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0. Introduction 
In this paper, the differential calculus for random variables defined on a 

Heyting algebra (or on a distributive lattice with pseudocomplementation) 
from [8], is developed. The case of quantized random variables is described. 
This theory can be applied in Bellert's space-time theory which is a cosmo-
logical theory connected with quantum physics. In [8], we made the consid-
erations for an arbitrary complete Heyting algebra, but in the present paper 
we use (in Lemma 24) the specific properties of physical events, so we use 
the fact that our distributive lattice with pseudocomplementation is Bellert's 
space-time. Obviously, the fact used by us is only one of the properties of 
the space-time and it can be noted, in a simple way, using mathematical 
symbols. We will not do it because we regard it as uninteresting. 

1. Bellert's space-time 
The red shift effect is a well known empirical fact. Every present cosmo-

logical theory tries to explain it. Stanislaw Bellert, in [2], [3], [4], was trying 
to explain this fact in a more natural way than it had been done before. 
Bellert derived the law of summation of radial distances 

(1) D(ai,a3) = D{ax,a2) + D(a2,a3) - ^D(a1,a2)D(a2,a3) 

and derived the relationship between cosmic distance D (which we observe) 
and local distance χ (traditional distance): 

(2) D = k{ 1 - e~kx) 
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where k is a constant whose empirical determined value is equal to k = \¡cT 
(c = the light velocity, Τ = Hubble's constant). We will use such units of 
time and space-distance that c = 1 = Τ = k. Therefore we can denote the 
law of summation of cosmic distance in the following way: 

(3) D(ai,a3) = D(ai,a2) + D(a2,a3) - D(aiia2)D(a2,a3) 
Β 

:= D(ai,a2) + D(a2,a3). 
Β 

The operation + defined above we call Bellert's sum. 
Moreover, he assumed that the light velocity c = 1 is constant and hence 

there must exist the cosmic time r which satisfies the law of summation: 
(4) r(ai,a3) = τ(αχ,α2) + τ(α2,α3) - τ(α1,α2)τ(α2,α3) 

Β 
:= r (ai ,a2)-\- τ(α2, α3 ) 

and which depends on "normal" local time t as in formula: 
(5) r = 1 - . 

In Bellert's theory, time is quantized, i.e. we must partition the time-axis 
into small, adjacent finite interval moments (see [5]). 

It appears that a conditional probability has connections with time and 
space-distance in Bellert's theory. 

Namely: the main axiom of conditional probability on Heyting algebra 
is the equation: 
(6) ρ(αι, a3) = p(a2, α3)ρ(θι,α2) 
for a\ < a2 < a3. If we now identify 
(7) p(a,b) = Ι - τ ( α , δ ) 
or 
(8) p(a,b) = l-D(a,b) 
then equation (6) is equivalent to equation (4) (or appropriately to equation 
(3))· 

We proved in paper [9] (see also [5]), that Bellert's space-time with the 
order defined in a natural way is a distributive lattice with pseudocomple-
mentation. 

This algebraic construction of Bellert's space-time is as follows: 
C o n s t r u c t i o n 1. ([9]). V is the set of all events in the (empty) Uni-

verse described by Bellert's theory. If two events have the same time-interval 
(relative to the observer), we really cannot distinguish these. Therefore we 
will distinguish classes of events which have the same time-intervals and the 
same space-intervals. Let [d] denote the class of equivalency of these event 
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which have the same time-interval and the same space-interval as event d. 
We call the set of all classes of events from V Bellert's space-time and mark 
with letter B. 

We define relation "<" for classes [d], [6] 6 Β in the following way: [d] < 
[6] iff a certain event belonging to [d] influences certain event from [6]. 

Let us remove from the space-time V such events which observer S in 
the present moment Τ cannot know (even indirectly). We will denote Vt 
this part of space-time. 

