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1. Introduction 
If Κ is a loop1 satisfying some loop-theoretic property V (usually de-

scribed by means of identities), it is often of interest to extend Κ to loops 
G which also satisfy V. In such situations, the following question is rele-
vant: Given loops H and Κ with Κ satisfying a property V, can one use 
the Cartesian product set Η χ Κ as the carrier set for various "semi-direct" 
product loops G — Η χ Κ which also satisfy property V and which have a 
subloop Κ isomorphic to Κ serving as the kernel of a (loop) homomorphism 
of G onto ΗΊ 

In §2 we discuss how and precisely under what circumstances (external) 
semi-direct products of loops can be formed, and show exactly when a loop 
is an (internal) semi-direct product of a pair of subloops. In this section, we 
include some examples, and show that some constructions in the literature 
— seemingly ad hoc — are in reality semi-direct products. 

In §3 we select a specific loop-theoretic property V, namely, that of 
satisfying the (right) Bol identity: (xy-z)y = x(yz-y). The class of Bol loops 
has the advantage of being general enough to include Bruck loops, Moufang 
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1 We assume that the reader is familiar with basic facts concerning loops (e.g., 
subloops, normal subloops, inner maps, nuclei, autotopisms, loop isotopes, etc.), all of 
which can be found in R.H. Bruck's treatise [2], as well as in H.O. Pflugfeldens recent 
textbook [6]. 
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loops, extra loops, and groups as special members and specific enough to 
accommodate definitive results. In Theorem 3.7, we present necessary and 
sufficient conditions for a semi-direct product of loops to be a Boi loop, 
and at the same time call attention to the role played by right nuclear 
automorphisms in such investigations. We discuss the availability of such 
automorphisms for Bol loops. 

In §4 we illustrate the applicability of our results by constructing some 
new Bol loops. 

2. Semi-direct products2 

There is ample group-theoretic motivation for 
CONSTRUCTION C . Let H and Κ be loops, let Sym Κ be the symmetric 

group on the set K, and let θ : Η SymÄ' be such that is the 
identity element of Sym Κ and such that (ej<)0(/i) = e/<- for all h G Κ. Now 
for all (/ii,&i),(/i2,/c2) £ Η χ Κ define 

(2.1) ( h u h ) · (h2,k2) = ( Λ 1 Λ 2 , · k 2) . 
It is easy to see that Η χ Κ is a loop with respect to this binary operation, 
the identity element being (en, ex). 

DEFINITION 2 .1 . Any loop constructed from loops Η and Κ in accor-
dance with Construction C is called the external semi-direct product of Η 
and Κ with respect to θ and is denoted by Η χ β Κ. 

The reader should recognize that Construction C and the terminology 
and notation of Definition 2.1 are taken from group theory (see, for instance, 
the chapter on extensions in J . J . Rotman [13]). In particular, if Κ is a group, 
if Η is the automorphism group of K, and if θ : Η —> Sym Κ is the insertion 
map, then the loop H Xg Κ of Definition 2.1 is a group. This particular 
group is the classical holomorph of Κ and shows that any group Κ can 
be embedded in and then identified with a normal subgroup Κ of a group 
Η Xg Κ in such a way that every automorphism of Κ can be viewed as the 
restriction of an inner automorphism οΐ Η Xg Κ to Κ. (For a loop-theoretic 
analogue of a holomorph, see Example 2.7 and the two references cited 

2 In this and the remaining sections of this paper, we write loop operations multiplica-
tively (using juxtaposition or dots) and do not make any notational distinction between 
a loop and its carrier set. We often employ a mixture of juxtaposition, dots, parentheses, 
brackets, etc. to indicate in a readable, unambiguous way how associations are to be made. 
For instance, we prefer to avoid awkward expressions like "χ · (((χ · y) • ζ) · y)" by writing, 
instead, "x[(xjj · z)îf]". We use e<3 to denote the identity element of a loop G, and employ 
a right-sided functional notation, writing xa to indicate the result of applying a map a 
to an element x. In this regard, whenever χ and y are members of a loop G, we write 
xy = xR(y) = yL(x), so R(y) and L(x) become members of Sym G. 
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there). But now in the paragraphs below we adopt procedures which permit 
us to extend the notion of semi-direct product to loop theory. 

Recall that the associator (x, y, ζ ) of members x, y, ζ of a loop G is that 
element in G such that xy · ζ = {χ · yz)(x, y, ζ). Whenever A, Β and C are 
subloops of G it is customary to use (A , B, C) to denote the subloop of G 

generated by the associators (a, b, c) for all a G A, b G Β and c G C. 

DEFINITION 2.2. A l oop G i s an internal semi-direct product of subloops 

H and Κ means that Κ is normal in G, that G = Η Κ, and that Η Π Κ = 
(Κ, Η, Κ) = (Η, Η, Κ) = (H,K,G) = {eG}. 

THEOREM 2.3. If a loop G is an internal semi-direct product of subloops 

H and Κ, then G is isomorphic to the external semi-direct product Η Xg Κ 

where for each h ζ Η the map 6(h) is the restriction of the inner map 

R(h)L(h)~x of G to the normal subloop Κ. 

P r o o f . Since G = HK, each g £ G can be expressed as g = hk for 
some h £ H and some k G Κ. As for uniqueness, let hi,h2 G H and 
ki, € Κ with h\k\ = /ΐ2&2· Since (Η, Η, Κ) = {cg }> it is easy to see that 
h1L(h2)~1R(k1) = ÄiÄ(*r i )Z (Ä2) _ 1 , and so 

h i L i h i ) - 1 = = h r R i h ) ^ ) - 1 R i h ) - 1 

= = (h2k2)L{h2)-x R i b ) ' 1 = k2R{kx)-1. 

