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A NOTE ON CATEGORIES OF INFORMATION SYSTEMS

Dedicated to Professor Tadeusz Traczyk

1. Introduction

Several notions motivated by the problem of classifying objects according
to their values of attributes or features were introduced and examined. We
mention for example the logical kit of Semadeni [2], the information system
of Pawlak, the context of Wille [3] and the probably most commonly known
and applied relational database model of Codd [7]. From some points of view
the above notions are equivalent or inter-translatable (see e.g. Wiweger [4],
where the relation among logical kits, information systems and contexts is
explained); of course there are important differences among them. (In fact
small differences in the beginning can give unequal results at the end). In
every of the models mentioned we have other classes of questions considered
and areas of applications also do not coincide. Category theory has proved
to be useful in so many areas that it should also be possible to apply it
in the field of information systems, logical kits, contexts etc. In fact there
exist results for logical kits and information systems using category theory,
see e.g. Semadeni [2], Wiweger [4]; other results of this kind connected to
a similar notion, rough sets, can be found in Biegafiska [6], Obtulowicz [5]
and Banerjee, Chakraborty [9].
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Our aim here is the following: we would like to define some categories re-
lated to information systems (or some subcategories of known one’s), which
can profit in better understanding of structuress associated to these systems.
In particular we hope to obtain new insight into indiscernibility of objects,
dependence of attributes and problems related to reducing the number of at-
tributes. This note only gives introductory considerations. We suggest that
it is worthwhile to develop a theory for the categories introduced in this pa-
per and to find applications for the results obtained. In particular we hope
that the tool of category theory can help to analyse situations in which we
deal with information systems with incomplete, damaged or lost informa-
tion. We shall be interested in questions similar to the following: assume
we changed some of the values of a matrix (or information system), how
does that fact influence the indiscernibility of objects and the dependance
of attributes, or determinant of the matrix?

2. Basic definitions

The notion of information system was introduced by Pawlak in [1].

An information system is a quadruple (U, A,(Vy)eea, f) where U is a
set of objects, A stands for a set of attributes, V, is a set of values for an
attribute a, and f : U x A — {J,¢ 4 Va is a function such that f(z,a) € V,
for any z € U, ¢ € A. The function f is called the information function.
Shortly the system will be denoted by (U, A,V, f) where V = |J,c 4 Va-

For every set of attributes B C A an indiscernibility relation Ind(B) C
U? is defined in the following way: For every z,y € UInd(B)zy iff Va €
Bf(z,0) = £(y,0).

We say that the set of attributes B depends on the set of attributes C
(denoted by C — B), if Ind(C) C Ind(B).

We also recall that a set of attributes B C C'is a reduct of C if Ind(B) =
Ind(C) and the set B is minimal with respect to inclusion.

A system (U, A,V, F) 1, with one distinguished element Ly € A is called
a pointed system or, more precisely, the attribute pointed system. We could
define simiarly the object pointed system.

Let us observe that a monoid can be seen as a special kind of an infor-
mation system: (M, M, M, *) such that + : M x M — M and m* (a *b) =
(m *a) *b.

3. Categories of information systems

We start with the basic definition of our category: We consider as objects
information systems and (structure preserving) morphisms between them. In
particular we will look at (sub)categories of information systems (U, A,V f)
such that U = {z4,...,2,}, A = {@1,...,an} and V are fixed. Now given
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two information systems Sy = (U,A4,Vi, f1) and S; = (U, A, Vs, f2), we
say that m, is a morphism from S; to S, iff there exists a permutation

0:{1,...,m} 'S {1,...,m} such that

ViVi(fi(zi,a;) = fa(zi,a0¢5)] -
Furthermore of course m, should map U on U, A on 4 and V; on V,1.

Sometimes we shall say that m, is a permutation of columns of the
information system and we shall write

me : {af,...,a5} — {af,...,a.}.
Of course o0~1 gives a dual morphism.

As a subclass we can also consider morphisms determined by a subset
Ap C A and permutation morphisms m, : A — A such that m,|A4g = Id 4,
where Id 4, is the identity on Ag.

In a similar way a morphism determined by a permutation of objects is
defined.

We call categories with morphisms of the first kind natural; they can
also be named the permuting attributes category.

