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1. Introduction

If K is a loop! satisfying some loop-theoretic property P (usually de-
scribed by means of identities), it is often of interest to extend K to loops
G which also satisfy P. In such situations, the following question is rele-
vant: Given loops H and K with K satisfying a property P, can one use
the Cartesian product set H X K as the carrier set for various “semi-direct”
product loops G = H X K which also satisfy property P and which have a
subloop K isomorphic to K serving as the kernel of a (loop) homomorphism
of G onto H?

In §2 we discuss how and precisely under what circumstances (external)
semi-direct products of loops can be formed, and show exactly when a loop
is an (internal) semi-direct product of a pair of subloops. In this section, we
include some examples, and show that some constructions in the literature
— seemingly ad hoc — are in reality semi-direct products.

In §3 we select a specific loop-theoretic property P, namely, that of
satisfying the (right) Bol identity: (zy-2)y = z(yz-y). The class of Bol loops
has the advantage of being general enough to include Bruck loops, Moufang
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loops, extra loops, and groups as special members and specific enough to
accommodate definitive results. In Theorem 3.7, we present necessary and
sufficient conditions for a semi-direct product of loops to be a Bol loop,
and at the same time call attention to the role played by right nuclear
automorphisms in such investigations. We discuss the availability of such
automorphisms for Bol loops.

In §4 we illustrate the applicability of our results by constructing some
new Bol loops.

2. Semi-direct products?
There is ample group-theoretic motivation for

ConsTtrucTION C. Let H and K be loops, let Sym K be the symmetric
group on the set K, and let § : H — Sym K be such that f(ey) is the
identity element of Sym K and such that (ex)8(h) = ex for all h € K. Now
for all (hy,k1),(h2,k2) € H X K define

(2.1) (he, k1) - (ha, k) = (hiha, k18(ha) - k2).

It is easy to see that H x K is a loop with respect to this binary operation,
the identity element being (e, ex)-

DEFINITION 2.1. Any loop constructed from loops H and K in accor-
dance with Construction C is called the ezternal semi-direct product of H
and K with respect to § and is denoted by H x4 K.

The reader should recognize that Construction C and the terminology
and notation of Definition 2.1 are taken from group theory (see, for instance,
the chapter on extensions in J.J. Rotman [13]). In particular, if K is a group,
if H is the automorphism group of K, and if § : H — Sym K is the insertion
map, then the loop H X4 K of Definition 2.1 is a group. This particular
group is the classical holomorph of K and shows that any group K can
be embedded in and then identified with a normal subgroup K of a group
H x4 K in such a way that every automorphism of K can be viewed as the
restriction of an inner automorphism of H xy K to K. (For a loop-theoretic
analogue of a holomorph, see Example 2.7 and the two references cited

2 In this and the remaining sections of this paper, we write loop operations multiplica-
tively (using juxtaposition or dots) and do not make any notational distinction between
a loop and its carrier set. We often employ a mixture of juxtaposition, dots, parentheses,
brackets, etc. to indicate in a readable, unambiguous way how associations are to be made.
For instance, we prefer to avoid awkward expressions like “z - (((z-y) - z) - y)” by writing,
instead, “z{(zy - z)y])”. We use eg to denote the identity element of a loop G, and employ
a right-sided functional notation, writing za to indicate the result of applying a map o
to an element z. In this regard, whenever z and y are members of a loop G, we write
zy = zR(y) = yL(z), so R(y) and L(z) become members of Sym G.
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there). But now in the paragraphs below we adopt procedures which permit
us to extend the notion of semi-direct product to loop theory.

Recall that the associator (z,y,2) of members z,y, z of a loop G is that
element in G such that zy - z = (z - y2)(z,y, z). Whenever A, B and C are
subloops of G it is customary to use (A, B,C) to denote the subloop of G
generated by the associators (a,b,¢) foralla € A, b€ Band c€ C.

DEFINITION 2.2. A loop G is an internal semi-direct product of subloops
H and K means that K is normal in G, that G = HK, and that H N K =
(K,H,K)=(H,H,K)=(H,K,G) = {eg}.

THEOREM 2.3. If a loop G is an internal semi-direct product of subloops
H and K, then G is isomorphic to the external semi-direct product H Xg9 K

where for each h € H the map 6(h) is the restriction of the inner map
R(R)L(R)™! of G to the normal subloop K.

Proof. Since G = HK, each ¢ € G can be expressed as ¢ = hk for
some h € H and some k € K. As for uniqueness, let hy,hy € H and
k1,k; € K with hiky = hok,. Since (H, H, K) = {eg}, it is easy to see that
hlL(hg)_lR(kl) = th(kl)L(hg)—l, and so
hiL(h2)™" = hiL(hy) ' R(k1)R(k1)™" = h1R(k1)L(hy) ' R(k1)™*

= (h1k2)L(h2) ' R(k1)™! = (hak2)L(h2) ' R(k1)™" = ko R(k1)7".
But now with hy L(hy)™! = kyR(k;)™! and HN K = {eg}, we conclude that
h1 = hg and k‘l = k‘g.