But now with hx^h- i ) - 1 = &2Ä(Ä;i)-1 and Η Π Κ = { e ^ } , we conclude that 
hi = h2 and ki = k2. 

For each h G H, let 0(h) be the restriction of the inner map R(h)L(h)~1 

to K. Since Κ is a normal subloop of G, it is clear that 9(h) G Sym K. 

Finally, let hi,h2 G H and ki,k2 G Κ· Taking advantage of ( H , K , G ) = 

( Κ , Η , Κ ) = (Η , Η, Κ ) = { e o } , we see that 

(hiki)(h2k2) = hi(ki • h2k2) = hiikiRih^Lih^'Hihi) · k2) 

= hi[(h2 • ki0(h2))k2] 

= hi[h2{ki9{h2)-k2)] 

= (hih2)(ki0(h2) • k2). 

Thus, hk ι—• ( h , k ) is an isomorphism of G onto H Xg Κ, and our proof is 
complete. • 

THEOREM 2.4. If a loop G is an external semi-direct product of loops 

G and K, that is, G = H Xg K for some θ : Η —> Sym Λ ' , then there are 

subloops Η and Κ of G isomorphic to II and Κ respectively so that G is an 

internal semi-direct product of H and Κ. 

P r o o f . Let Ή = { ( V k ) | all h G H} and Κ = {(eH, all k G Κ}. 

Since (ej<-)0(/i) = ex for all h G H, it is clear from (2.1) that H is a subloop 
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of G isomorphic to H. Since kO(ejf) = k for all k G Κ, it is equally evident 
from (2.1) that Κ is a subloop of G isomorphic to K. Since k6{eu) = k 
for all fc € K, it is equally evident from (2.1) that Κ is a subloop of G 
isomorphic to K. Also from (2.1) it is easy to see that G = HK and that 
HC)K = ( K , H , K ) = (Η,Η,Κ) = (H,K,G) = {(eH,eK)} = {eG}. Since 
(h, k) —• (h, e κ) is a homomorphism of G onto H with kernel Κ, the subloop 
Κ is normal in G. This completes our proof. • 

The two preceding theorems reveal how intimately external and internal 
semi-direct products are related to each other, and also how easy it is to 
shift one's emphasis from one to the other, as illustrated in the following. 

R e m a r k 2.5 (i) Let G, H, and Κ be loops such that G = Hxe Κ. Then 
G = Η χ Κ, the ordinary direct product, id and only if 6(h) is the identity 
element od Sym Κ for all h G H. 

(ii) Now let G be an internal semi-direct product of subloops H and Κ. 
Then using (i) and the preceding theorems one sees that G is the direct 
product of H and Κ if and only if G (as well as K) is a normal subloop 
of G. 

In addition to the familiar examples (direct products of loops, semi-direct 
products of groups, etc.), we wish to call attention to some loop-theoretic 
constructions in the literature which can be viewed as semi-direct products. 

E X A M P L E 2.6. Let R be an alternative ring, let G, Η, and Κ be given by 

G = 

Η = 

Κ = 

/ I a X 
0 1 b V 
0 0 1 b 

\ 0 0 0 lJ 
/ I 0 0 °\ 0 1 b y 

0 0 1 b 
\0 0 0 1 / 

n a X y \ 
0 1 0 0 

0 0 1 o 
\Q 0 0 1 / 

all a,b,x,y,z G R 

all b,y G R 

all a,x,y € R 

Then under matrix multiplication G is a loop, and H and Κ are subloops 
of G. The conditions of Definition 2.2 hold, so G is an internal semi-direct 
product of H and K. This loop happens to be a Boi loop, and whenever 
R is not associative, it is not Moufang. Furthermore, if R is an alternative 
division ring with Char R φ 2, it has been shown (see D.A. Robinson [8, 
10]) that every loop isotopie to G is in fact isomorphic to G. 
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E X A M P L E 2 . 7 . Let H be a subgroup of the automorphism group of a 
loop K. Then H is a subgroup of Sym K. Let θ : Η —> Sym Κ be given as 
the "insertion" map: 6(h) = h for all h Ç H. It is easy to see that θ satisfies 
the requirements of Construction C, so we can form the external semi-direct 
product Η Χβ Κ of Η and Κ with respect to Θ. This loop is recognized as 
the if-holomorph of K . Its origins in group theory are familiar. In its loop-
theoretic context see, for instance, R.H. B-ruck [1] and D.A. Robinson [9]. 

E X A M P L E 2.8. We turn now to a class of loops constructed by Karl 
Robinson [12]. For each positive integer k let Cjt be the finite cyclic group 
of order k. For any integer η > 2 and any odd integer m with m > 1 let 
H = C2 X C2 X . . . X Ci be the elementary Abelian 2-group of order 2™ 
and let Κ = Cm. Enumerate the members of H as x\, X2, X3,.. ·, X2n with 
x\ = en and X2Z3 = £4. For each s = 4 , 5 , . . . , 2 n define θ3 : Η —> Sym Κ 
by 

0 (x.) - I T if 1 < ¿ < s 
I identity element of Sym Κ otherwise 

where kr = k~x for all k ζ Κ. Then each θ3(χ{) is indeed an automorphism 
of K, and for each s = 4 , 5 , . . . , 2 n , we can form the semi-direct product 
H Xffs K. Karl Robinson [12] denotes such a loop by B(2n, s, m), shows 
that each such loop is a Boi loop which is not Moufang, and proves that 
for each such m and η these 2" — 3 Bol loops of order 2nm are pair-wise 
non-isomorphic. This construction can be generalized, as we shall see in §4. 