We shall say that a morphism m, preserves pointed elements in the
pointed information systems (U, A, Vp, fo) 1, and (U, A4, V4, fi)1, if ms(Lo)
= -Ll-

We shall call the category of pointed information systems (with pointed
morphisms) the natural pointed category. To be more precise, we have at-
tribute pointed and object pointed categories.

Let us finally observe that the natural category is just the category of
one object set U with morphisms being permutations of U. In symbols:
Cat((U, A,V, f),perm(U)) = Cat((U, A", V', f'),perm(U)) = (perm(U), o).
The meaning of “x” is intuitively clear.

Now let us assume that the set of objects U is fixed and the sets of
attributes are arbitrary. Therefore objects in this category are information
systems (U, A,V, f),(U, A", V', f)),(U, A", V", f"),... etc. We define mor-
phisms here in the following way

(U,A,V, )T (U, A, V', ') iff Ind(A) = Ind(4").

This category shall be called the indiscernibility category.

Having the same objects we can add some more morphisms: (U, A4,V, f)
¢ (U, A, V', f') iff the set of attributes A depends on the set A’ i.e.
Ind(A) C Ind(A’). The category with these morphisms shall be called de-
pendency category.

! In this special case V; = V5 would be sufficient.
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Let us observe that we can’t define a category with morphisms deter-
mined by reducts in an analogous way, because in general we shall not have
identity morphisms. We may however construct a subcategory, with objects
having the property of independence, that is for objects (U, A,V, f) such
that it is true that for all BC A B # A — Ind(B) # Ind(A4). On the other
hand it is possible to consider functions m, : A — A’ such that A’ C A is
a reduct of A and we may call m, a semi-morphism. Here we not always
have identity morphisms and there are no nontrivial compositions. One more
word on the notation. Assuming that U = {z4,...,2,}, A = {a1,...,an},
V = Z U QU R we denote by Z(m), Q(m) and R(m) respectively the cate-
gory with objects of the form (U, A, Z, z), (U, A,Q, q), (U, A, R,7) and with
morphisms determined by permutations of attributes (or, more precisely, by
permutations of columns named by attributes).

By M(m) we denote the union Z(m) U Q(m) U R(m). In summary, we
have defined the following categories of information systems:

The category IS of objects being information systems

ObjIS = {(U,A,V, )|U, A,V € Set&f : U x A -V}

and morphisms
MorIS = M, U M; U My U M, and their compositions,

where elements of M, are morphisms determined by permutations of at-
tributes, elements in M; are determined by Ind(A) relations, morphisms in
M, and M, are defined using respectively dependency relations and reducts.
By IS,, IS;, IS4, IS, we denote the corresponding subcategories. Note that
by definition of a category, we have to add identity morphisms to the reduct
morphisms to obtain IS,..

Now let us describe the structure of Mor IS. We need one more definition:
a morphism mq : (U, A,V, f) — (U, A", V', f) is strict if Ind(A) C Ind(A’).

CONVENTION: Sometimes instead of f|B (i.e. the restriction of f to the
set B) we shall write only f.

NotaTion: if A = {a1,...,a,} then A; = {a1},..., 4; = {a1,...,a;}
and IS, = (U, AV, f),..., I1S; = (U, A, V, f).
ProrosiTioN 3.1. 1. M, C M; C My
2. M, C M;
3. M, # M,
4. M, N M, #0.

PROPOSITION 3.2. 1. Iffori = 1,...,n—1IS; = IS;,1 are strict depen-
dent morphisms then 1IS; 75 IS.
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2. Let IS = (U, A,V, f) where A = {a1,...,a,} and assume that a mor-
phism my : IS,,_1 — IS is strict and there erists {a; ,...,a;} # {a1,...,
an-1} such that (U,{ai,,...,0i,a.},V,f) IS then there ezists {aj,...,
a;} € {ai,... a5} such that (U, {aj,,...,a;,a.},V, f) 3 IS.

Proof. Straightforward. =

At this point, having defined the basic category we can start developing
the theory. It is not difficult to define the product and the comma category.
Some simple functors like a forgetful or an inclusion functor are also easy to
obtain. At present we consider natural transformations.

4. Natural transformations and information systems

It is often mentioned (e.g. in Lambek and Scott [8]) that the concept of
natural transformations is the key concept that necessitated the invention
of category.