We define Β τ as a set of classes of events from V j with relation "<". 
Next we join together all events which happened in the first moment To 
or earlier and call this class zero. Such space-time we denote Bo and call 
Bellert's space-time of the observer. 

T H E O R E M 2 . ( [ 9 ] ) . The system ( 5 o , U , n , 0 , 1 ) defined above is a distribu-
tive lattice with 0 and 1. 

R e m a r k 3. ([9] Remark 2.3). When we deal with certain classes of 
events, whose relations we can express using lattice joins and lattice meets, 
and we must examine the relations between these classes, then it suffices to 
examine the relation between their representative events lying on the same 
radius (for example on straight-line SL). Hence: if events b and d lie on 
straight-line SL then [6] U [d] is the class connected with the event lying on 
straight-line SL between the positions of events b and d which is a meeting 
of the light signals from b and d; and [6] Π [d] is the class connected with 
an event lying on the straight-line between the positions of events b and d, 
such that the signals sent from it reach b and d. 

DEFINITION 4 ( [9 ] construction 2 . 4 and Remark 3.1). Obviously, we de-
fine —0 := 1, —1 := 0. We define —d (for the other d) as the greatest event 

(S,T) 

τ 

Fig. 1 
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with a past-cone disjoint with the past-cone of event d. The construction of 
—d is shown in fig. 1. Obviously, we define — [d] := [—d]. 

—d can be found in the following way: 
—d is an event lying on straight-line dS on the reverse side of S than d 

and 
1) a signal from — d reaches the observer in the present moment, i.e. it 

reaches (S, T), 
2) signals from a certain point betwen d and — d, sent in the beginning 

moment To, reach d and —d. 
T H E O R E M 5. ([9]) Theorem 2.5.). Bellert's space-time of the observer 

(Bo, U, Π, — ,0,1) is a distributive lattice with pseudocomplementation. 

R e m a r k 6. ([9] Remark 3.2). The interpretation of the mentioned op-
erations is natural. The join of events can be interpreted as a direct effect of 
these events, and a meet of events as a direct cause of these events. Event 
—d is an event whose world (or whose knowledge) is independent of d, in the 
sense that — d does not know any fact which d knows, and d does not know 
any fact which —d knows, i.e. there is no event in B0 which can interact 
on both events d and — d. Moreover, it is the furthest event known by us 
satisfying this property. 

We have shown that the space-time from Bellert's theory with these 
operations has a structure of a distributive lattice with pseudocomplemen-
tation. Simultaneously, conditional probability is a natural measure of time 
and space in this space-tine. 

2. The definition of a derivative of a random variable 
In this paper we will use some simple properties of Heyting algebras and 

distributive lattices with pseudocomplementation. They are as follows: 

T H E O R E M 7 (see for example [1] p. 153). We have for any elements a, 
b, c of a distributive lattice with pseudocomplementation: 
1) α Π (6 U c) = (α Π 6) U (α Π c), . . . 

' ,, \ , ' , \ (the distributivity) 
a l l ( 6 n c ) = (a l l 6) Π (a U c). ' 

2) a U b > α, α Π b < a. 
3) a<b=>ar\c<br\c, a l l c < 0 U c . 
4) a<b<&anb = a& aöb = b. 
5) 0 U a = a, 0 f l a = 0, l U a = l , l f l a = a, 
6) - 0 = 1 , - 1 = 0. 
7) —α Π a = 0. 
8) a < b —b < —a. 

Let A be Bellert's space-time of the observer. Such that A is a complete 
and completely distributive lattice with pseudocomplementation. 
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DEFINITION 8 ([6] Definition 2.21). Let X : A R be a random variable, 
S Ç R, G a set of intervals of which S consists. Let 

M f t . O ) := ( J a n - U ». 
Α"(α)<ξ X(b)<7, 

:= ( J a f l - U 
Λ"(α)<ξ X(b)<v 

M M ) := ( J a i l - υ 
*-(α)<ξ Λ·(6)<τ, 

M M ) := ( J a n - υ ». 
Χ(α)<ί *(6)<U 

hx(S) := U M ^ ) · 
EÇ.G 

hx : 2r —> R will be called a spectral supermeasure. 