3. Bol Loops 
Let G be a loop. Recall that an ordered triple A = (a, ^ ,7 ) where 

a,ß, 7 € Sym G is an autotopism of G provided that xa · yß = (xy)7 for 
all x,y € G. Let α1(α2,/3i,/?2,7i>72 be in SymG. If A = (αι,/?ι,7ι) and 
Β = {a2,ß2,72), we define AB by AB = (αχ,a 2 ,ßi,ß2,71,72) and note 
that if any two of A, Β and AB are autotopisms of G so is the third. Recall 
from §1 that G is a Boi loop provided that (xy · z)y = (x(yz · y) for all 
x,y,z G G. Basic facts concerning Bol loops can be found in [7], where it is 
shown that 

L E M M A 3 . 1 . A loop G is a Boi loop if and only if 

A(x) = (R(x)~1,L(x)R(x),R(x)) 

is an autotopism of G for all χ G G. 

Now we approach the problem of determining precisely when semi-direct 
products of loops produce Bol loops. 

L E M M A 3 . 2 . Let G, H, and Κ be loops such that G = Η x$ Κ for some 
θ : Η —* Sym Κ. Then G is a Boi loop if and only if 
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(i) H is a Boi loop, and 
(ii) the equation 

(3.1) [(Μ(Λ2)·Α2)0(Λ3)·*3]0(/ΐ2)·*2 = kAh2h3-h2)[(k2e(h3)-k3)e(h2)-k2] 

holds for all h2,h3 G Η, all k\,k2, k3 G Κ. 

P r o o f . Let χ = (hi,ki), y = (h2,k2), and ζ = ( h 3 , k 3 ) be in G. Now use 
(2.1) to exhibit (xy · z)y and x{yz · y). Comparison of the first and second 
"components" gives (i) and (ii) respectively. • 

LEMMA 3.3. Let G, H and Κ be loops such that G = Η χ β Κ for some 
θ : Η —• Sym/i. If θ(χ) is an automorphism of Κ for all χ ζ Η and 
if 6(xy · x) = e(x)6(y)6(x) for all x,y G Η, then (3.1) holding for all 
h2, h3 G Η, all ki,k2,k3 G Κ is equivalent to 

B(k,x,y) = (R(k)-\L(k)R(ke(x)e(y)),R(ke(x)e(y))) 

being an autotopism of Κ for all x, y G H, all k G Κ. 

P r o o f . Since G is a loop, we have e/<-0(/i) = ex and k9(ejf) — k for all 
h G H, all k G K. From the hypothesis we have 

θ(χ) = θ(χχρ • χ) = θ(χ)θ(χ")θ(χ) 

for all χ G H where xp is the right inverse of x. So 

(3.2) θ(χ)-1 = θ{χρ) 

for all x G H. Now note that (3.1) holds for all h2,h3 G Η, all k\,k2,k3 G Κ 
if and only if 

(3.3) [ ( M ^ ) e ( h 3 ) 9 ( h 2 ) • k20(h3)e{h2)) • k30{h2))k2 

= M ( Ä 2 ) 0 ( Ä 3 ) 0 ( Ä 2 · P 2 0 ( / * 3 ) 0 ( M · M ( M ) · K 2 ] 

for all h2,h3 G H, all klyk2,k3 G K. But (3.3) holds all h2,h3 G H, all 
h,k2,k3 G Κ if and only if 

(3.4) (uv • ΐί>)υ0(Γ)-10(θ)-1 = u(vw • t > 0 ( r ) - 1 0 ( ¿ ) - 1 ) 

for all r,s G Η, all u,v,w G Κ. Using (3.2), replacing r and s by χ λ and yλ 

respectively (λ here indicates left inverse) and writing k for v, we see that 
(3.4) holds for all r,s G ff, all u,v,w G Κ if and only if 

(3.5) (uk • w) • ke(x)e(y) = u[kw • k0(x)9(y)] 

for all x, y G H, all u,k,w G Κ. Then merely replacing u by ui?(&) - 1 , we 
see that (3.5) holds for all x, y G ff, all u,k,w G Κ if and only if 

(3.6) uR(k)'1 • [wL(k)R(ke(x)6(y))] = (uw)R(ke(x)0(y)) 

for all x,y G H, all u,w,k G Κ. But this is equivalent to B(k, x, y) being an 
autotopism of Κ for all x,y G Η, all k G K, and our proof is complete. • 
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LEMMA 3 . 4 . L e t G , H , a n d Κ b e l o o p s s u c h t h a t G = Η x $ Κ f o r s o m e 
θ : H Sym Κ . T h e n G i s a B o i l o o p i f a n d o n l y i f 

(i) H i s a B o i l o o p , 
(ii) θ [ χ ) i s a n a u t o m o r p h i s m o f Κ f o r a l l χ G H , 

(iii) 6 { x y • χ ) = e ( x ) e ( y ) e ( x ) f o r a l l χ , y G H , 
(iv) B ( k , x , y ) = { R ( k ) - 1 , L ( k ) R ( k e ( x ) e ( y ) ) , R ( k e ( x ) e ( y ) ) } i s a n a u t o -

t o p i s m o f Κ f o r a l l χ , y G H , a l l k G Κ . 

