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0. Introduction

In this paper, the differential calculus for random variables defined on a
Heyting algebra (or on a distributive lattice with pseudocomplementation)
from [8], is developed. The case of quantized random variables is described.
This theory can be applied in Bellert’s space-time theory which is a cosmo-
logical theory connected with quantum physics. In [8], we made the consid-
erations for an arbitrary complete Heyting algebra, but in the present paper
we use (in Lemma 24) the specific properties of physical events, so we use
the fact that our distributive lattice with pseudocomplementation is Bellert’s
space-time. Obviously, the fact used by us is only one of the properties of
the space-time and it can be noted, in a simple way, using mathematical
symbols. We will not do it because we regard it as uninteresting.

1. Bellert’s space-time

The red shift effect is a well known empirical fact. Every present cosmo-
logical theory tries to explain it. Stanislaw Bellert, in [2], [3], [4], was trying
to explain this fact in a more natural way than it had been done before.
Bellert derived the law of summation of radial distances

(1) D(a1,a3) = D(a1,a2) + D(az,a3) - lD(al,az)D(az,aa)

and derived the relationship between cosmic dlstanco D (which we observe)
and local distance z (traditional distance):

(2) : D = k(1 — e™*o)
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where k is a constant whose empirical determined value is equal to k = 1/¢T
(¢ = the light velocity, T = Hubble’s constant). We will use such units of
time and space-distance that ¢ = 1 = T = k. Therefore we can denote the
law of summation of cosmic distance in the following way:

(3) D(al,ag,) = D(al, ag) + D(ag, a3) - D(al, az)D(ag, a3)
:= D(ay,a3) f D(ay,a3).

B
The operation + defined above we call Bellert’s sum.
Moreover, he assumed that the light velocity ¢ = 1 is constant and hence
there must exist the cosmic time 7 which satisfies the law of summation:

(4) T(a1,a3) = (a1, az) + 7(az, a3) — 7(a1, az)7(as, a3)

B
= 7(a1,az2) + 7(az,as)
and which depends on “normal” local time ¢ as in formula:
(5) r=1-¢T,

In Bellert’s theory, time is quantized, i.e. we must partition the time-axis
into small, adjacent finite interval moments (see [5]).

It appears that a conditional probability has connections with time and
space-distance in Bellert’s theory.

Namely: the main axiom of conditional probability on Heyting algebra
is the equation:

(6) p(a1,a3) = p(az, a3)p(as, az)
for a1 < a; < as. If we now identify

(M p(a,b) =1 - 7(a,b)

or

(8) p(a,b) =1—- D(a,bd)

then equation (6) is equivalent to equation (4) (or appropriately to equation
(3))-

We proved in paper [9] (see also [5]), that Bellert’s space-time with the
order defined in a natural way is a distributive lattice with pseudocomple-
mentation.

This algebraic construction of Bellert’s space-time is as follows:

Construction 1. ([9]). V is the set of all events in the (empty) Uni-
verse described by Bellert’s theory. If two events have the same time-inferval
(relative to the observer), we really cannot distinguish these. Therefore we
will distinguish classes of events which have the same time-intervals and the
same space-intervals. Let [d] denote the class of equivalency of these event
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which have the same time-interval and the same space-interval as event d.
We call the set of all classes of events from V' Bellert’s space-time and mark
with letter B.

We define relation “<” for classes [d],[b] € B in the following way: [d] <
[0] iff a certain event belonging to [d] influences certain event from [b].

Let us remove from the space-time V such events which observer S in
the present moment 7' cannot know (even indirectly). We will denote Vr
this part of space-time.

We define By as a set of classes of events from Vp with relation “<”.
Next we join together all events which happened in the first moment Tj
or earlier and call this class zero. Such space-time we denote By and call
Bellert’s space-time of the observer.

THEOREM 2. ([9]). The system (By,U,N,0,1) defined above is a distribu-
tive lattice with 0 and 1.