For each h € H,let §(h) be the restriction of the inner map R(h)L(h)™!
to K. Since K is a normal subloop of G, it is clear that 6(h) € Sym K.

Finally, let hy,he € H and k;, k2 € K. Taking advantage of (H,K,G) =
(K,H,K)=(H,H,K) = {eg}, we see that

(hlkl)(hgkg) = hl(k'l . hgkg) = hl(klR(hg)L(hg)_lL(h2) . kg)
= hy[(he - k10(h2))ks]
= hi[ha(k10(h2) - k2))
= (h1h2)(k10(h2) - k2) .
Thus, hk +— (h,k) is an isomorphism of G onto H x4 K, and our proof is
complete. =

THEOREM 2.4. If a loop G is an external semi-direct product of loops
G and K, that is, G = H x4 K for some 8 : H — Sym K, then there are
subloops H and K of G isomorphic to H and K respectively so that G is an
internal semi-direct product of H and K.

Proof. Let H = {(h,ex)| all h € H} and K = {(en,k)| all k € K}.
Since (ex )0(h) = e for all h € H, it is clear from (2.1) that H is a subloop
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of G isomorphic to H. Since kf(ep) = k for all k € K, it is equally evident
from (2.1) that K is a subloop of G isomorphic to K. Since kf(ey) = k
for all k € K, it is equally evident from (2.1) that K is a subloop of G
isomorphic to K. Also from (2.1) it is easy to see that G = HK and that
AnK=(K,H,K)=(H,H,K)=(H,K,G) = {(en,ex)} = {eg}. Since
(h,k) = (h,ex)is a homomorphism of G onto H with kernel K, the subloop
K is normal in G. This completes our proof. m

The two preceding theorems reveal how intimately external and internal
semi-direct products are related to each other, and also how easy it is to
shift one’s emphasis from one to the other, as illustrated in the following.

Remark 2.5 (i) Let G, H, and K be loops such that G = H X¢ K. Then
G = H x K, the ordinary direct product, id and only if §(h) is the identity
element od Sym K for all h € H.

(ii) Now let G be an internal semi-direct product of subloops H and K.
Then using (i) and the preceding theorems one sees that G is the direct
product of H and K if and only if G (as well as K') is a normal subloop
of G.

In addition to the familiar examples (direct products of loops, semi-direct
products of groups, etc.), we wish to call attention to some loop-theoretic
constructions in the literature which can be viewed as semi-direct products.

EXAMPLE 2.6. Let R be an alternative ring, let G, H, and K be given by

1 a z =z
_ 01 b vy
G = 0 0 1 b | all a,b,z,y,z€ R ,

0 0 0 1

1 0 0 O

_ 01 b y
H = 00 1 b |all b,y € R 3 ,

0 0 01

1l a =z vy

, 01 00
K = 00 1 0 | all a,z,y € R

0 0 0 1

Then under matrix multiplication G is a loop, and H and K are subloops
of G. The conditions of Definition 2.2 hold, so G is an internal semi-direct
product of H and K. This loop happens to be a Bol loop, and whenever
R is not associative, it is not Moufang. Furthermore, if R is an alternative
division ring with Char R # 2, it has been shown (see D.A. Robinson [8,
10]) that every loop isotopic to G is in fact isomorphic to G.
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EXAMPLE 2.7. Let H be a subgroup of the automorphism group of a
loop K. Then H is a subgroup of Sym K. Let 8 : H — Sym K be given as
the “insertion” map: 8(h) = h for all h € H. It is easy to see that @ satisfies
the requirements of Construction C, so we can form the external semi-direct
product H x4 K of H and K with respect to 8. This loop is recognized as
the H-holomorph of K. Its origins in group theory are familiar. In its loop-
theoretic context see, for instance, R.H. Bruck [1] and D.A. Robinson [9].

ExAMPLE 2.8. We turn now to a class of loops constructed by Karl
Robinson {12]. For each positive integer k let Cj be the finite cyclic group
of order k. For any integer n > 2 and any odd integer m with m > 1 let
H=0C;xCyx...xCy be the elementary Abelian 2-group of order 2"
and let K = C,,. Enumerate the members of H as z;,z3,23,...,Z3» With
z1 = ey and z9x3 = 4. For each s = 4,5,...,2" define §, : H — Sym K
by

Hs(a:i)z{r ifl<i<s
identity element of Sym K otherwise
where kr = k™! for all k € K. Then each 6,(z;) is indeed an automorphism
of K, and for each s = 4,5,...,2", we can form the semi-direct product
H x4, K. Karl Robinson [12] denotes such a loop by B(2",s,m), shows
that each such loop is a Bol loop which is not Moufang, and proves that
for each such m and n these 2" — 3 Bol loops of order 2"m are pair-wise
non-isomorphic. This construction can be generalized, as we shall see in §4.