P r o o f . In view of Lemmas 3.2 and 3.3 we need only show that (ii) and 
(iii) hold whenever G is a Boi loop. So let us assume that G is a Boi loop. By 
Lemma 3.2 we know that (3.1) holds for all h 2 , h $ G H , all k i , k 2 , k 3 G Κ . 
Setting hs = e n and k 2 = e/<- in (3.1), we obtain 

(3.7) ( Μ ( λ 2 ) · h ) e { h 2 ) = k x e { h \ ) • ( M ( M ) 

for all /i2 G Η, all ki ,k 3 G Κ . Setting = εκ in (3.7), we get &ι0(/ΐ2)2 = 
k \ 0 ( h \ ) for all G H , all k i G Κ . Using this in (3.7) and replacing &i#(/i2) 
by A;, we get 

( k k 3 ) e ( h 2 ) = k e ( h 2 ) · k 3 e ( h 2 ) 
for all h 2 G H , all fc, ¿3 G Κ · So (ii) holds. 

Finally, letting k 2 — k 3 — e/<· in (3.1), we get 

*ι0(Λ2)0(Λ3)0(Λ2) = Μ(Λ 2 Λ 3 · M 
for all h 2 ì h 3 G H, all ki G Κ . So (iii) holds, and our proof of Lemma 3.4 is 
complete. 

LEMMA 3 . 5 . L e t Κ b e a B o i l o o p . I f a , b G Κ a n d i f a b G N P ( K ) , t h e 
r i g h t n u c l e u s o f K , t h e n k · a b = k a · b f o r a l l k G Κ . 

P r o o f . Since Κ is a (right) Boi loop (and more generally for any loop 
satisfying the right inverse property) we have N P ( K ) = Ν μ ( Κ ) , the middle 
nucleus of I { . So we have 

k • a b = p · a6)6_1]6 = [ k ( a b • b ' 1 ) ^ = k a - b 

for all k G K . m 

DEFINITION 3 .6 . An automorphism θ of a Boi loop Κ is r i g h t n u c l e a r 
means that y - 1 · y e G N P ( K ) for all y G Κ , where N P ( K ) again is the right 
nucleus of Κ . 

T H E O R E M 3 . 7 . L e t G , Η a n d Κ b e l o o p s s u c h t h a t G — Η Χ 9 Κ f o r s o m e 
θ : Η —»· Sym Κ . T h e n G i s a B o l l o o p i f a n d o n l y i f 

(i) H a n d I t a r e B o l l o o p s , 
(ii) θ ( χ ) i s a r i g h t n u c l e a r a u t o m o r p h i s m o f Κ f o r e a c h χ G H , 

(iii) 9 { x y • χ ) = 9 { x ) e { y ) e { x ) f o r a l l x , y e H . 



580 E .G. Goodaire , D . A . Rob inson 

P r o o f . First, let G be a Boi loop. Then H and Κ are Bol loops, since 
they are isomorphic to subloops of G. So, by Lemma 3.4, we see that (i) 
and (iii) hold, tha t 9(x) is an automorphism of Κ for all χ G H , and that 
B(k,x,y) of Lemma 3.3 is an autotopism of Κ for all x, y G H, all k G K. 
Then, in particular, BB(k,eH,ejj) and B(k,x,eH) are autotopisms of Κ 
for all χ G H, all k G Κ. But then note that 

BfceH^HMRm^RiMix^Rik^RWx))) = B(k,x,eH) 

for all χ G H, all k G Κ, where I is the identity map on Κ. So 

(3.8) ( / , Ä(fc) _ 1Ä(M(*)) , 

must be an autotopism of Κ for all χ G H, all k G K. So we have 

a • bR(k)'1 R(k0(x)) = (ab)R(k)-1 R(kO(x)) 

for ail χ G H, ail a, b, k G K. Setting b = ex, we get 

R(k_1 • k0(x)) = Rik^RikOix)) 

for ail χ G H, ail k G K. So autotopism (3.8) above becomes 

</,Ä(fc-1 -ke(x))) 

for aü χ G H, all k G K. So k'1 · k0(x) G NP(K) for all χ G H, all fc G Κ. 
So θ(χ) is indeed right nuclear for each χ G H, and (ii) holds. 

Conversely, assume now that (i), (ii), and (iii) hold. Then we see that 
k-1 · k9{x) G Np(k) and (k0 (x ) ) -* · k9{x)B{y) G NP(K) for all x,y G H, aü 
k G K. Since K is a Bol loop, we can use Lemma 3.5 to get 

(AT1 · ¿ö(a;))[(Ä;0(x))_1 · ke(x)e(y)} 
= p"1 · k6{x)) • (M(x))-1] · (ke(x)O(y)) = k'1 • ke(x)0(y) 

for all χ G H, all k G Κ. But since k · ke(x)6(y) has just been shown to 
be a product of two elements in NP(K), it is in NP(K) too. Thus 

(3.9) ( I , Rik-1 • k9(x)0(y)), R^k'1 • ke(x)0(y))) 

is an autotopism of Κ for all x, y G H, all k G K. Since K is a Bol loop, we 
recall that NP{K) = Νμ{Κ). So we see that k-1 •k9{x)9{y) is also in Νμ(Κ) 
for all x, y G H, all k G K. Hence, we have 

[a(k~l • ke(x)e(y)} • (ke(x)e(y))-1 = a[(/ra · ke{x)6{y)) • (kß(x)e(y))-1} 

for all x, y G H, all a,k G Κ. But Κ satisfies the right inverse property, so 
we see that 

