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Some algebras are representable by suitable sets of functions. The well-
known examples are the Cayley Theorem for groups, the Holland Theorem
for 1-groups etc. In [2], the authors developed a representation of the Boolean
algebra by a certain set G of binary functions f : A? — A, the so called
guards. These functions satisfy the following conditions:

idempotency: f(z,z)==
diagonality:  f(f(z,), f(2,)) = f(z,0)
commutativity: f(g(z,y),9(x,v)) = g(f(z,v), f(y,v))

for each f,g € G.
The origin of guards is explained in [1]. The guard is properly a switching
function under (the condition) P:

f(z,y) :=if P then z else y

in the computer science terminology, see [6] for more detailes. Hence, the
guard is a Boolean condition which must hold before the procedure it guards
can begin. It is easy to verify that guards are binary functions satisfying
idempotency, diagonality and commutativity.

For some reasons, there was developed another logic based on the so
called algebra of quasiordered logic, see [3], {4]. In such a logic, we can make
differences between empirical true values (given values) and those obtained
by some logical reasoning (calculated values). For some detailes, see [4]. The
motivation of this paper is to give a representation of such algebras by binary
functions satisfying conditions which generalize guards.
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DEFINITION 1. A generalized guard algebra G on a set A is a set of
binary functions f : A2 — A (the so called generalized guards) satisfying
the following four properties (for all f,g,h € G):
uniformity (U): f(z,z) = g(z,z)
conditional diagonality (CD):

(z,9) # (4, 0) = f(f(2,9), f(u,v)) = f(z,v)

conditional commutativity (CC):

(z,y) # (u,v) and (z,u) # (y,v) imply
fl9(z,9),9(u,v)) = g(f(z,u), f(y,7))

insertion property (IP):

if f # pre then f(z,y) = f(z,9(y,v))
if f # pr then f(z,y) = f(h(z,z),y)
if pr1 # f # pre then f(z,y) = f(h(z,2),9(y,v)),

where pr; is the i-th binary projection, i.e. pri(z;,z,) = z;.

It is almost evident that idempotency, diagonality and computativity
imply (U), (CD), (CC) and (IP) but not vice versa in a general case.

The rather long name “an algebra of quasiordered logic” adapted from
[4} will be shorten to a “g-algebra”:

DEFINITION 2. By a g-algebra is meant an algebra (A; V,A,’,0,1) of the
similarity type (2,2,1,0,0) satisfying the following conditions:
associativity: aV(bVe)=(aVvVbd)Ve aA(bAc)=(aAb)Ac
commutativity: aVb=5bVa aAb=bAa
weak absorption: aV(aAb)=aVa aA(aVbd)=aAa
weak idempotence: aV (bVb)=aVb aA(bAb)=aAb
equalization: aVa=aAa
distributivity: aV(bAc)=(aVd)A(aVc)
0-llaws:taAO0=aandaVvl=1
complementation: a Aa’ =0 aVa =1.

An element b € A is an idempotent whenever bV b = b (or, equivalently,
bAb="5). In the whole paper, we will suppose 0 # 1.

It is clear tht the set of all idempotents of a ¢-algebra A forms a sub-
algebra of A which is a Boolean algebra (where V is join, A is meet, ’ is
complementation, 0 is zero and 1 is unit).

Now, we are ready to give the functional representation. Let A =
(4;V,A,,0,1) be a g-algebra and X = A x A. Denote by G(A) the set
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of all binary functions over X defined as follows: for each b € A we put

b if (z,y) = (1,0
fo(z,y) = {(:z: AB)V(yAb) if gw,z; # §1v0g°

LEMMA 1. Let A be a g-algebra, b € A and f, € G(A). Then fy(z,z) ==z
if and only if z is an idempotent of A.
Proof. As it was shown in [3], [4], we have
zV0=zVz
for each z € A. By the definition of f;,
fi(z,2)=(zAb)V(zAbY)=2zV(bAbY)=2Vv0=zVz
whence the assertion is evident. =

LEMMA 2. Let A be a g-algebra. For each z,y € A, the elements z V y,
z Ay, z', 0 and 1 are idempotents.
For the easy proof, see e.g. [3], [4].

THEOREM 1. Let A be a g-algebra. The set G(A) is a generalized guard
algebra.