DEFINITION 9 ([6] §2). We call ρ : A R which satisfies the following 
four axioms a probability on A: 

(AI) p(a) > 0 for every a Ç A, 
(All) X I ) = 1, 

(AIII) p(ai U . . . U a„) = p(a¡) for η G Ν and α,· e A (i = 1 , . . . , η) 
such that α,· Π α¿ = 0 for i φ j, 

(AIV) if a < b, then p{a) < p(b). 
I>om (AI)-(AIV) it follows that p(0) = 0. 

THEOREM 10. ([6] Definition 2 .22 and 2 . 25 ) . A function M x : 2R R 
defined as Μχ := ρ o hx ( w h e r e ρ is a probability on A and hx is a spectral 
supermeasure) is a probability supermeasure, i.e. it satisfies the following 
conditions: 

( a l ) M x ( S ) > 0 for every S C R , 
(a2) Mx(9) = 0, MX{R) = 1, 
(a3 ) MX(S1 U . . . U Sn)> Σ?=ι Mx(Si) when 5,· Γ) Sj = 0 for i φ j , 
(a4 ) if EC F, then M X ( E ) < Μχ (F). 

DEFINITION 11 ([6] Definition 3.3). Let M be a probability supermeasure 
and let / : D —• R be a step function (D Ç R). We denote by Df the set of 
all sequences {d,, Di}f=1 such that η € Ν , di > 0, Di Π Dj = 0 for i φ j , 
and / = diXD r Then 

η 
J fdM:= inf [Y^diM{Di) : R , £>,}?_ ι € £>/}-

»=1 



626 E . R y d z y ñ s k a 

DEFINITION 12 ([6] Definitions 3.11 and 3.14). Let / : R - > R + be a 
bounded function and let M be a probability supermeasure. Then 

f fdM := lim f f n d M , 
J n—>oo J 

where (fn)^=i is a sequence of step functions such that f n \ \ f · Let g : R —> 
R be a bounded function. Then 

J g dM:= J g+ dM - f g~ dM, 
where g + : = max{<7 ,0}, g ~ : = max{—<7 ,0}. 

R e m a r k 13. Definition 12 is correct and the mentioned limit does not 
depend on So the defined integral satisfies all the most important 
properties of a classic Lebesque integral (see [6] Theorem 3.15). 

DEFINITION 14 ([6] Definition 4.2). Let X be a bounded random vari-
able. Then 

J X dp := J idxsxdMx, 
where id denotes the identity and 

S x : = [inf X ( a ) , sup X ( a ) ] . a ÇA 
R e m a r k 15. ([8]). Such an defined above integral is a number and has 

the character of a definite integral. We want to define a derivative of a 
random variable instead and we need, in our work, an indefinite integral. 
So we must define a new integral which has the character of an indefinite 
integral of a random variable. 

DEFINITION 16 ([8] Definition 2.9). M x / x ( E ) := p ( h x ( E ) Π χ). We 
define integral J x d p in the same way as integral J X d p when we put in the 
definition Μ χ / Χ instead of Μ χ . 

DEFINITION 17 ([8] Definition 2.11). Let G ( x ) = j x X d p . Then we say 
that X is a derivative of G and mark as X ( x ) = G ' ( x ) or X ( x ) = dG}x>> · 
Obviously, such a derivative does not have to be defined synonymously. 