KÄT1 · ke(x)e(y))] • (ke(x)û(y)-1 = ak-1 

for all x,y G H, all a,k G Κ. Using the right inverse property once again, 
we get 

a^-1 · ke(x)0(y)) = {ak-1) • (k9(x)e(y)) 
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for all χ, y G H, all α, k G Κ. So autotopism (3.9) can be rewritten as 

(3.10) ( / , R(k-1 )R(ke(x)e(y)), R(k~1)R(k6(x)ey))) 

for all χ, y G ff, all k G Κ. But recall tha t R(k~1) = R(k)-1 and that by 
Lemma 3.1 

(3.11) (R(k)-\L(k)R(k),R(k)) 

is an autotopism of Κ for all A; G Κ . So multiplying autotopisms (3.11) and 
(3.10), we see that B(k,x,y) is an autotopism of Κ for all x,y G Η, all 
k G Κ. So, by Lemma 3.4, G is a Boi loop and our proof is complete. • 

The corollaries which follow are immediate consequences of Theorem 3.7, 
since Moufang loops — those loops which satisfy the identity ( x y · z)y = 
x(y ' ZV) — a r e necessarily Bol loops. In fact, Moufang loops are seen to be 
precisely those Bol loops that are di-associative. 

C O R O L L A R Y 3 . 7 . 1 . Let H be a subgroup of the automorphism group of a 
loop Κ. Then the Η holomorph of Κ (see Example 2.7) is a Boi loop if and 
only if Κ is a Boi loop and each h £ Η is right nuclear. 

C O R O L L A R Y 3 . 7 . 2 . Let G, Η and Κ be loops with G - Η χ β Κ for some 
θ : Η Sym Κ. Then G is a Moufang loop if and only if 

(i) II and Κ are Moufang loops, 
(ii) θ(χ) is a right nuclear automorphism of Κ for each χ € Η, 

(iii) e\xy) = θ(χ)θ(ν) for all χ, y e Η. 

C O R O L L A R Y 3 . 7 . 3 . Let G, H and Κ be loops with G = Η χθ Κ for some 
θ : H —y Sym Κ. Then G is a group if and only if 

(i) H and Κ are groups, 
(ii) θ(χ) is an automorphism of Κ for each χ G H, 

(iii) 9{xy) = 0(x)0(y) for all χ, y e H. 

C O R O L L A R Y 3.7.4. (Karl Robinson [12] ) . Let G, H and K be loops with 
G = Η χ β Κ for some θ : Η —*• Sym Κ and assume furthermore that Η and 
Κ are groups. Then G is a Boi loop which is not Moufang if and only if 

(i) θ(χ) is an automorphism of Κ for each χ G H, 
(ii) e\xyx) = e{x)e(y)9(x) for ali x,y e H, 

(iii) 6(uv) φ 6(u)0(v) for some u,v G H. 
(It was shown in Example 2.7 how Η, Κ and θ can be selected to satisfy 

the conditions of the preceding corollary. The loop Η X$ I i which results 
is also mentioned in [4, p. 40]. Incidentally, this type of construction was 
recently employed by Karl Robinson and one of the authors (see [11]) to 
show that the nucleus of a Boi loop need not be normal.) 

In order to use semi-direct products of Bol loops to produce new Bol 
loops — especially ones which are not Moufang — close attention must be 
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paid to conditions (ii ) and (ii i ) of Theorem 3.7. We address our concerns 
with a few remarks and results. 

R e m a r k 3.8. Let H and Κ be groups with Η cyclic. Suppose that a 
semi-direct product Η χ g Κ with respect to some 0 : Η —> Sym Κ is a 
Boi loop. Consulting Theorem 3.7, we see that 0(xyx) = 0(x)0(y)0(x) for 
all x,y G H. This condition, together with the requirement from §2 that 
0 ( eu ) = esym/<·, allows one to prove that θ ( χ η ) = θ (χ ) η for all χ G Η , 
all integers n. But now let a be any generator for the cyclic group Η . For 
x,y G H, we have χ = am and y = an for some integers m and n, so 
0(xy) = 0(aman) = 0(am+n) = 0(a)m+n = 0(a)m0(a)n = 0(am)0(an) = 

0(x)0(y). From Corollary 3.7.3, we see now that H x$ Κ must also be a 
group. In other words, to use a semi-direct product of groups Η and Κ to 
produce a Boi loop which is not a group (and for that matter not Moufang) 
we must make certain that the group Η is not cyclic. (Note that in Example 
2.8 the group Η is not cyclic, but rather an elementary Abelian 2-group). 

R e m a r k 3.9. To utilize Theorem 3.7 we must have at our disposal 
right nuclear automorphisms of Bol loops. If G is an extra loop, in that 
(xy · z)x = x(y · zx) for all x,y,z G G, then G is a Boi loop (in fact, it is 
Moufang) and all of its inner maps R(x)R(y)R(xy)~1, all x, y G G, are right 
nuclear automorphisms of G (see D.A. Robinson [9]). 

LEMMA 3.10. Let G be a Boi loop. If a,b G G with ab G NP(G), then 

α - 1 · ab = b and ό - 1 α - 1 = (ab)-1. 

P r o o f . Since G satisfies the right inverse property, for each u £ G, we 
recall that u~x is that element in G so that u~1u — TO-1 = ec- From 
Lemma 3.5 we have χ · ab — xa • b for all χ £ G. Setting χ = α - 1 , we get 
α - 1 · ab = b; setting χ = (ab)-1 and using the right inverse property twice, 
we get r - 1 a - 1 - (a&) - 1 . • 

THEOREM 3.11. Let G be a Boi loop. If α, β and j are automorphisms 

of G with a and β right nuclear, then aß, a-1 and j_1aj are right nuclear 

automorphisms of G. 