3. Bol Loops

Let G be a loop. Recall that an ordered triple A = (a,f,7) where
a,0,7 € SymG is an autotopism of G provided that za - y8 = (zy)y for
all z,y € G. Let a19a27ﬂ1,,62,71,72 be in SymG If A= (al7ﬂla7l) and
B = <a2a:62772), we define AB by AB = <a1’a2,ﬂl,ﬂ2a71772> and note
that if any two of A, B and AB are autotopisms of G so is the third. Recall
from §1 that G is a Bol loop provided that (zy - 2)y = (z(yz - y) for all
z,y,z € G. Basic facts concerning Bol loops can be found in [7], where it is
shown that

LEMMA 3.1. A loop G is a Bol loop if and only if
A(z) = (R(2)™", L(z) R(z), R(z))
s an autotopism of G for allz € G.

Now we approach the problem of determining precisely when semi-direct
products of loops produce Bol loops.

LEMMA 3.2. Let G, H, and K be loops such that G = H x4 K for some
0:H — Sym K. Then G is a Bol loop if and only if
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(i) H is a Bol loop, and

(ii) the equation
(3.1) [(k16(h2)-k2)0(h3)-k3)0(h2)-ke = k10(hahs-hy)[(k20(h3)-k3)0(h2)-k2)
holds for all hy,hs € H, all ky, ko, k3 € K.

Proof. Let z = (h1, k1), y = (ha, k2), and z = (h3, k3) be in G. Now use

(2.1) to exhibit (zy - z)y and z(yz - y). Comparison of the first and second
“components” gives (i) and (ii) respectively. w

LEMMA 3.3. Let G, H and K be loops such that G = H x4 K for some
60 : H > SymK. If 0(z) is an automorphism of K for all z € H and
if 0(zy - ) = 0(x)0(y)0(z) for all z,y € H, then (3.1) holding for all
ha,hs € H, all ky, ko, k3 € K is equivalent to
B(k,z,y) = (R(k)™", L(k) R(k6(2)6(y)), R(k6(z)8(y)))
being an autotopism of K for allz,y € H, allk € K.

Proof. Since G is a loop, we have ex8(h) = ex and kf(ey) = k for all
h € H,all k € K. From the hypothesis we have

6(z) = 0(zz” - z) = 0(z)0(z*)0(z)
for all x € H where z” is the right inverse of z. So
(3.2) 8(z)"! = 6(z*)
for all z € H. Now note that (3.1) holds for all hy, k3 € H, all k1, ks, k3 € K
if and only if
(3.3)  [(k16(h2)0(h3)0(h2) - k26(h3)0(h2)) - k3O(h2)lks
= k16(h2)8(h3)0(hs - [(k28(h3)0(hy) - k36(h2)) - ko]

for all hy,hs € H, all k1,k2,k3 € K. But (3.3) holds all he,h3 € H, all
ki,ke, ks € K if and only if

(3.4) (uv - w)vd(r)"10(s)™! = u(vw - v8(r)~16(s)"1)

for all r,s € H, all u,v,w € K. Using (3.2), replacing r and s by z* and y*
respectively (A here indicates left inverse) and writing k for v, we see that
(3.4) holds for all r,s € H, all u,v,w € K if and only if

(3.5) (uk - w) - k6(z)0(y) = ulkw - k6(z)8(y)]

for all z,y € H, all u,k,w € K. Then merely replacing v by uR(k)~!, we
see that (3.5) holds for all z,y € H, all u,k,w € K if and only if

(3.6) uR(k)™! - [wL(k)R(k6(z)8(y))] = (vw)R(kO(z)8(y))

forall z,y € H, all u,w,k € K. But this is equivalent to B(k, z,y) being an
autotopism of K for all z,y € H, all k € K, and our proof is complete. m
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LEMMA 3.4. Let G, H, and K be loops such that G = H Xy K for some

@:H — Sym K. Then G is a Bol loop if and only if
(i) H is a Bol loop,

(ii) 6(z) is an automorphism of K for allz € H,

(iii) 8(zy - z) = 8(x)0(y)0(z) for all z,y € H,

(iv) B(k,z,y) = (R(k)71, L(k)R(k6(z)6(y)), R(k6(x)8(y))) is an auto-
topism of K for allz,y€ H, allk € K.