DEFINITION 18 (compare with [8]). The integral of a continuous bounded 

real function / with a domain W y : f ^ l ^ f ( z ) d z we define as 

lim ¿ / ( ^ X ^ - - 4 - 1 < W 0, ¿Γ* € Wy Π [ 0 , y ( * ) ] , 
n—foo ί—' η—>oo 

t = l 

where Y ( x ) € R , and the condition z ^ — < N \ 0 symbolically means 
n—*oo 

that : if the numbers from W y lie densely in a certain interval, then we have 
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z p — \ \ 0 in this interval, and if it does not hold, then z ^ and 
71—>00 

are neighboring numbers of Wy. 

R e m a r k 19 (compare with [8]). If Wy is a set of values of random 
variable Y, then, obviously, this integral is independent of a choice of z ^ 
and f w l ^ f ( z ) dz — l i m n _ o o f w ^ f { z ) dz, where are step random 
variables (i.e. random variables which have finite numbers of values). 

R e m a r k 20 (compare with [8]). In the case when we have random vari-
able Y whose values lie densely in interval E , then the above integral is ex-
actly the Riemann integral of function / on ΕΓ\(—oo, Y(z)). In the case when 
Y has a finite number of values, this integral is equal to 5Zf=i f(zi)(zi~zi-1)> 
where z,-i < z¿ and Zk = Y{x)· 

DEFINITION 21 (compare with [8]). Let F be a real function and let 
it have the domain W. Then we call the integrable function / such that 
F(y) = Jw f ( z ) dz, the derivative of function F. 

R e m a r k 22 (compare with [8]). The derivative of function F, which has 
domain W and whose values are dense in a certain interval, can be calculated 
as the classic derivative of a real function (compare with Remark 20). 

The theory of a derivative of a random variable whose values lie densely, 
is described in [8]. There is also given the beginning of an analogous theory 
for quantized random variables, which will be developed, here. There is 
the description of the connection of these two theories for the purpose of 
receiving a differential calculus of continuously-quantized random variables, 
which we meet more often in physical problems in Bellert's theory. (It is 
because time is quantized in Bellert's theory - see [5] — and space is not 
quantized; and we usually use time and space together for a description of 
a physical situation). 

3. Properties of a derivative of a quantized random variable 
In this paragraph, we will develop our considerations from [8]. We will 

work out a differential calculus of quantized random variables (as time in 
Bellert's theory). Quantized random variables are, for example, in Bellert's 
theory, certain physical quantities measured in the same point in space but 
distributed in time. 

DEFINITION 23. We call random variable G a quantized random variable, 
when it is defined only in the space-time points (i = 1 ,2 , . . . ) lying in the 
same point in space in such time-order that they form a chain: x\ > X2 > 
. . . A derivative of a quantized random variable is defined by the general 
definition, i.e. Definition 17. 
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L E M M A 2 4 . I f , in Bellert's space-time, an event IO lies in the same place 
as an event x¡¡ and, simultaneously, 1 > io > xjt, i.e. xq is later than x*, 
then χο Π — χ* φ 0. 

P r o o f . Such χο and x* are shown, in fig. 2, and χοΠ— χ* is constructed, 
according to definition 4. It is easily seen in fig. 2 that χο Π —Xk φ 0. • 

1 

Fig. 2 

L E M M A 25. Ug'(*)<G'(x*)x n x* = x * a n £ Í 

(J i n - {J 2/nxfc = - [J yr\xk. 
G'(x)<G'(xk) G'(y)<G'(xk) G'(y)<G'(xk) 

P r o o f . It is obvious that G'{xk) < G'(xk), so it follows from Theo-
rem 7.2) that Xk < UG'(i)<G'(h)1 , So, BY Theorem 7.2), we have Xk = 
Xk Π χ* < ^ Xk - X k ' s o UG'(x)<G'(X*)x n Xk = X k · T h e 

second part of the thesis follows from the first one in a simple way. • 

L E M M A 26. By Definition 23, for chain x\ > x% > ..., we have the 
property: 

if Xi > xk and G'(xm) > G'(xi), then hG<({G'(xm)}) Π xk = 0. 