P r o o f . Clearly aß,a'1 and •y~1a/y are automorphisms of G. We need 
only establish that they are right nuclear. 

Since a and β are right nuclear and since NP(G) is group, it follows that 
y-1 • ya G NP(G), (ya)'1 • (ya)ß G NP(G) and also (y-1 · ya) · [ ( y a ) " 1 · 

(ya)ß] G NP(G) for all y G G. Now using Lemma 3.10, we get y~x · yaß = 

y'1 • (ya)ß = 2/_1[(j/a) · ( ( j /α ) - 1 · (ya)ß)] = (y'1 • ya) • ((ya)'1 • (ya)ß). So 
we have y-1 · yaß G NP(G) for ail y G G. Thus aß is right nuclear. 
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Since α is right nuclear and ( j /cc - 1 ) - 1 ·y = ( y a - 1 ) - 1 • ( y a _ 1 ) a , it follows 
that ( 2 / a - 1 ) - 1 · y G NP(G) for all y G G. But then too we have ((ya'1)'1 · 
y)-1 G NP(G). By Lemma 3.10 we have ( ( y a - 1 ) - 1 · y)_1 = y_1 · y a S o 
2 / - 1 · ya~l G NP(G) for all y G G. Thus α - 1 is right nuclear. 

It is easy to show that wy G NP(G) whenever u G NP(G). So with a right 
nuclear we note that ( j / - 1 7 _ 1 -2/7-1Q:)7 G NP(G) for all y G G. But we have 
( y - 1 7 - 1 · ι / 7 - 1 α ) 7 = y - 1 · y f ^ a f , so y - 1 · 3/7 -1 cry G NP{G) for all y G G, 
and 7 - 1£*7 is right nuclear. This completes our proof. • 

Since the identity automorphism is right nuclear, Theorem 3.11 has some 
immediate consequences. 

COROLLARY 3 . 1 1 . 1 . Let G be a Boi loop. The set of all right nuclear 
automorphisms of G is a normal subgroup of the automorphism group ofG. 

COROLLARY 3 . 1 1 . 2 . Let G be a Boi loop. If S is a set of right nuclear 
automorphisms of G, then the subgroup {S) of the automorphism group of 
G generated by S is a group of right nuclear automorphisms of G. 

COROLLARY 3 . 1 1 . 3 . Let G be a Boi loop. Then G has a non-trivial group 
of right nuclear automorphisms if and only if G has at least two right nuclear 
automorphisms (i.e., at least one other than the identity map). 

We now show that many Bol loops (in addition to the extra loops men-
tioned in Remark 3.9) do have non-trivial right nuclear automorphisms. This 
becomes crucial in §4, where some applications are discussed. 

Recall that an element α G Sym G for any loop G is a pseudo-auto-
morphism of G provided that (a, aR(a), aR(a)) is an autotopism for some 
a G G. Such an element a is called a companion of the pseudo-automorphism 
a. For all x,y G G, let R(x,y) be the inner map of G given by R(x,y) = 
R(x)R(y)R(xy)~1 and let be such that x x - 1 = ea- Now let [χ , y\ be de-
fined by [x, y] = (x~ly~l)(xy) for all x,y G G. Note that for any right inverse 
property loop G we have x x - 1 = x - 1 x = ea and x - 1 ? / - 1 = [x, y](xy)_1 for 
all χ , y G G. So for a right inverse property loop the elements [x,y] indicate 
to what extent G departs from satisfying the automorphic inverse property. 

THEOREM 3 . 1 2 . If G is a Boi loop, then R(x,y) is a pseudo-automor-
phism of G with companion [x,y\. 

P r o o f . Since G is a Boi loop, we know that A(x) given by ^4(x) = 
(R(x)~1, L(x)R(x), R(x)) is an autotopism of G for each χ G G (see Lemma 
3.1). So corresponding to each pair of elements χ and y of G there is a map 
β G Sym G so that B{x,y) = A(x)-1 A(y)'1 A(xy) = (R(x)R(y)R{xy)~1,ß, 
R(x)-1 R(y)-1 R(xy)) is an autotopism of G. So 

( 3 . 1 2 ) aR(x)R(y)R(xy)~1 • bß = (aô)Â(x)"1 R{y)~x R(xy) 
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for all a,beG. Setting a = eG in (3.12), we see that ß = R(x)'1 R(y)~1 R(xy); 
setting b = eG in (3.12), we get R(x, y)R{eaß) = R{x)~lR{y)~1 R{xy). Thus 

B(x,y) = (R(x,y),R(x,y)R(eGß),R(x,y)R(eGß)) 

and eGß = (x _ 1 3/ _ 1 ) (xt / ) = [χ, y]. Our proof is complete. • 

COROLLARY 3 . 1 2 . 1 . Let G be a Boi loop. Then R(x,y) is an automor-
phism of G if and only if[x,y] G NP(G). 

Recall that a Boi loop G is a Bruck loop provided that χ —* χ2 is a 
permutation of G and that (xy) - 1 = x~xy~x for all x,y G G. So for all such 
loops [x, y] = eG for all x,y G G. Thus, with all [x, y] G NP(G), we have the 
following 

COROLLARY 3 . 1 2 . 2 ( G . Glauberman [5]) . If G is a Bruck loop, then 
R(x, y) is an automorphism of G for all x, y G G. 