Proof. In view of Lemmas 3.2 and 3.3 we need only show that (ii) and
(iii) hold whenever G is a Bol loop. So let us assume that G is a Bol loop. By
Lemma 3.2 we know that (3.1) holds for all he,h3 € H, all ky,kq,k3 € K.
Setting hs = ey and k; = eg in (3.1), we obtain
(3.7) (k18(h2) - k3)8(ha) = k18(h3) - (k38(h2))
for all hy € H, all ky,k3 € K. Setting k3 = ex in (3.7), we get k10(hy)? =
k18(h%) for all hy € H, all ky € K. Using this in (3.7) and replacing k16(h;)
by k, we get

(kk3)0(h2) = k8(hy) - k30(h2)
for all hy € H, all k,k3 € K. So (ii) holds.
Finally, letting k2 = k3 = ek in (3.1), we get
k10(h2)0(h3)0(he) = k10(hohs - h2)
for all hy,hs € H, all k; € K. So (iii) holds, and our proof of Lemma 3.4 is

complete.

LEMMA 3.5. Let K be a Bol loop. If a,b € K and if ab € N,(K), the
right nucleus of K, then k-ab=Fka-b for allk € K.

Proof. Since K is a (right) Bol loop (and more generally for any loop
satisfying the right inverse property) we have N,(K) = N,(K), the middle
nucleus of K. So we have

k-ab=[(k-ab)b']b=[k(ab-b"1)]b=ka-b

foralke K. m

DEFINITION 3 .6. An automorphism 8 of a Bol loop K is right nuclear
means that y=! - y® € N,(K) for all y € K, where N,(K) again is the tight
nucleus of K.

THEOREM 3.7. Let G, H and K be loops such that G = H x¢ K for some
0:H — Sym K. Then G is a Bol loop if and only if

(i) H and K are Bol loops,

(ii) 8(z) is a right nuclear automorphism of K for each z € H,
(iii) O(zy - =) = 6(z)8(y)8(z) for all z,y € H.
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Proof. First, let G be a Bol loop. Then H and K are Bol loops, since
they are isomorphic to subloops of G. So, by Lemma 3.4, we see that (i)
and (iii) hold, that 6(z) is an automorphism of K for all z € H, and that
B(k,z,y) of Lemma 3.3 is an autotopism of K for all z,y € H,all k € K.
Then, in particular, BB(k,ep,ey) and B(k,z,ey) are autotopisms of K
for all z € H, all k € K. But then note that

B(k,en,ex){I, R((k) ' R(k6(z)), R(k) "' R(k8(x))) = B(k,z,er)
for all z € H, all k € K, where I is the identity map on K. So
(3.8) (I, R(k)™' R(K8(2)), R(k) ™" R(k6(z)))
must be an autotopism of K for all z € H, all k € K. So we have
a-bR(k)"1R(k6(z)) = (ab)R(k)~ ' R(k6(z))
forall z € H, all a,b,k € K. Setting b = e, we get
R(k™! . k8(z)) = R(k) ' R(k6(z))
for all z € H, all k € K. So autotopism (3.8) above becomes
(I, R(k™" - kb()), R(k™" - k6(z)))
forall z € H,all k€ K. So k~! - kf(z) € N,(K)forallz € H,all k € K.
So 8(z) is indeed right nuclear for each 2 € H, and (ii) holds.

Conversely, assume now that (i), (ii), and (iii) hold. Then we see that
k=1 .k6(z) € N,(k) and (k6(z))~! - k0(z)0(y) € N ,(K) for all z,y € H, all
k € K. Since K is a Bol loop, we can use Lemma 3.5 to get

(K71 - kO(@))[(k(2))™ - kB(2)0(y)] -

= [(k7" - k6(=)) - (k6(=)) "] - (k6(2)8(y)) = k™" - k6(2)b(y)
for all z € H, all k € K. But since k~! - k6(z)8(y) has just been shown to
be a product of two elements in N,(K), it is in N,(K) too. Thus
(3.9) (1, R(k™ - k6(2)8(y)), R(E™" - k8()0(1)))
is an autotopism of K for all z,y € H, all k € K. Since K is a Bol loop, we
recall that N,(K) = N,(K). So we see that k=1 - kf(z)6(y) is also in N,(K)
forall z,y € H, all k € K. Hence, we have
[a(k™ - k6(2)8(y)] - (k6(2)0(y)) " = al(k™" - k6(2)6(y)) - (kO(2)8(y)) ]

for all z,y € H, all a,k € K. But K satisfies the right inverse property, so
we see that

[a(k™" - K8(2)0())] - (kO(2)B(y) ™" = k™
for all z,y € H, all a,k € K. Using the right inverse property once again,
we get

a(k™! - k8(2)8(y)) = (ak™") - (k6()0(y))
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for all z,y € H, all a,k € K. So autotopism (3.9) can be rewritten as
(3.10) (I, R(k™")R(k6(z)8(y)), R(k~")R(k8(2)by)))

for all z,y € H, all k € K. But recall that R(k~1) = R(k)~! and that by
Lemma 3.1

(3.11) (R(k)™*, L(k)R(k), R(K))
is an autotopism of K for all k¥ € K. So multiplying autotopisms (3.11) and

(3.10), we see that B(k,z,y) is an autotopism of K for all z,y € H, all
k € K. So, by Lemma 3.4, G is a Bol loop and our proof is complete. m

The corollaries which follow are immediate consequences of Theorem 3.7,
since Moufang loops — those loops which satisfy the identity (zy - z)y =
z(y - zy) — are necessarily Bol loops. In fact, Moufang loops are seen to be
precisely those Bol loops that are di-associative.