Remark 3. ([9] Remark 2.3). When we deal with certain classes of
events, whose relations we can express using lattice joins and lattice meets,
and we must examine the relations between these classes, then it suffices to
examine the relation between their representative events lying on the same
radius (for example on straight-line SL). Hence: if events b and d lie on
straight-line SL then [b]U [d] is the class connected with the event lying on
straight-line ST between the positions of events b and d which is a meeting
of the light signals from b and d; and [b] N [d] is the class connected with
an event lying on the straight-line between the positions of events b and d,
such that the signals sent from it reach b and d.

DEFINITION 4 ([9] construction 2.4 and Remark 3.1). Obviously, we de--
fine —0 := 1, —1 := 0. We define —d (for the other d) as the greatest event

(8, T)

d

A
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with a past-cone disjoint with the past-cone of event d. The construction of
—d is shown in fig. 1. Obviously, we define —[d] := [—d].

—d can be found in the following way:

—d is an event lying on straight-line dS on the reverse side of S than d
and

1) a signal from —d reaches the observer in the present moment, i.e. it
reaches (S,T),

2) signals from a certain point betwen d and —d, sent in the beginning
moment Ty, reach d and —d.

THEOREM 5. ([9]) Theorem 2.5.). Bellert’s space-time of the observer
(Bo,Y,N, —,0,1) is a distributive lattice with pseudocomplementation.

Remark 6. ([9) Remark 3.2). The interpretation of the mentioned op-
erations is natural. The join of events can be interpreted as a direct effect of
these events, and a meet of events as a direct cause of these events. Event
—d is an event whose world (or whose knowledge) is independent of d, in the
sense that —d does not know any fact which d knows, and d does not know
any fact which —d knows, i.e. there is no event in By which can interact
on both events d and —d. Moreover, it is the furthest event known by us
satisfying this property.

We have shown that the space-time from Bellert’s theory with these
operations has a structure of a distributive lattice with pseudocomplemen-
tation. Simultaneously, conditional probability is a natural measure of time
and space in this space-tine.

2. The definition of a derivative of a random variable
In this paper we will use some simple properties of Heyting algebras and
distributive lattices with pseudocomplementation. They are as follows:

THEOREM 7 (see for example [1] p. 153). We have for any elements a,
b, ¢ of a distributive lattice with pseudocomplementation:
1) an(duUc)=(anb)u(anc),
' aU((bnec)=(aub)n(aUc).
2) aUb>a,anb<a.
3) a<b=>anc<bNe,aUc<LbUe.
4) ae<b&anb=a&aUb=0.
5) O0Ua=4a,0Na=0,1Ua=1,1Na=a.
6) -0=1,-1=0.
7) —anNa=0.
8 a<b=>-b< —a. .

Let A be Bellert’s space-time of the observer. Such that A is a complete
and completely distributive lattice with pseudocomplementation.

(the distributivity)
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DEFINITION 8 ([6] Definition 2.21). Let X : A — R be arandom variable,
S C R, G a set of intervals of which S consists. Let

@)= U an- | b,

X(a)<¢ X(¥)<n
hx([ﬂ,f)) = U an— U b,

X(a)<€ X(b)<n
hx((’l,f]):-—- U an— U b’

X(a)<€ X(b)<n
hx(n,€):= |J en- |J o,

X(a)<€ X(b)<n

hx(5):= |J hx(E).
EeG

hx : 2R — R will be called a spectral supermeasure.

DEeFINITION 9 ([6] §2). We call p: A — R which satisfies the following
four axioms a probability on A:
(AI) p(a) > 0 for every a € A,
(AID) p(1) =1,
(AIl) p(ay U...Uan) = Y0 p(a;)forn€ Nanda; € A(i=1,...,n)
such that a; Na; = 0 for i # 7,
(AIV) if a < b, then p(a) < p(b).
From (AI)-(AIV) it follows that p(0) = 0.

THEOREM 10. ([6] Definition 2.22 and 2.25). A function Mx : 2F - R
defined as Mx := pohx (where p is a probability on A and hx is a spectral
supermeasure) is a probability supermeasure, i.e. it satisfies the following
conditions:

(al) Mx(S) >0 for every S C R,

(a2) Mx(0) =0, Mx(R)=1,

(a3) Mx($51U...US,) >3, Mx(S;) when S;NS; =0 fori#j,
(a4) i ECF, then Mx(E) < Mx(F).