COROLLARY 3 . 1 2 . 3 . Bol loops which are not groups have non-trivial 
pseudo-automorphisms. 

COROLLARY 3 . 1 2 . 4 . Bruck loops which are not groups have non-trivial 
automorphisms. 

One can verify that the Boi loop G given in Example 2.6 has the inter-
esting feature that [x, y] G NP(G) for all x, y G G. So its inner maps R(x, y) 
are automorphisms of G for all x, y G G. 

The smallest Bol loops which are not groups have order 8. There are 
six of them (see R.P. Burn [3]), and they all have non-trivial right nuclear 
automorphisms. 

4. Some applications 
It is our intention here to exploit Theorem 3.7 to construct some new 

Bol loops. 
A. Let us return to the semi-direct product discussed in Example 2.8. 

It is easy to see that each of the 0S, given there, for s = 4 , 5 , . . . , 2" (recall 
that η is an integer with η > 1), satisfies the conditions of Theorem 3.7. 
Thus, the loops 5 ( 2 " , s,m) (recall that τη is an odd integer with m > 1) 
for s = 4 , 5 , . . . , 2n are indeed Bol loops of order 2 n m and, since Θ3(Χ2Χ3) Φ 

none are Moufang. As Karl Robinson [12] points out, there are 
precisely 271 + (m — l)(s — 1) elements x in B(2n,s,m) such that χ = χ - 1 , 
and so the 2" — 3 loops obtained are pair-wise non-isomorphic. 

In the very same context as that of Example 2.8 (recall that the members 
of Η = C2xC2x ...xC2 are given as x i , x 2 , . . .,X2« with x\ = and 
X2X3 = X4) we now select θ2 and, whenever η > 2,03 as follows 

0 2 (x 2 ) = r, 02{Xi) = I for i φ 2; 
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0 3(z 2) = 03(x5) = Τ, θ3(χί) = I for i φ 2,5 
where, as before, I is the identity map on Κ and kr = k~l for all k G Κ. 

It is easy to see that θ2 and Θ3 both satisfy the conditions of Theorem 3.7. 
Thus, Hx$2K and, provided η > 2, Hx$3K are both Bol loops of order 2 n m , 
denoted here by B(2n, 2, m) and B(2n, 3, m) respectively. Neither of the Bol 
loops is Moufang, because with j = 2,3, we have Oj(x2X3) = = I 
whereas 9j(x2)0j(x3) = r . Note that 5 (2" , 2, τη) has exactly 2n + (m - 1) 
elements χ such that χ = χ - 1 . So B(2n,2,m) is not isomorphic to any of 
the Bol loops of order 2 n m of Example 2.8. Furthermore, if η > 2, the loop 
J?(2 n ,3 ,m) has exactly 2n + (s — l ) (m — 1) elements χ such that χ = χ - 1 . 
Thus, 5 (2" , 3, m) is not isomorphic to B(2n,2,m), nor to any of the loops 
of order 2nm of Example 2.8. 

In conclusion, with these "new" Bol loops, we assert that for any positive 
integers m,n with m odd, m > 1, and η > 2 there are at least 2 n — 1 pair-wise 
non-isomorphic Bol loops of order 2nm which are not Moufang and that for 
any odd integer m > 1 there are at least 2 non-isomorphic Bol loops of order 
4m which are not Moufang. 

B . l . Of the six Bol loops of order 8 which are not groups (they are not 
Moufang either) there is just one of exponent 2 (see R.P. Burn [3]). It can 
be realized as follows (see D.A. Robinson [7, p. 346]): Let R = {0,1} be the 
ring of integers modulo 2, let Β = R χ R χ R, and define multiplication for 
Β by 

(i, j , k) • (ρ, q, r) = (i + p,j + q,k + r + jp(q + 1)) 
for all (i,j,k),(p,q,r) £ B. Then e — ee — (0,0,0) and a = (0,0,1) are 
the only elements of Β which are in all three nuclei of Β and commute 
element-wise with B. The elements comprising Β can be listed as 

e = (0,0,0), α = (0,0,1), n = (0,1,1), ^2 = (1,0,1), z 3 = (1,1,0), 

ax 1 = ( 0 , 1 , 0 ) , ax2 = ( 1 , 0 , 0 ) , ax3 = ( 1 , 1 , 1 ) 

and the multiplication table for Β is as follows: 

e a xi X2 X3 ax 1 ax 2 ax 3 
e e a xi x2 X3 ax 1 ax2 ax 3 
a a e ax 1 ax 2 ax 3 xi X2 X3 

xi x\ ax 1 e ax 3 X2 a X3 ax2 

X2 X2 ax 2 X3 e xi ax 3 a ax 1 
X3 X3 ax 3 x2 ax 1 e ax 2 x\ a 

ax\ ax\ x\ a X3 ax 2 e ax3 x2 

ax 2 ax 2 X2 ax 3 a axi X3 e Xi 
ax 3 ax 3 X3 ax 2 Xi a X2 ax 1 e 
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Now define 
(•i,j,k)a = (i,j,i + j + k) 

for all (i,j, k) G Β. Then α is a right nuclear automorphism of Β of order 2, 
fixing each of e, a, χ3, and 0x3, interchanging x\ and ax 1, and interchanging 
Χ2 and ax2· 

[Remark .Let ( i , j , k ) ß = (i,j,j + k) for all ( i , j , k ) G Β. Then β is also a 
right nuclear automorphism of B. Actually, the automorphism group, Aut Β, 
of Β is the elementary Abelian 2-group of order 8. Although for each θ G 
Aut Β and each y G Β, y - 1 · y6 is in at least one of the three nuclei of Β, 
only those automorphisms in the subgroup generated by a and β are right 
nuclear.] 