P r o o f . Let x,· > Xk and G'(xm) > G\x¿). Then we have by Theo-
rem 7.2): Ug'(j/)<G'(X„,) x*> s o by Theorem 7.8): 

(J y<-xk-
G'(y)<G'(xm) 

Therefore by Lemma 25, Theorem 7.3), 7) and Definition 8, we have 

/iG,({G'(xm)})nxfc := |J i n - (J ynxjt <-x f cni f c = 0. • 
G'(x)<G'(xm) G'(y)<G'(xm) 
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LEMMA 2 7 . When the expression below exists, then, for quantized random 
variable G defined on the chain xi > x2 >..., we have 

<?(.») =- -, <?(lt)-g(X») , , 
p{ U i n _ U v n x k ) 

G' (* )<G' ( ** ) G'(y)<G'(x*) 

where xjk is the greatest element of our chain which is less than Xk and such 
that we have G'(xjk) < G'(x,·) for x,· > xk. 

P r o o f . Let 

G'(xfc) := -J , < % * ' ) - C M . 
U x n ~ U v n x k ) 

G'(x)<G'(xk) G' (y )<G' (x t ) 

Does JXk G' dp = G{xk)1 
We have by the definition of the integral (Definitions 16, 14, 12, 11 and 

8): 

J G'dp = J id -xsal dMG>/Xk - Jim^ J gndMG./Xk = 

η 
= lim y ;G ' (x m ) -p(/ l G »( {G ' (x m ) } )nx f c ) = ti—+00 • * 

m=0 

= Σ G'{xm)-p( ( J x n - ( J yηχΛ, 

where m G iff G'(xm) < G'(x,·) for every χ,· > χ* from our chain. It 
follows because if we have, for example, G'(xm) > G'(xi) and x¿ > xk, then, 
by Lemma 26, he({G'(im)})ni¡t = 0, sop(hG'({G'(xm)})nxk) = p(0) = 0. 

Now, we can assume that G' has different values for different xm . Because 
if G'(xn) = G'(xm) and xn < xm, then we do not have to consider event xn 

at all, we can exlude it from the domain. (It is because when we calculate 
values G'(xm), then we will also know the values G'(xn), because it is equal 
to one of the known values G'(xm)). Therefore we assume, in this place, 
that G' is of different values. 

Obviously, we have by Theorem 7.1), 7) and 5): (aU6)fl— a = (αΠ-α)υ 
(b Π - a ) = 0 U (b Π - a ) = ό η - a , so 

U x n - U y= U x n ~ U y-
G'(x)<G' (xm ) G'(y)<G'(xm) G' (x)=G'(xm ) G'(y)<G'(xm) 
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Because of the fact that the value of G' are different, we have 

[ J χ = xm 

G'(x)=G'(xm) 

and it follows from the above, and from Theorem 7.4) that 

U a ; n _ U yrixk = x m n x k n - ( J y = 

G' (®)<G' ( *m) G ' ( y ) < G ' ( x m ) G ' ( j/ )<G' (xm ) 

= Xm π - y y, f o r Xk>Xm-

G'(y)<G>(xm) 

If m G Mk, then we have xm < Xk• In fact, if m G Mk, then, by the 
definition of Mk, we have G'(xm) φ G'(xi) for every x¿ > Xk- Simultaneously 
obviously, G'(xm) = G'(xm), so xm cannot be one of these x¿ which satisfies 
X Ì ^ X k 1 I.e. X 77J, ^ Χ ¡ς cannot hold. Since xm and x¡¡ are elements of the 
same chain, we have xm < χk-

Hence, we have xm < xk for every m G Mk, and therefore 

(J x n - [J y η x* = ®m η - (J y. 