COROLLARY 3.7.1. Let H be a subgroup of the automorphism group of a
loop K. Then the H holomorph of K (see Ezample 2.7) is a Bol loop if and
only if K is a Bol loop and each h € H is right nuclear.

COROLLARY 3.7.2. Let G, H and K be loops with G = H x4 K for some

0:H — Sym K. Then G is a Moufang loop if and only if
(i) H and K are Moufang loops,

(i) 6(z) is a right nuclear automorphism of K for each z € H,

(iii) 8(zy) = 0(z)b(y) for all z,y € H.

COROLLARY 3.7.3. Let G, H and K be loops with G = H x4 K for some
0:H — Sym K. Then G is a group if and only if

(i) H and K are groups,

(ii) 6(z) is an automorphism of K for each z € H,

(iii) O(zy) = 0(z)0(y) for all z,y € H.

CoROLLARY 3.7.4. (Karl Robinson [12]). Let G, H and K be loops with
G = H x4 K for some § : H — Sym K and assume furthermore that H and
K are groups. Then G is a Bol loop which is not Moufang if and only if

(i) 6(z) is an automorphism of K for each z € H,

(ii) O(zyz) = 0(z)0(y)d(z) for allz,y € H,

(iii) O(uv) # 6(u)8(v) for some u,v € H.

(It was shown in Example 2.7 how H, K and 8 can be selected to satisfy
the conditions of the preceding corollary. The loop H x4 K which results
is also mentioned in [4, p. 40]. Incidentally, this type of construction was
recently employed by Karl Robinson and one of the authors (see [11]) to
show that the nucleus of a Bol loop need not be normal.)

In order to use semi-direct products of Bol loops to produce new Bol
loops — especially ones which are not Moufang — close attention must be
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paid to conditions (ii) and (iii) of Theorem 3.7. We address our concerns
with a few remarks and results.

Remark 3.8. Let H and K be groups with H cyclic. Suppose that a
semi-direct product H x4 K with respect to some § : H — SymK is a
Bol loop. Consulting Theorem 3.7, we see that 8(zyz) = 6(z)6(y)8(z) for
all z,y € H. This condition, together with the requirement from §2 that
0(err) = esym K, allows one to prove that 6(z™) = 6(z)" for all z € H,
all integers n. But now let a be any generator for the cyclic group H. For
z,y € H, we have z = a™ and y = a™ for some integers m and n, so
0(zy) = 8(a™a™) = (a™t™) = O(a)™t™ = O(a)™0(a)” = 6(a™)f(a™) =
6(z)6(y). From Corollary 3.7.3, we see now that H Xy K must also be a
group. In other words, to use a semi-direct product of groups H and K to
produce a Bol loop which is not a group (and for that matter not Moufang)
we must make certain that the group H is not cyclic. (Note that in Example
2.8 the group H is not cyclic, but rather an elementary Abelian 2-group).

Remark 3.9. To utilize Theorem 3.7 we must have at our disposal
right nuclear automorphisms of Bol loops. If G is an extra loop, in that
(zy-2)z = z(y - 2z) for all 2,9,z € G, then G is a Bol loop (in fact, it is
Moufang) and all of its inner maps R(z)R(y)R(zy)~!, all z,y € G, are right
nuclear automorphisms of G (see D.A. Robinson [9]).

LEMMA 3.10. Let G be a Bol loop. If a,b € G with ab € N,(G), then
al.-ab=">band b la"! = (ab)~!.

Proof. Since G satisfies the right inverse property, for each © € G, we
recall that »~1 is that element in G so that v lu = wu~! = eg. From
Lemma 3.5 we have z - ab = za- b for all z € G. Setting z = a1, we get
a~!.ab = b; setting = (ab)~! and using the right inverse property twice,
we get v™1a”! = (ab)7l. u

THEOREM 3.11. Let G be a Bol loop. If a,3 and ¥ are automorphisms
of G with o and B right nuclear, then af,a~1 and y~'ay are right nuclear
automorphisms of G.

Proof. Clearly af3,a~! and y~lary are automorphisms of G. We need
only establish that they are right nuclear.