Proof. We have to verify the conditions U, CD, CC, IP of Definition 1.
ad (U): Let b,c € A. Since z = y, we have (z,y) # (1,0),
thus fo(z,z) = (zAb)V(zAY) = zV(BAY) = z2V0=zVz = zV(cAc) =
(zAe)V(zALd) = fo(z,2).
ad (CD):
(i) Suppose (1,0) # (z,y) # (u,v) # (1,0). Then, by Lemma 2, we have
fo(fo(2, 9), fo(w,v)) = (A B)V (y AB) AD) V (((w A D) V (v A D)) A D)
=(zAb)V (vAb) = fi(z,v).
(i) Suppose (z,y) = (1,0) # (u,v). Then
Fo(fo(1,0), fo(u, v)) = fio(b, fo(u,v)) = (BAD)V ((uAB)V (vAb)AD)
=(1Ab)V(vAb) = fi(1,v).
(iii) The case (z,y) # (1,0) = (u,v) is analogous to that of (ii).
ad (CC): Let (z,y) # (u,v) and (z,u) # (y,v) and b,c € A.

(i) Suppose that all of four pairs are different from (1, 0).
Then

fo(fe(z, ), fo(u,0)) = ((zA )V (yAN ALV (uAe)V(vAL))AD)
=(((zAB)V(uAb YAV (((yAb)V(vAb))ACL)
= fc(fb(x, u), fb(y’ v)) .
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(ii) If (z,y) = (1, 0) and all remaining pairs are different from (1,0) then

fo(£e(1,0), fe(u,v)) = fo(e, fo(u,v)) = (¢ AB)V (((wA )V (v A ) A D)
= fc(fb(Lu)’fb(O’v))'

All other possible cases can be count in a similar way.

ad (IP): Let b,c € A. If f, # pre and (z,y) # (1,0), we have

fo(z, fe(v,9)) = (@ AB)V ((y A ) V(YA AY) = (2 AB)V (y A D)

= fb(z, y) )
if (z,y) = (1,0) then
fb(17fc(070) = fb(lvo \ 0) = fb(170) .

All other cases of (IP) are similar. m
In accordance with Theorem 1, the generalized guard algebra G(A) for
a given g-algebra A will be called the induced generalized guard algebra.

For the proof of Theorem 2, the following technical lemma is usefull:

LEMMA 3. Let G be a generalized guard algebra and f,g,h € G are
different from prq,pry and h(z,z) = z. Then
9(z, f(h(z,9),9)) = f(9(z, h(z,y),9(z, 7).
Proof. If z # y then by (IP), we conclude

9(z, f(h(z,9),v)) = 9(f(z,2), f(h(z,y),y)) and, by (CC),
= f(g(z,h(z,9)),9(z,v)) -

If = y, then by (IP) and (U) we obtain

9(z, f(h(z,2),2)) = 9(f(z,2), f(A(z,2),2) = 9(f(z,2), f(=,2))
= g(z,2) = f(z,2) = f(9(z,7),9(z,2)
= f(g(z, h(z,2)),9(z,2)).

THEOREM 2. Let G be a generalized guard algebra. Define the operations
V, A, ', 0, 7 as follows
(fV9)(z,y) = f(z,9(z,v))
(f A g)z,y) = fg(z,9),9)
f'(z,9) = f(y,2)
o(z,y) = f(v,9), i(z,y) = f(z,2).
Then A(G) = (G;V, A, ,0,7) is a g-algebra, the so called induced q-algebra.
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Proof. For associativity, we can check easily

((f Ag)AR)(z,y) = flg(h(z,9),9),9) = (F A (g A R))(z,v)

and also dually, for the operation V.
Prove commutativity of A. If z = y, we have by (U) (f A g)(z,z) =

(9A f)(z,2). Tz #yand f #pry # g then
(f A g)(z,y) = fl9(z,9),9) = f(9(2,9),9(v,9)) = 9(f(z,9), f(¥,9))
= g(f(z,9),9) = (g A f)(=,9).
If f = pry then
(f Ag)(=,y) = pri(9(z,9),9) = 9(z,¥) = g(pr1(z, ), 9) = (9 A f)(=, ).
Analogously, we can testify it in the remaining cases and dually also for V.