G ' ( x ) <G ' ( x m ) G'(y)<G'(xm) G'(y)<G'(xm) 

We have, obviously, xm < xm, so U f f ( I ) < G ' ( i m ) a ; n ~ UG'(í/)<G'(xm) Vnxm = 

Xm Η - U G ' ( Y ) < G ' ( R M ) V-

Now, we return to our integral. We obtain (by the formula for G'(xm) 

at the beginning of the proof) : 

j G ' d p = Σ G\xmy( (J x n - (J ι / Π * Λ = 
meM k G ' ( x ) < G ' ( x m ) G ' ( j , ) <G ' ( * m ) ' 

meMk KUG'(x)<G'(X„.) X N - UG ' (y )<G' (xm ) V Π X™) 

_ {G{xm) — G(xjm)) ·ρ((— U g 

~ rL·* K-UG'(y)<G'(xm)2/nxm) ~ 

= £ (G(xm) - G(xjm)) = G(xk), q.e.d. . 

mÇMk 

L E M M A 28. If a quantized random variable G defined on x\ > xi > ... is 

bounded, then we can define G on point xo , where x 0 > Xfc for k = 1 , 2 , . . . , 

such that UG ' ( j / )<G ' ( x m ) y = xo for k = 1,2,.... 

P r o o f . Let us take a certain xq > Xk for k = 1,2, Simultaneously, 
we take xq such that p(xο Π —xjt) φ 0 for k = 1,2, It is a natural 
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condition in Bellert's space-time, and it holds in every natural situation in 
this space-time. (We see this when we look at Lemma 24). 

1) Now, we define G(xo) such that 

G(xo) - G(xm) . , 
sup , ^ — r < inf G'(xk). 

k,m=1,2,... P{x0 Π - x k ) k=1,2,... 

We can easily do this for the known values G(xm), G'(xk) and p(xο Π —Xk) 
(k,m = 1 , 2 , . . . ) and for the bounded function G, because of Lemma 27. 

Now, we will prove that such G defined above satisfies the property: 

( A ) G'(xo) < G'(xk) for Ar = 1 , 2 , . . . . 

Let us assume, for this purpose, that condition (A) does not hold. So we 
have 

( B ) G'(xk) < G'(xo) for a certain k > 0 . 

We have, obviously, Ug'(î/)<G'(x0) V
 = Xk~> w^ere

 xk is a certain element 
of our chain on which G is defined, and it is not x0- Hence we have (by 
Lemma 25 and Lemma 24): 

U x n_ U 2/ηχ0 = χ<)Π- (J y = xo Π -xk φ 0 . 
G'(x)<G'(x o ) G'(,y)<G'(x0) G'(y)<G'(x0) 

Then, it follows from Lemma 27 and from our assumption connected with 
the definition of G(xo) that 

_ G(x0)-G(xjo) G(xq) - G(xm) 
G (xo) = — - , — τ < sup — - — r— < 

p{x0 η -Xk) k,m=1,2,... P(X0 Π - x h ) 

< fcJnf G'(xk) < G'(xk) for k > 0 , 

and it is contradictory with (B) . 
We obtained a contradiction, so we proved that assumption ( B ) is con-

tradictory, i.e. that G (defined by us on xo) satisfies condition (A). 
2) Now, let us assume that we defined G on the event XQ such that 

condition (A) holds. 
Let us take a certain fixed k > 0. For this k, we have by (A): G'(xo) < 

G'(xk)· So xo is the one of these y"1 s for which G'(y) < G'(xk), and there-
fore we have by Theorem 7.2): UG'(j/)<G'(rfc) V — χο· obviously, all y's 
considered by us belong to the domain of G, so we have y < χ o for every 
such y. Hence, and by Theorem 7.3), we have Ug'(i/)<G'(x*) 2/ ^ χο· 

In this way, we showed that UG'(y)<G'(xt) V = xo f ° r a n y k > 0. Now, 
the thesis follows from Lemma 25. • 

T h e o r e m 29. For a quantized bounded random variable G defined on 
chain 1 > x\ > xi > . . . , we can define G on χ o > x\ in such a way that, 



632 E. R y d z y n s k a 

for every k > 0, we have 

r u . \ - £ ( * * ) -

p(x0 η -xk) ' 

where Xjk is the greatest element of our chain which is less than and for 
which the condition G'(xjk) < G'(xi) holds for every χ i > χ*. 