DEFINITION 11 ([6] Definition 3.3). Let M be a probability supermeasure
and let f : D — R be a step function (D C R). We denote by Dy the set of
all sequences {d;, D;}/—, such that n € N, d; > 0, D;nND; = for i # j,
and f =31, dixp;. Then

J faM =it {3 diM(Di) : {di, D}y € Df}.

=1



626 E. Rydzyiniska

DEFINITION 12 ([6] Definitions 3.11 and 3.14). Let f : R — R be a
bounded function and let M be a probability supermeasure. Then

J fdM:=lim [ f.dM,

n—o0

where (f,)32, is a sequence of step functions such that f,\\f. Let g: R —
R be a bounded function. Then

[9dM:= [ gtdm— [ g=dM,
where gt := max{g,0}, ¢~ := max{—g, 0}.

Remark 13. Definition 12 is correct and the mentioned limit does not
depend on (f,)32,. So the defined integral satisfies all the most important
properties of a classic Lebesque integral (see [6] Theorem 3.15).

DEFINITION 14 ([6] Definition 4.2). Let X be a bounded random vari-
able. Then
f Xdp:= f idxs, dMx
where id denotes the identity and

Sx :=[inf X(a),sup X(a)].
a€A a€A

Remark 15. ([8]). Such an defined above integral is a number and has
the character of a definite integral. We want to define a derivative of a
random variable instead and we need, in our work, an indefinite integral.
So we must define a new integral which has the character of an indefinite
integral of a random variable.

DEFINITION 16 ([8] Definition 2.9). Mx,.(E) := p(hx(E) N z). We
define integral [  dp in the same way as integral [ X dp when we put in the
definition Mx/, instead of Mx.

DEFINITION 17 ([8] Definition 2.11). Let G(z) = [ X dp. Then we say
that X is a derivative of G and mark as X(z) = G'(z) or X(z) = d—Gd(Tzl.
Obviously, such a derivative does not have to be defined synonymously.

DEFINITION 18 (compare with [8]). The integral of a continuous bounded
real function f with a domain Wy : f&;‘({z) f(2) dz we define as

n
lim Y f(z)( - 22)), 2 - 22 < 0, 2P e Wy n[0,Y(2)],
=1

n—o00 £ n—oo

where Y(z) € R, and the condition z?) - z?_)l < \\ 0 symbolically means

n—o00
that: if the numbers from Wy lie densely in a certain interval, then we have
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z? ) _ z? )1 \\. 0 in this interval, and if it does not hold, then z?) and z?_)l

n—

are neighboring numbers of Wy.

Remark 19 (compare with [8]). If Wy is a set of values of random
variable Y, then, obviously, this integral is independent of a choice of z?)

and fv};y) f(z)dz = lim, 00 fv);ff) f(z)dz, where Y,\\Y are step random

variables (i.e. random variables which have finite numbers of values).

Remark 20 (compare with [8]). In the case when we have random vari-
able Y whose values lie densely in interval E, then the above integral is ex-
actly the Riemann integral of function f on EN(—o00,Y (z)).In the case when
Y has a finite number of values, this integral is equal to Ele f(z)(zi—zi-1),
where z;_; < z; and z, = Y(z).

DEFINITION 21 (compare with [8]). Let F' be a real function and let
it have the domain W. Then we call the integrable function f such that
F(y) = [y, f(2) dz, the derivative of function F.

Remark 22 (compare with [8]). The derivative of function F', which has
domain W and whose values are dense in a certain interval, can be calculated
as the classic derivative of a real function (compare with Remark 20).

The theory of a derivative of a random variable whose values lie densely,
is described in [8]. There is also given the beginning of an analogous theory
for quantized random variables, which will be developed, here. There is
the description of the connection of these two theories for the purpose of
receiving a differential calculus of continuously-quantized random variables,
which we meet more often in physical problems in Bellert’s theory. (It is
because time is quantized in Bellert’s theory — see [5] — and space is not
quantized; and we usually use time and space together for a description of
a physical situation).

3. Properties of a derivative of a quantized random variable

In this paragraph, we will develop our considerations from [8]. We will
work out a differential calculus of quantized random variables (as time in
Bellert’s theory). Quantized random variables are, for example, in Bellert’s
theory, certain physical quantities measured in the same point in space but
distributed in time.