Prove weak absorption:
If f+#pryand z # y then

(fA(S ADN=,y) = f(=, fl9(z,v),9) = f(f(=,2), f(9(2,9),9)) = f(z,v)
= f(f(z,z), f(z,9)) = f(z, f(z,9)) = (fV f)(z, ).
If f = pry then
(fV(f A9 (=.y) = f(=, fl9(z,9),9) = = = f(z, f(z,9) = (fV f)(=z,9).
If z = y (and f # pry) we obtain
(fV(fA9))z,2) = f(z, fl9(z,2),2)) = f(z, f(z,2)) = (fV f)(z,z).
Dually it can be done fA(fAg)= fAf.
Weak idempotency:
Suppose f # pry and g(z,y) # z. Then
(fV(FVa)e,y) = f(=, f(z,9(z,y))) = f(f(z,2), f(z,9(z,9)))
= f(z,9(z,9)) = (f V 9)(=,9).
If f = prq, the proof is evident. If f # pry and g(z,y) = z, we have
(fV(fV))z,y) = f(z, f(z,9(z,9))) = fl=, f(z,2)) = f(z,z)
= f(z,9(z,2)) = (fV 9)(z,7).
Dually we can prove fA(fAg)=fAg.
Equalization:
If pry # f # pry and = # y, we obtain
(f A2, y) = f(f(=z,9),9) = f(f(=,9), f(y,9)) = f(z,9)
= f(f(z,2), f(z,9)) = f(z, f(z,9)) = (f V f)(z,9).
If f = pry then

(f/\f)(z,y)= f(f(x7y)ay): T = f(m’f(zay)) = (fV f)(z,y)
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The case f = pr, is similar and the case z = y follows directly by (U).

Distributivity:

If f = pry or f = pry (or, similarly, for g or k), the proof is straightfor-
ward. Let f, g,k differ from prq, prs.

Then (f A (9 V h))(2,¥) = £(g(z, h(z,4)),¥) and, by Lemma 3,
(fAg)V(fAR)(z,y) = f(9(=, f(h(z,9),9)), f(R(z,¥),9)) =

= f(f(g(z’ h(z’ y)’g(z’ y)), f(h(x, y)’ y)) = f(g(za h(z’ y)), y)

proving distributivity.

0-1 laws: If f = pr; then (f A o)(z,y) = pri(o(z,y),y) = o(z,y). If
f # pr1, we have

(f Ao)(z,y) = flo(z,v),y) = f(f(3,9),%) = f(y,¥) = o(z,y).

Analogously we can prove (f V j)(z,y) = j(z,v).
It remains to prove complementation. Immediately, we have (f'A f)(z, y)

= f'(f(z,9),9) = (v, f(z,9)).
If z = y then f(y,y) = o(z,y) and we obtain f' A g =o.

If z # y and f = pry, then
f(y, £(z,9)) = f(y,9) = ofz,y).
If z # y and f # pre, we have by (IP) and (CD)

f(y, f(z,9)) = F(f (4, 9), f(=,9)) = f(y,9) = oz, 7).
The proof of f'V f = j is dual. =
COROLLARY . Every q-algebra A = (A;V,A,,0,1) is isomorphic with

A(G(A)) = (G(A); V5 A, fo(z, y), fi(z,y)), where G(A) is indiced general-
tzed guard algebra and the isomorphism is given as follows:

_ for (z,y) = (1,0)
oo D= {{on iy gas) for (oo 7101
The operations V, A, in A(G(A)) are defined by formulas:

(fb \% fc)(zay) = fb(zafc(z’y))
(fb A fc)(z’y) = fb(fc(m,y)ay)
fi(z,y) = fi(y,2). .
Proof. fo(z,y) = (zA0)V(yAl) = yAl = yA(bVd') = (yAb)V(yAdb) =

fo(y,y) = o(z,y), dually fi(z,y) = j(z,y) (the cases (z,y) = (1,0) are
trivial), thus A(G(A))is a g-algebra. It is clear that the mapping b — fi(z,y)
is a bijection. Moreover,

fove(z,y) = (@ AV )V (yA BV e)) = fol=, fol2,9) = (r V f) (=, 9).
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Analogously, we can show fya. = fo A f. and fi = f] thus b — fi(z,y) is
an isomorphism. m

(1]
(2]

3]
4]

(5]
(6]
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