P r o o f . This follows from Lemmas 27, 28 and 25. • 

T H E O R E M 3 0 . When we have G as in Theorem 2 9 , then 

P r o o f . Let the assumption of theorem hold. Let us take a fixed k > 0 
and an arbitrary τη > k. We have xm < x¿ and then, from Theorem 7.3), 
Lemmas 28, 25 and 24it follows that ^G'({Gr/(xm)})Dxfc > / ic({G ! /(xm)})n 
xm = —xo Π xm > 0. Hence ^σ'({<7'(χπι)}) Π Xk φ 0. If we now, conclude 
from Lemma 26 that the situation cannot exist such that x,· > x¿ and 
simultaneously G'(xm) > G'(x,·). Therefore, for every x¿ > Xfc, we have 
G'(xm) < G'(xi). If we assume, as in the proof of Lemma 27, that G' has 
all values different, and when we remember the definition of Mk from the 
proof of Lemma 27, then we can conclude that m, G Mk. 

Therefore Mk = { k , k + 1, k + 2 , . . .} , q.e.d. • 

T H E O R E M 3 1 . For an "appropriately defined" (for example, as in The-
orem 29) quantized bounded random variable G and for a differentiable 
bounded real function F, if G' is a derivative of G, then F'(G(xk)) · G'(xk) 
is a derivative of F(G(·)) in the point x¿, for k = 1,2, 

P r o o f . Let f(X(xi)) := F'(X(x¿)), i.e. F(X(x,)) = ¡X(xi) f(z)dz. 
Such defined F(G(·)) is also a quantized bouded random variable, so we 
have by Theorem 30 and Remark 20: 

(F(G(xk)))' = 

= F(G(xk)) - F(G(xk+1)) = JG{Xk) f ( z ) dz - J G ^ f{z) dz = 

p(xk η -Xo) p(xk π - x 0 ) 

p(xk η - x 0 ) 

f(G(xk))(G(xk)-G(xk+i)) 
p(xk η - x 0 ) 

= F'(G(xk)) • G'(xk), q.e.d. 
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4. Final conclusion 

C O R O L L A R Y 3 2 . The formulas from Theorem 3 0 and 3 1 give us the pos-
sibility of calculating of a derivative in simple concrete physical situations in 
Bellert's space-time. We see that a derivative of a quantized random vari-
able can be calculated in a simple way and a derivative of a superposition of 
functions can be calculated in the classical way. 

It is described in [7], how we can apply this mathematical theory in 
physics. When we look at [7], we can easily notice that the differential cal-
culus for random variables on Heyting algebras, described here and in [8], 
has the same role in Bellert's theory as the classical differential calculus in 
classical physics. 

C O R O L L A R Y 3 3 . Since we essentially use, in Theorems 3 0 and 3 1 which 
give a possibility of concrete calculations in physical problems in Bellert's 
theory, and in Lemma 24, Lemma 28 and Theorem 29 which lead to the two 
theorems mentioned, the assumption from Lemma 24 that xo < 1 = (S, T), 
so we can obtain concrete results only for Xk which are situated at a cer-
tain concrete and finite space-time distance from the observer (S,T). It is 
because random variable G in our differential calculus can have a real phys-
ical meaning only for moments Xk such that Xk < < xo < 1 = (S,T). 
For event XQ which is less than 1 (so xo is not the event of observation) 
the value of random variable G is defined artifically and it has not a phys-
ical meaning. Therefore we cannot explore any quantized parameter in the 
vicinity of the observation, in Bellert's space-time. It is probably a kind of 
uncertainty connected with the quantum nature of the random variable and 
of the space-time. 
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