DEFINITION 23. We call random variable G a quantized random variable,
when it is defined only in the space-time points z; (¢ = 1,2,...) lying in the
same point in space in such time-order that they form a chain: z; > x5 >
... A derivative of a quantized random variable is defined by the general
definition, i.e. Definition 17.
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LEMMA 24. If, in Bellert’s space-time, an event zq lies in the same place
as an event z; and, simultaneously, 1 > z¢ > zy, t.e. ¢ is later than zy,
then To N —Ty :‘,é 0.

Proof. Such z¢ and z are shown, in fig. 2, and zo N —z is constructed,
according to definition 4. It is easily seen in fig. 2 that 2o N —zx # 0. =

1

x0

xoMN—2x}

To O=zxN—zx V71

Fig. 2
LEMMA 25. UG,(r)SG,(u) TNz =2zx and
U zN— U yNzg = — U yNzg.
G'(z)<G'(z+) G'(y)<G'(z) G'(y)<G'(xx)

Proof. It is obvious that G'(zx) < G'(zx), so it follows from Theo-
rem 7.2) that z; < UG,(x)<G,($k)a:. So, by Theorem 7.2), we have z, =
zx Nz < Ugpr 2)<G'(z2) & N Tk < Tk, 5O UG,(I)SG,(Ik)z Nz = zx. The
second part of the thesis follows from the first one in a simple way. =

LEMMA 26. By Definition 23, for chain z, > z; > ..., we have the
property:
if z; > zx and G'(z,) > G'(z:), then ha!({G'(zm)}) Nz = 0.

Proof. Let z; > z} and G'(zm) > G'(z;). Then we have by Theo-
rem 7.2): UG’(y)<G’(:1:,,.) y > z; > x, so by Theorem 7.8):

- U y< -z
G'(y)<G'(zm)
Therefore by Lemma 25, Theorem 7.3), 7) and Definition 8, we have

he, {G'(zm)}) Nz := U zn—  |J yN@e<—zxNzp=0.m
G’(I)SGI(zm) G'(y)<G'(Im)
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LEMMA 27. When the ezpression below ezxists, then, for quantized random
variable G defined on the chain z, > z3 > ..., we have
G(zr) - G(z4)

p( U zN-— U yr‘lzk)

G'(z)<G'(zr) G'(y)<G'(z1)

G'(zi) =

’

where z;, is the greatest element of our chain which is less than xx and such
that we have G'(z;,) < G'(z;) for z; > z.

Proof. Let

G(zx) - G(25:) .

p( U zN - U yN zk)

G'(z)<G'(z¢) G'(y)<G'(zx)
Does [** G'dp = G(zx)?

We have by the definition of the integral (Definitions 16, 14, 12, 11 and
8):

G,(:L‘k) =

Tk
JGdp=[id-xs, dMajo, = lm [ gndMgiz, =

= lim 3" G'(em) - p(he({G'(zm)}) N 2x) =

m=0

Z G'(:z:m)-p( U zN-— U ?/nl‘k),

meMy G'(£)<C' (zm) G'(4)<G" (zm)

where m € M; iff G'(z,,) < G'(z;) for every z; > z, from our chain. It
follows because if we have, for example, G'(zn,) > G'(z;) and z; > zi, then,
by Lemma 26, ' ({G'(zm)})Nzk = 0, 50 p(ha ({G'(zm)})Nzk) = P(0) = 0.

Now, we can assume that G’ has different values for different z,,. Because
if G'(z,) = G'(zp) and z, < z,,, then we do not have to consider event z,,
at all, we can extude it from the domain. (It is because when we calculate
values G'(z,,), then we will also know the values G'(z,), because it is equal
to one of the known values G'(z,,)). Therefore we assume, in this place,
that G’ is of different values.

Obviously, we have by Theorem 7.1), 7) and 5): (eUb)N—a = (aN—a)U
(bn—-a)=0U(bN—-a)=>bN —a, so

U TN — U y= U zN— U y.