Since o and J are right nuclear and since N,(G) is group, it follows that
v - ya € N,(G), (ya)~! - (ya)B € N,(G) and also (y™* - ya) - [(ya) ™ -
(ya)B] € N,(G) for all y € G. Now using Lemma 3.10, we get y~ - yaf =
y~' - (ya)B =y~ (ya) - ((yo) ™! - (ve)B)] = (¥~ - ya) - ((ya) " - (ya)B). So
we have y~1 - yafB € N,(G) for all y € G. Thus af is right nuclear.
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Since «a is right nuclear and (ya~!)"1-y = (ya~1)7!-(ya!)a, it follows
that (ya~1)~1.y € N,(G) for all y € G. But then too we have ((ya~1)7!-
y)~! € N,(G). By Lemma 3.10 we have ((ya=)"1 . y)"! = y71.ya" 1. So
y~1-ya! € N,(G) for all y € G. Thus a~! is right nuclear.

It is easy to show that uy € N,(G) whenever u € N,(G). So with a right
nuclear we note that (y~1y~1-yy~la)y € N,(G) for all y € G. But we have
(M tyrlayy =yt ryylay, so g7 -yyTlay € Ny(G) for all y € G,
and 7~ lay is right nuclear. This completes our proof. m

Since the identity automorphism is right nuclear, Theorem 3.11 has some
immediate consequences.

COROLLARY 3.11.1. Let G be a Bol loop. The set of all right nuclear
automorphisms of G is a normal subgroup of the automorphism group of G.

COROLLARY 3.11.2. Let G be a Bol loop. If S is a set of right nuclear
automorphisms of G, then the subgroup (S) of the automorphism group of
G generated by S is a group of right nuclear automorphisms of G.

COROLLARY 3.11.3. Let G be a Bol loop. Then G has a non-trivial group
of right nuclear automorphisms if and only if G has at least two right nuclear
automorphisms (i.e., at least one other than the identity map).

We now show that many Bol loops (in addition to the extra loops men-
tioned in Remark 3.9) do have non-trivial right nuclear automorphisms. This
becomes crucial in §4, where some applications are discussed.

Recall that an element o € Sym G for any loop G is a pseudo-auto-
morphism of G provided that (o, aR(a),aR(a)) is an autotopism for some
a € G. Such an element a is called a companion of the pseudo-automorphism
a. For all z,y € G, let R(z,y) be the inner map of G given by R(z,y) =
R(z)R(y)R(zy)~! and let 27! be such that zz~! = eg. Now let [z, y] be de-
fined by [z,y] = (z~1y~1)(zy) for all z,y € G. Note that for any right inverse
property loop G we have zz~! = 271z = eg and 271y~ ! = [z,y](zy)? for
all z,y € G. So for a right inverse property loop the elements [z, y] indicate
to what extent G departs from satisfying the automorphic inverse property.

THEOREM 3.12. If G is a Bol loop, then R(z,y) is a pseudo-automor-
phism of G with companion [z,7y].

Proof. Since G is a Bol loop, we know that A(z) given by A(z) =
(R(z)™!, L(z)R(z), R(z)) is an autotopism of G for each = € G (see Lemma
3.1). So corresponding to each pair of elements z and y of G there is a map
B € Sym G so that B(z,y) = A(z) 1 A(y)1A(zy) = (R(z)R(y)R(zy)~1, B,
R(z)7*R(y)~'R(zy)) is an autotopism of G. So

(312)  aR(z)R(y)R(xy)™ - b8 = (ab)R(x)""R(y)" R(zy)
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for all a,b€G. Setting a=eg in (3.12), we see that 8= R(z) "1 R(y) "' R(zy);
setting b = eg in (3.12), we get R(z,y)R(ecfB) = R(z)~'R(y) ! R(zy). Thus
B('T’ y) = <R(‘T’ y)v R(.’E, y)R(eGﬂ)’ R(Z, y)R(eGﬂ»
and egf = (¢ ty~1)(zy) = [z, y]. Our proof is complete. m
CoROLLARY 3.12.1. Let G be a Bol loop. Then R(z,y) is an automor-
phism of G if and only if [z,y] € N,(G).

Recall that a Bol loop G is a Bruck loop provided that 2 — z% is a
permutation of G and that (zy)™! = 2~ 1y~! for all z,y € G. So for all such
loops [z,y] = eg for all 2,y € G. Thus, with all [z,y] € N,(G), we have the
following

CoROLLARY 3.12.2 (G. Glauberman [5]). If G is a Bruck loop, then
R(z,y) is an automorphism of G for all z,y € G.

2

COROLLARY 3.12.3. Bol loops which are not groups have non-trivial
pseudo-automorphisms.

COROLLARY 3.12.4. Bruck loops which are not groups have non-trivial
automorphisms.

One can verify that the Bol loop G given in Example 2.6 has the inter-
esting feature that [z,y] € N,(G) for all z,y € G. So its inner maps R(z,y)
are automorphisms of G for all z,y € G.

The smallest Bol loops which are not groups have order 8. There are
six of them (see R.P. Burn [3]), and they all have non-trivial right nuclear
automorphisms.

4., Some applications

It is our intention here to exploit Theorem 3.7 to construct some new
Bol loops.