Many objects of interest to mathematicians may be viewed as functors
from small categories to the category of Sets. When those functors are seen
as objects of a category, the morphisms between two objects are precisely
the natural transformations. In order to understand the structure of a math-
ematical objects like an information system, it is useful to see how it can be
described as a functor. Moreover if we also consider only special morphisms
between the structures (like the ones proposed in the previous section), we
can express that information in the definition of the functor that “describes
it”, and (possibly) discover some properties of the structure.

Let us consider the following very small and abstract category PreSIS
of figure 1 and consider a functor from PreSIS to Setgiy1ot. Such a functor
F maps U to some finite set F(U) which we will view as a set of objects.
Similarly F maps A to a finite set F'(A) of attributes, V' to a finite set F(V)
of values and I to a finite set F(I) of informations?. Furthermore F maps

Ue
obj

Ae < att I
val

Ve

Figure 1: The very small category PreSIS

2 If we view an information system as a matrix determined by information function
f(u, a) we can view the set I of information as entries in this matrix.
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the arrows obj,val,attr to respectively the total mappings F(obj) : F(I) —
F(U), F(val) : F(I) — F(V), F(attr) : F(I) - F(A). Such a functor F
defines a what we call incomplete information system (Ur, Ar,VF, fr) as
follows

Urp =F(U),Ar = F(A),Vr = F(V)
and fp : Up X Ap — Vp is such that fr(z,a) = v iff 3i € F(I)[F(obj)(?) =
z A F(val)(z) = v].

UxA

P2

|4
.

inf
Figure 2: The very small category SIS

An incomplete information system is a system for which in general the in-
formation function is partial, i.e. for some objects some (possibly all) values
of their attributes can be unknown. It is easy too see that for the information
systems we defined above the information function is in general partial.

In order to force the information system to be complete (i.e. for all
u € Up, A € Ap fr(u,a) is defined) we have to force that F(I) coinsides
with F(U) x F(A) and that the mappings Fop; and Fyy, coincide with
respectively the first and second projection on elements of F(U) x F(A).

Consider the very small category SIS of figure 2, where we have added
to the category PreSIS the product® of U and A - consisting of the ob-
ject U x A and the projction finctions 7, and 7, and the arrow ’inf~!
which is uniquely determined by the product — plus the arrow ’inf’ which is
the inverse of inf~!. It is easy to see that SIS is a (very small) category?.
Let F : SIS — SetginTot be a functor then the information system § =
(Ur,Vr, AF, fr) determined by F is defined as follows:

o Ur = F(U)

3 For a definition of a product of objects in a category consult for example [8].

4 We did not drow the identity morphisms; the composition of morphisms is the
obvious one.
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o Vp = F(V)

o Ap = F(A)

¢ fr = F(val)F(inf) (i.e. the composition F(val)o F(inf) of the functions
F(val) and F(inf).

ProPoOSITION 4.1. Consider the (product preserving) functors between
the categories SIS and SetpinToi. These functors define precisely the com-
plete information systems.

Proof. By definition of Setpin1ot the functions F(val) and F(inf) are
total, thus so is fr. m

We conclude that we may construct a category of information systems
as being the functor category Setior,,. If we consider the set of all functors
as objects then the most natural choise of morphisms will be the set of
all natural transformations between the functors from SIS to SetrinTot.
We get the following (necessary) condition for a natural morphisms m =
(my, ma, my) between two information systems Sy (Uy, A1, Vi, f1) and 53 =
(U2,A2a‘/2’f2):

LetueUi,a€ A1, veW;

(*) my(fi(v,a)) = fo(mu(u), ma(a)).

In order to motivate this claim consider natural transformations r =
(r1,7U,TA, v, Tuxa)® of information systems. The following conditions hold
for 7: F — G (where F,G € Set3ir,,):

1. G(obj)rr = Ty F(0obj)

. G(att)Tr = T4 F(att)

. G(val)Tr = Ty F(val)

. G(inf™Y)r; = 7y 4 F(inf 1)
. G(inf)Tyx 4 = 7rF(inf)

. G(m)Tuxa = TuF(m)

. G(ﬂ'g)TUxA = TAF(Trz).