G'(z)<G' (xm) G'(y)<G'(zm) G'(2)=G'(zm) G'(¥)<G' (zm)
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Because of the fact that the value of G’ are different, we have
U z=2n
G'(z)=G'(zm)

and it follows from the above, and from Theorem 7.4) that

N — U YNz =2, NN — U Y=
G'(2) LG (zm) G'(y)<G'(zm) G'(¥)<G'(zm)
=T, N - U y, forzy>z,.

G'(y)<G'(zm)

If m € M, then we have z,, < z. In fact, if m € My, then, by the
definition of My, we have G'(z,,) # G'(z;) for every z; > z. Simultaneously
obviously, G'(zn,) = G'(2m ), 50 ., cannot be one of these z; which satisfies
T; > Z; i.e. T, > z cannot hold. Since z,, and z; are elements of the
same chain, we have z,, < zi.

Hence, we have z,, < zj for every m € M, and therefore

U N — U YNT =2, N — U Y.
G'(z)<G' (zm) G'(¥)<G' (zm) G'(y)<G'(zm)
We have, obviously, z,, < s, s0 UG,(z)SG,(Im) zN— UG’(y)(G’(a:m) YNT, =

2m N =Ug)<cr(zm) ¥-
Now, we return to our integral. We obtain (by the formula for G'(z,)
at the beginning of the proof):

Ty
fG'dp: Z G'(zm)~< U zn— U ynxk)z
meEM; G'(z)<G'(xm) G'(¥)<G'(zm)
_ Z (G(zm)—G(zjm))'p(_UG'(r)SG'(:L‘m)xn—UG’(y)<G’(:z:m) yNzk) _

e PUs (21 <6/ (em) & N = Ugr(y) < (zm) ¥ N 2m)
- (G(zm) — G(25,.)) - P((— Ugr(y)<c(cn) Y N Tm)
mEM, P(=Us(y)<c(5) ¥ N Tm)
= Y (G(zn)-G(z;,)) =G(zr), qed =
meM,;

LEMMA 28. If a quantized random variable G defined on 21 > 22 > ... is
bounded, then we can define G on point xo, where zg > zy for k =1,2,...,
such that UG’(y)(G’(xm) y==z9 fork=1,2,....

.. Simultaneously,
.. It is a natural

Proof. Let us take a certain zq > zx for £ = 1,2,
we take zg such that p(zo N —zk) # 0 for & = 1,2,

.o
.o
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condition in Bellert’s space-time, and it holds in every natural situation in
this space-time. (We see this when we look at Lemma 24).

1) Now, we define G(z¢) such that
G(zo) - G(zm) _ :
k,msilll,)Z,... p(zo N —xy) < k=lR£,...G (2k)-

We can easily do this for the known values G(zr,), G'(z) and p(zo N —z)

(k,m=1,2,...) and for the bounded function G, because of Lemma 27.
Now, we will prove that such G defined above satisfies the property:

(A) G'(z0) < G'(z) fork=1,2,....

Let us assume, for this purpose, that condition (A) does not hold. So we

have

(B) G'(zx) < G'(z¢) for a certain k > 0.

We have, obviously, UG,(y) <G'(ze) ¥ = Tk where z, is a certain element
of our chain on which G is defined, and it is not zo. Hence we have (by
Lemma 25 and Lemma 24):

U zN— U yNzg =x0N— U y=zoN—-z #0.
G'(2)<G’'(z0) G'(y)<G'(z0) G'(y)<G'(zo)

Then, it follows from Lemma 27 and from our assumption connected with
the definition of G(zo) that

G(xo) — G(zj,) G(zo) — G(zm)
< <
p(zoN—zr) ~ k,msz-l.lll?2,... p(zo N —2zk)

< k_ilng G'(zx) < G'(z) fork >0,

G'(z0) =

and it is contradictory with (B).

We obtained a contradiction, so we proved that assumption (B) is con-
tradictory, i.e. that G (defined by us on z¢) satisfies condition (A).

2) Now, let us assume that we defined G on the event z; such that
condition (A) holds.

Let us take a certain fixed k£ > 0. For this k, we have by (A): G'(z¢) <
G'(zk). So z¢ is the one of these y’s for which G'(y) < G'(zx), and there-
fore we have by Theorem 7.2): UG'(y)<G'(:c,, y > zg. But, obviously, all y’s
considered by us belong to the domain of &, so we have y < zo for every
such y. Hence, and by Theorem 7.3), we have UG’(y)SG’(zk) y < xp.