A. Let us return to the semi-direct product discussed in Example 2.8.
It is easy to see that each of the 8,, given there, for s = 4,5,...,2" (recall
that n is an integer with n > 1), satisfies the conditions of Theorem 3.7.
Thus, the loops B(2",s,m) (recall that m is an odd integer with m > 1)
for s = 4,5,...,2" are indeed Bol loops of order 2™m and, since 8;(zyz3) #
05(z2)05(z3), none are Moufang. As Karl Robinson [12] points out, there are
precisely 2" 4+ (m — 1)(s — 1) elements z in B(2",s,m) such that z = 71,
and so the 2" — 3 loops obtained are pair-wise non-isomorphic.

In the very same context as that of Example 2.8 (recall that the members
of H=0Cy xCy X...xC, are given as z1,%3,...,Z2» With z; = ey and
zaz3 = z4) we now select 8, and, whenever n > 2,65 as follows

O2(z2) =7, Oa(zi)=1 fori#2;
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93(222) = 03(135) =T, 03(2?,‘) =1 for 74 2,5

where, as before, I is the identity map on K and k7 = k~! for all k € K.

It is easy to see that #; and #; both satisfy the conditions of Theorem 3.7.
Thus, H X4, K and, provided n > 2, H X4, K are both Bolloops of order 2"m,
denoted here by B(2",2,m) and B(2",3, m) respectively. Neither of the Bol
loops is Moufang, because with j = 2,3, we have 8;(z223) = 0;(z4) = I
whereas 8;(z2)0;(z3) = 7. Note that B(2",2,m) has exactly 2" + (m — 1)
elements z such that z = z~1. So B(2",2,m) is not isomorphic to any of
the Bol loops of order 2"m of Example 2.8. Furthermore, if n > 2, the loop
B(2",3,m) has exactly 2" + (s — 1)(m — 1) elements z such that z = z~1.
Thus, B(2",3,m) is not isomorphic to B(2",2,m), nor to any of the loops
of order 2"m of Example 2.8.

In conclusion, with these “new” Bol loops, we assert that for any positive
integers m,n with m odd, m > 1, and n > 2 there are at least 2™ —1 pair-wise
non-isomorphic Bol loops of order 2"m which are not Moufang and that for
any odd integer m > 1 there are at least 2 non-isomorphic Bol loops of order
4m which are not Moufang.

B.1. Of the six Bol loops of order 8 which are not groups (they are not
Moufang either) there is just one of exponent 2 (see R.P. Burn [3]). It can
be realized as follows (see D.A. Robinson [7, p. 346]): Let R = {0,1} be the
ring of integers modulo 2,let B = R x R X R, and define multiplication for
B by

(i,j,k)-(p,q,r) = (i+p»j+q,k+7'+jp(q+ 1))
for all (¢,7,k),(p,q,7) € B. Then e = eg = (0,0,0) and a = (0,0,1) are
the only elements of B which are in all three nuclei of B and commute
element-wise with B. The elements comprising B can be listed as

e=(0,0,0), a=(0,0,1), 2z, = (0,1,1), z2 = (1,0,1), z3 = (1,1,0),
az; = (0,1,0), az, = (1,0,0), azs = (1,1,1)

and the multiplication table for B is as follows:

a ZT1 T T3 ary | are | ars

€ € a Ty T2 T3 ary | arg | ars

a [ ary | ary | ars Ty T T3

T Iy ary e arls Z9 a T3 ars

T T alry T3 € T als a ary
T3 T3 alrs T2 ary € aro T a
ary ary Z1 a I3 azxo € ars T
azrsy aro o ars a ary T3 e Ty
ars | axs I3 aro Ty a T2 ary €
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Now define

(ivjvk)a = (l7]’1'+ Jj+ k)
for all (i,4,k) € B. Then « is a right nuclear automorphism of B of order 2,
fixing each of e, a, z3, and az3, interchanging z; and az;, and interchanging
z9 and az,.

[Remark .Let (¢,4,k)8 = (¢,4,7 + k) for all (¢,5,k) € B. Then 8 is also a
right nuclear automorphism of B. Actually, the automorphism group, Aut B,
of B is the elementary Abelian 2-group of order 8. Although for each 8 €
Aut B and each y € B,y - ¢ is in at least one of the three nuclei of B,
only those automorphisms in the subgroup generated by a and g are right
nuclear.]

B.2. Let B and a be the same as in Part B.1 above. For each positive even
integer m let H = C,, be the cyclic group of order m, and let ¢ be a generator
of H. Now let K = B, and define 6(c’) = o' for all integers i. Then with m
even we see that 6 is well defined. It follows that § : H — Aut K and that
6(z) is a right nuclear automorphism of K for each z € H. For all integers
i and j note that (cic? - ¢') = 8(c*+7) = a2+ = afadat = 6(c)0(c?)8(c?).
Since the conditions of Theorem 3.7 hold, it follows that H x4 K is a Bol
loop of order 8m with a subgroup isomorphic to the Bol loop B. Since B
is not Moufang, neither is H Xg K. It is clear then that for each integer
r > 3 and each positive integer n there is a Bol loop of order 2"n with a
subloop isomorphic to the non-Moufang Bol loop B of exponent 2 and order
8 described in B.1.