Equations 1, 2 and 3 give the condition mentioned for morphisms. Equa-
tions 4, 5, 6 and 7 are due to the relation between the set of information and
the set of all object-attribute pairs. It is easily seen that in this framework
the three types of morphisms — for the permuting category, the indiscern-
ability category and the dependence category — defined in section 2, do all
satisfy condition (x).

We can characterize the categories of section 2 as subcategories of the
functor category we defined above. We will show this for the permuting and
the indiscernibility category of information systems.

NSOV N

5 For each object of IS we have an arrow of a natural transformation.
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Let F be a functor in Set3iop,, and let o : F(A) — F(A) be a permu-
tation of the attribute set F(4) (i.e. o is a one-one function from F(A) to
F(A)). Let the function s : F(I) — F(I), induced by o be as follows:

s(p) = q iff o(F(att)(p)) = F(att)(q)&F(obj)(p) = F(obj)(q)
i.e. s maps an information element p carring information of an object  on
attribute a to an information element ¢ that carries information on the same
object as p but on the permutated attribute o(a).

A permuting category is completely characterized as being a subcategory
of SetglS . satisfying

VF,G3o[F(att)s = G(att)

and F(U) = G(U)
F(A) = G(A)
F(V) = G(V)
F(I) = G(I)

F(UxA)=G(U x A)
F(obj) = G(obj)
F(val) = G(val)
F(my) = G(m)
F(my) = G(m2)
F(inf) = G(inf))
where F, G are functors in Setgior,, and o a permutation on G(I).

Let F be a functor in Set3ior,, and let Ind be a indiscernibility relation
on U. Note that Ind is an equivalence relation. Consider the set of equiv-
alence classes U/Ind and choose from each of these equivalence classes one
representative u € F(U). Let r : F(U) — F(U) be the function that maps
each object of U to the representative of its equivalence class. Consider now
the function ¢ : F(I) — F(I) induced by r in the following manner

i(p)=q if F(att)(p)) = F(att)(q)&r(F(obj)(p)) = F(obj)(g)
i.e. 7 maps the information p of an object u in some attribute a to the
information ¢ of the representative r(u) of the equivalence class of u in the
same attribute a.

An indiscernibility category is completely characterized as being a sub-
category of Set3IS.  satisfying

VF[F(val) = F(val)o1]

where F € Setgioro-
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Observe that we defined in the two cases above the categories of infor-
mation systems as functor categories relying on functions from information
to information (from F(I) to F(I)).

5. Final remarks
1. This paper is only a starting point of futher investigation.

2. We plan to study the representation of information systems categories
U—- A

as a family of functors from other simple structures e.g. from \, | to
vV

Setpin
(identity morphisms are not shown in the above diagram).

3. It seems to be important to describe the behavior of the category IS
in terms of (or in relation to) permutation groups (Perm(U), o).

Appendix
A. Definitions of category theory
Definitions in this section are mainly taken from Lambek and Scott [8].

DEFINITION A.1. A. category C is a collection of two kinds of entities,
called objects anf morphisms. The morphisms are mappings from one object
to another. For each object A in C there exists an identity morphisms is,4 :
A — A. Futhermore morphisms f : A - B and G : B —» C may be
composed to produce a morphism gf : A — C. Composition should satisfy
the following two properties: Let f:A—- B,g: B—>C,h:C - D

o h(gf) = (hg)(f) (associativity)
o fids = itdpf = f (identity)
Morphisms are also called arrows.

DEFINITION A.2. A functor F : A — B is a mapping between two
categories A and B that sends objects of A to objects of B and arrows of
A to arrows of B such that, if there is an arrow a : A — A’ in A then
F(a) : F(A) — F(A’) in B. Moreover a functor preserves identities and
composition.

DEFINITION A.3. Given two functors F,G : A — B a natural transfor-
mation t : F — G is a family of arrows t4 : F(4) — G(A) in B, one arrow
for each object A of A, such that the following square commutes for arrows

F:A— Bin A:
Fl4) M ga
LF(5) 16

FB) B g
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DEFINITION A.4. Given a set I and a family {A;|7 € I} of objects in a
category A, their product is given by an object P and a family of projections
{p; : P — A;|i € I} with the following universal property: given any object
Q and a family of arrows {¢; : @ — A;|i € I}, there is a unique arrow
f:@Q — Psuch that p;f = ¢; forall i € I.
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