)’77 € 7rp+l(Sn)’
where [-, -] stands for the Whitehead product. For T € T/ ~p and x,w € T
holds A, = A,; thus At := Ag := A, is well defined ([E2], (3.5)). »
2.11. THEOREM. For ¢ € [S? x S9; S™] holds

u,u' € ¢ <= d(u,u’) € Ay

If n is odd and u,u' € @, we have the identity
(—tn) 0o d(u,u') = d(u,u').

This implies together with (2.7) that 7|A id|Am ([BB]; [E2], (3.2);
[E2], (3.8)(i1)). m

2.12. PROPOSITION /DEFINITION. Let s : T — [SP X §7;5™] be a right
inverse of t, i.e. tos = idr. We call s : [SP x §7;5™] — [SP x §7; 87,
s :=sot, a type representing map.

A type representing map satisfies (¢,¢' € [SP x §9;.57])

(1) Hs(#)) = L),

(2) o) = t(¢") = s(#) = s(#').

Every right inverse of t determines a type representing map. For the
following we fix such a map s, as well as representatives u, for any ¢ €

) ~
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[§? x §9; 5™ in a way that we can form the seperation element of any two
representatives of the same type.

Unfortunately, the seperation element of two representatives u, s’ of ho-
motopy classes of the same type is not good enough for the homotopy clas-
sification of product mappings on spheres, since d(u,u’) = 0 implies the
homotopy of u and u', but not vice versa (cf. (2.11)). If we put d(v,v’) :=
d(uy, uy ) for ¥, ' € [SP x §9; 5™] of the same type, one can show (cf. [E2])
that at least the class d(v,%') + A = does not depend from our choice of

] )
representatives.

2.13. THEOREM. With the conventions and notations from above,

[SPx 555" = |J T xmpeq(S™)/Ar.
TeT [~
Any ¢ € [SP x §9; S™] can be represented by a triple (11, 2,13) where

(¢1, ¢2): = f('»b),
Yo = ¥+ Ay and ¥4 = (3, s(¥)).
With another ¢ € [SP x S9; S™], we get the product formula
P o1 = p1 0111, 02 2,05 03 93 + d(s(p) @ 5(),s(p0 e ) + Ay

where according to (2.2) and (2.7), ey, 3,03 are determined by 1y := Tp n,
Ty 1= Tqmy T3 := Tpiq,n ([E2], (3.10)). m

If we put
MH®) = Aggyy R (He), 4®)) := d(s(0) & s(¥), s(0 0 ) + Ay
then (2.13) becomes in view of (2.6)

2.14. COROLLARY. ([S? x §9; 57"], ) is isomorphic to a fan eztension
(R, S, A, h*), where R is group related to m,(S™) x m4(S™), § = [P, 5] is
group related to wp4q(S™). For n = 0(2) always holds 2h*(-,-)=0. m

The last assertion of (2.14) has been shown in ([E2], (3.12)).

3. Completeness of group topologies

For a group X and complete group topologies ¥; and T3, their group
topological infimum %; A ¥, is not necessarily complete [R]. Under certain
circumstances we get sufficient conditions for the transfer of completeness
to the infimum topology, e.g. if it is possible to induce on X the structure of
an n—-symmmetric groupoid. This leads to an n—symmetric binary operation
(by component-wise definition) on the set of self~-mappings on X, which in
addition carries the monoidal structure given by composition of maps. On
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this set we investigate a certain relation which corresponds to the notion
of being relatively prime in principal ideal domains. By means of ([E3],
Lemma 1) and suitably chosen pairs of relatively prime power mappings we
get the desired sufficient conditions.

We describe how to proceed for the case n = 2. This procedure can be
applied to the general case of an n—symmetric structure in an analogous but
more complicated way and will be discussed elsewhere.

3.1 DEFINITION. Let X be a set and x,® : X x X — X binary operations.
(a) The triple (X,*,®) is called a circlet, if
(i) (X),®) is a monoid,
(ii) t®(y*2)=(zQy)*(z®z2) V=z,y,2€X.
We denote the neutral element w.r.t. the associative multiplication ® by e.
(b) Let n € N, and (X, *,®) be a circlet. If in addition, (X,*) is an
n-symmetric groupoid, we call (X, *,®) an n—circle.
For an n—symmetric groupoid (Y,e) and f,g € X := Y7 (the set of
self-mappings on V), we let f® g:= go f. Then (X,e,®) is an n—circle.
3.2. DEFINITION. Let n € N. For a circlet (X, *,®), two elements a,b €
X are called relatively prime, if there exist z,y € X s.th.
(a®@z)*(b®y) =c.
For relatively prime elements a,b € X we write in short a 1 b.