The loop B can be generated by two elements z and y such that y # z-zy
(for instance, take z = 27 and y = z, in Part B.1 above). An examination
of the elements of order 2 in the Bol loops of Example 2.8 (see also Part A
of the present section) shows that they cannot accomodate elements z and y
with y # z-zy and so they have no subloop isomorphic to B. This guarantees
that the loops just constructed have not already occurred in Example 2.8.

B.3. Now let H be the Bol loop B of Part B.1, and let K be any Bol
loop which has a right nuclear automorphicm v of order 2. For each integer
i=1,2,3,5,6,7 (i = 4 is intentionally omitted for reasons explained later)
we select §; : H — Aut K as follows:

_ [y ifz=a

bi(<) = { otherwise
if ¢ =z or az,
otherwise
if z = a,z;, or az;
otherwise
if z = a,zy,azq, 2, or az,
otherwise

by(z) = {
83(z) = {
{

05(1‘) =

e e e
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06(1:) — {‘)’ ifz = z1,ary,T2,04T2,T3, OT QT3
I otherwise

07(z)={} ifz#ey

otherwise

where [ is the identity automorphism on K.

As noted B.1 the element @ is the only member of B other than ep
which is in all three nuclei of B and which commutes element-wise with B,
that is, {ep,a} is the center of B. A glance at the multiplication table of
B in B.1 reveals uv = vu or uv = a - vu whenever v and v are members
of B. Thus, {eg,a} is also the commutator subloop of B. Recall too that
B has exponent 2, is a (right) Bol loop, and is right alternative. Now let
0 be any ome of the 6; for 1 = 1,2,3,5,6,7 defined above, and note that
6(ay) = 0(y) for all y € B with y # ep and y # a. With this information
it is easy to examine #(zy - z) for all z,y € B. If zy = yz, then we have
0(zy-z) = b(yz-z) = O(yz?) = 8(y) = 0(z)*0(y) = 6(2)8(y)8(z); if zy # yz,
we have 0(zy - z) = 0(yz - a)z) = 8(y(za - z)) = O(a - yz?) = 8(ay) = 6(y) =
0(z)*0(y) = 0(z)8(y)8(z). Thus, 8(zy - z) = 6(z)8(y)8(z) for all z,y € B.
Since the conditions of Theorem 3.7 are satisfied, the six loops H X4, K
are Bol loops. None are Moufang, since each contains a subloop isomorphic
to B.

Note that each 8; above maps ¢ members of B to 7, and the remaining
8 — i to I. Since it does not seem possible to select a map 6y which maps
exactly 4 members of B to v while satisfying the conditions of Theorem 3.7,
a map 04 is conspicuously missing above.

As a special case, one can take K = C,,, the cyclic group of order m,
where m is odd with m > 1, and then select ¥ by ky = k™! for all k € K.
For each 7 = 1,2,3,5,6,7, the resulting Bol loop B X4, K of order 8m has
precisely 8+ ¢(m —1) elements z such that 2! = z. Hence, the six loops are
pair-wise non-isomorphic. Since each of these loops has a subloop isomorphic
to B and those of Example 2.8 do not (recall an argument sketched in B.2
above), these Bol loops cannot be isomorphic to any loops in Example 2.8.
Furthermore, comparing the orders of these six Bol loops with those of B.2,
we see that these are not isomorphic to any of those constructed in B.2.

Replacing B above by B x G where G = C; x C3 X ... X C3 is the
elementary Abelian 2-group of order 2”3 for any integer n > 3, but keeping
K = Cp, and v as above, we can define maps a; : G — {I,7} in various
ways to guarantee that the loops (B X G) X4,; Cm, with 8;;(b, g) = 0:(b)a;(g)
for all (b,g9) € B x G, are Bol loops of order 2"m which are not Moufang.
But now questions concerning which of the loops are non-isomorphic cannot
be answered by merely determining the number of solutions to z~! = =,
and seem difficult to resolve.
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As we have seen in this section, the Bol loop B of Part B.1 is well suited

to this semi-direct product technique for constructing new Bol loops. It may
be profitable to examine the remaining five Bol loops of order 8 which are not
groups to see whether or not they too can be exploited in a similar manner.

5. Epilogue
There are, of course, many interesting constructions of quasigroups and

loops throughout the literature which are not semi-direct products. One of
the best surveys of such constructions is due to O. Chein (see Chapter II of
O. Chein, H.O. Pflugfelder, J.D.H. Smith [4]).
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