In this way, we showed that UG,(y)SG,(“) y = x¢ for any k > 0. Now,
the thesis follows from Lemma 25. =

THEOREM 29. For a quantized bounded random variable G defined on
chain 1 > 21 > z9 > ..., we can define G on xy > z, in such a way that,
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for every k > 0, we have
G(zx) = G(z4:)
GI = Jk
(z1) p(zo N —2y)

where z;, is the greatest element of our chain which is less than z; and for
which the condition G'(z;,) < G'(z;) holds for every z; > zi.

’

Proof. This follows from Lemmas 27, 28 and 25. =

THEOREM 30. When we have G as in Theorem 29, then

G(zk) — G(zk+1)

G'(zk) = p(zo S _zk)

fork=1,2,....

Proof. Let the assumption of theorem hold. Let us take a fixed k£ > 0
and an arbitrary m > k. We have z,,, < z; and then, from Theorem 7.3),
Lemmas 28, 25 and 24 it follows that kg ({G'(zm)}) N2k > ke ({G'(zm)})N
Zm = —Z9 N zy > 0. Hence hg' ({G'(z2m)}) N 25 # 0. If we now, conclude
from Lemma 26 that the situation cannot exist such that z; > z, and
simultaneously G'(z,,) > G'(z;). Therefore, for every z; > zx, we have
G'(zm) < G'(z;). If we assume, as in the proof of Lemma 27, that G’ has
all values different, and when we remember the definition of M, from the
proof of Lemma, 27, then we can conclude that m € M.

Therefore My = {k,k+1,k+2,...},qed. =

THEOREM 31. For an “appropriately defined” (for ezample, as in The-
orem 29) quantized bounded random wvariable G and for a differentiable
bounded real function F, if G’ is a derivative of G, then F'(G(zx)) - G'(zk)
is a derivative of F(G(-)) in the point zy, for k = 1,2,....

Proof. Let f(X(z:) := F'(X(z)), ie. F(X(z:)) = [ f(z) dz.
Such defined F(G(-)) is also a quantized bouded random variable, so we
have by Theorem 30 and Remark 20:

(F(G(zx))) =
_ F(G@w) - F(G(zk1)) _ [7™) f(z)dz— [O) f(z)dz _
- p(:ck N —1‘0) p(zk n —l’o)
Zick J(G(2))(G(21) ~ G(@i41)) ~Ticpu1 S(G())(G(2i) = Glzis1) _

p(zk N —x0)

_ f(G(=))(G(zk) = G(zht1)) _ o
- p(z N —20) = F'(G(zx)) - G'(zx),

ged. =
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4. Final conclusion

COROLLARY 32. The formulas from Theorem 30 and 31 give us the pos-
stbility of calculating of a derivative in simple concrete physical situations in
Bellert’s space-time. We see that a derivative of a quantized random vari-
able can be calculated in a simple way and a derivative of a superposition of
functions can be calculated in the classical way.

It is described in [7], how we can apply this mathematical theory in
physics. When we look at [7], we can easily notice that the differential cal-
culus for random variables on Heyting algebras, described here and in (8],
has the same role in Bellert’s theory as the classical differential calculus in
classical physics.

COROLLARY 33. Since we essentially use, in Theorems 30 and 31 which
give a possibility of concrete calculations in physical problems in Bellert’s
theory, and in Lemma 24, Lemma 28 and Theorem 29 which lead to the two
theorems mentioned, the assumption from Lemma 24 that 2o < 1 = (S, T),
so we can obtain concrete results only for z; which are situated at a cer-
tain concrete and finite space-time distance from the observer (5,T). It is
because random variable G in our differential calculus can have a real phys-
ical meaning only for moments z, such that z, < 7y < 29 < 1 = (5,7T).
For event x¢ which is less than 1 (so z¢ is not the event of observation)
the value of random variable G is defined artifically and it has not a phys-
ical meaning. Therefore we cannot explore any quantized parameter in the
vicinity of the observation, in Bellert’s space-time. It is probably a kind of
uncertainty connected with the quantum nature of the random variable and
of the space-time.
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