Our next aim is to find pairs of relatively prime elements in a subset
of self-mappings of an n-symmetric groupoid (arising from a group as de-
scribed in (0.2)) which is defined as follows.

3.3. DEFINITION. For n € N, let (X,e) be an n-symmetric groupoid,
e € X. By P(X,e) (or P in short) we denote the minimal subset of self-
mappings on X, s.th.

(1) idx, const(e) € P,
(i) fi9€P=>feg,f@gEP.
We call P the set of power mappings on X w.r.t. e.
It turns out that P(X,e) = P(idx,e,const(e)) and f(e) = e for all
f € P.— From now on, we restrict ourselves to the consideration of (2-)

symmetric groupoids. By (Z,e,-) we understand the 2—circle equipped with
e as defined after (2.2) and the canonical ring multiplication in Z.

3.4. PROPOSITION. Let X be a group with an involutory automorphism
7:X — X (i.e. 7? = idx), and denote by e the neutral element of X w.r.t.
the group multiplication. Then by (0.2), (X, o) is a symmetric groupoid, if we
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put z 0 y := z27(z) " 17(y) (z,y € X). With the notation from above and the
remark after (0.3), (P, ¢,®) is an epimorphic image of the 2—circle (Z,o,-),
given by the assignment Z 3 m v @y € P, where p(my(z) := z{™), formed
w.r.t. e. Furthermore, for p,q € Z we have

p f q (in (Z’ +7)) < ptgq (in (Z7°7')) = Pp) 1 Pq) (in (P7°,®)) .

Proof. We first show that the two notions of being relatively prime are
equivalent.

“=” Let o, € Z and pa + qB = 1. If o or 3 is even, the implication is
trivial. In case o = 1(2) = f, exactly one of p, g, say ¢, is odd. Therefore,
o + q is even, and by

pla+q)+q(B-p)=1

(pa;q) . (Q(p—ﬂ)) =1,

which shows that p{ g in (Z,e,:).— 7<” is trivial.
In order to show the second assertion, let p,q,, 3 € Z and (pa) e (¢B) =
1. By the remark after (0.3) we have

z = (PP = (27)* o (29)P V1 € X,

we get

which yields
idx = (¢(p) ® (o)) * (P(g) ® P(p))- ™

In order to make this chapter self-contained, we formulate ([E3], Lemma
1) according to our purposes.

3.5. LEMMA. Let X be an abelian group, T, and T, group topologies on
X,and f: (X xX,%1 X%2) — (X,T1A%2) a continuous surjection. If there
is a right inverse 1 : X — X x X, which is uniformly continuous w.r.t. the
uniformities belonging to T1 A %y and Ty X Ty, the completeness of (X, %)
and (X, %2) implies the completeness of (X,%1 A %T2). m

We note that any group topology on an abelian group uniquely deter-
mines a uniformity ([RD],(2.1)). For the uniformity belonging to the infimum
of two group topologies, cf. ([RD],(2.3)). Now (3.4) yields in combination
with (3.5).

3.6. THEOREM. Let X be an abelian group, T;, T2 group topologies on
X,and 7 : X — X a T;-continuous involutory automorphism (i = 1,2).
Forn € Z, by T(™ resp. %(n) we denote the initial resp. final group topology
on X w.rt %y and ¢gy. If Ty, Tz are complete topologies, and there are
p,q € Z with ptq, such that ») C %, C T(q)> then X is Ty AT —complete. w
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Proof. The binary operation ¢ : X x X — X induced by 7 makes (X, o)
a symmetric groupoid and is (T; X T3, %1 AT2)-continuous as a composition
of continuous mappings, given by

(X,%1) X (X,%) = (X, %) X (X, T2), (z,9) (zr(x)™",7(v)™"),
(X,TI)X(X,Tg)—*(X,Tl/\Tz), (z1y)Hmy—1’

the latter being continuous by ([RD],(5.24)(b)). For p,q € Z as above define
1: X = X x X, assigning  + (¢(p)(2), ¢(q)()). Since p t ¢, (3.4) implies
©P(p) T P(q), hence 2 is a right inverse for e. Since 1T C T,, and Py -
(X,2P) - (X,%;) is continuous, @, : (X,%2) — (X,T1) is continuous.
A similar argument shows that ¢ : (X,%1) — (X,%3) is continuous as
well. In addition, both mappings are homomorphisms and continuous also
w.r.t. T; (¢ = 1,2). Since continuous homomorphisms of abelian groups are
uniformly continuous, we conclude that : is uniformly continuous w.r.t. the
uniformities determined by T3 A T and T; x T2. Applying (3.5) completes
the proof. m

Finally, the author wishes to express his thanks to the referee for a
valuable hint which gave rise for the remark between (2.3) and (2.4).
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