B .2 . Let Β and a be the same as in Part B.l above. For each positive even 
integer m let H = Cm be the cyclic group of order m, and let c be a generator 
of H. Now let Κ = Β, and define ö(c') = α* for all integers i. Then with τη 
even we see that θ is well defined. It follows that θ : Η —• Aut Κ and that 
θ(χ) is a right nuclear automorphism of Κ for each χ G H. For all integers 
i and j note that 6>(cV · c¿) = 0(c2i+ · ') = a2i+> = a ' a W = θ ^ θ ^ θ ^ ) . 
Since the conditions of Theorem 3.7 hold, it follows that Η Κ is a Bol 
loop of order 8m with a subgroup isomorphic to the Boi loop B. Since Β 
is not Moufang, neither is Η X g Κ. It is clear then that for each integer 
r > 3 and each positive integer η there is a Boi loop of order 2Tn with a 
subloop isomorphic to the non-Moufang Boi loop Β of exponent 2 and order 
8 described in B.l. 

The loop Β can be generated by two elements χ and y such that y φ x-xy 
(for instance, take χ = x\ and y = x2 in Part B.l above). An examination 
of the elements of order 2 in the Bol loops of Example 2.8 (see also Part A 
of the present section) shows that they cannot accomodate elements χ and y 
with y φ x-xy and so they have no subloop isomorphic to B. This guarantees 
that the loops just constructed have not already occurred in Example 2.8. 

B .3 . Now let Η be the Boi loop Β of Part B. l , and let Κ be any Bol 
loop which has a right nuclear automorphicm 7 of order 2. For each integer 
i = 1 ,2 ,3 ,5 ,6 ,7 (i = 4 is intentionally omitted for reasons explained later) 
we select : Η —»• Aut Κ as follows: 

°i(x) = { 
7 if χ = a 
I otherwise 

I otherwise 
7 if χ = α, xi , or ax 1 
I otherwise 
7 if χ = a, X\, ax 1, X2, or ax2 
I otherwise 

fcOO = { 

9s(x) = { 
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θβ(χ) = { 

θ7(χ) = { 

7 if χ = ®ι, αχ ι , χ ι , αχ2, χζι or 0x3 
I otherwise 
7 if χ Φ en 
I otherwise 

where I is the identity automorphism on K . 
As noted B. l the element a is the only member of Β other than 

which is in all three nuclei of Β and which commutes element-wise with B, 
that is, {β£ ,α} is the center of B. A glance at the multiplication table of 
Β in B . l reveals uv = vu or uv = a · vu whenever u and υ are members 
of B. Thus, {ββ,α} is also the commutator subloop of B. Recall too that 
Β has exponent 2, is a (right) Boi loop, and is right alternative. Now let 
9 be any one of the 0,· for i = 1 , 2 , 3 , 5 , 6 , 7 defined above, and note that 
9(ay) = 9(y) for all y G Β with y φ eß and y φ a. With this information 
it is easy to examine 9(xy · x) for all x, y G Β. If xy = yx, then we have 
9{xyx) = 9{yx-x) = 9{yx2) = 9{y) = 9{x)29{y) = e(x)e(y)9(x); if xy φ yx, 
we have 9(xy · x) = 9{yx · a)x) = 6(y(xa · χ)) = θ(α • yx2) = 9(ay) = 9(y) = 
9(x)29(y) = 9(x)9(y)9(x). T h u s , 9{xy · x ) = 9(x)9(y)9(x) f o r al l x,y G Β. 
Since the conditions of Theorem 3.7 are satisfied, the six loops H x g. Κ 
are Bol loops. None are Moufang, since each contains a subloop isomorphic 

Note that each θ i above maps i members of Β to 7, and the remaining 
8 — i to I. Since it does not seem possible to select a map Θ4 which maps 
exactly 4 members of Β to 7 while satisfying the conditions of Theorem 3.7, 
a map Θ4 is conspicuously missing above. 

As a special case, one can take Κ = Cm, the cyclic group of order m, 
where m is odd with m > 1, and then select 7 by £7 = k-1 for all k G Κ. 
For each i = 1 ,2 ,3 ,5 ,6 ,7 , the resulting Boi loop Β Xj. Κ of order 8m has 
precisely 8 + i(m — 1) elements χ such that x - 1 = x. Hence, the six loops are 
pair-wise non-isomorphic. Since each of these loops has a subloop isomorphic 
to Β and those of Example 2.8 do not (recall an argument sketched in B.2 
above), these Bol loops cannot be isomorphic to any loops in Example 2.8. 
Furthermore, comparing the orders of these six Bol loops with those of B.2, 
we see that these are not isomorphic to any of those constructed in B.2. 

Replacing Β above by Β x G where G = Ci x Ci x . . . x Ci is the 
elementary Abelian 2-group of order 2 n ~ 3 for any integer η > 3, but keeping 
Κ = Cm and 7 as above, we can define maps otj : G —• { / , 7 } in various 
ways to guarantee that the loops ( Β x G) Xeiy Cm, with 9ij(b,g) = 9¡(b)aj(g) 
for all (b,g) G Β X G, are Bol loops of order 2 n m which are not Moufang. 
But now questions concerning which of the loops are non-isomorphic cannot 
be answered by merely determining the number of solutions to x - 1 = x, 
and seem difficult to resolve. 

to B. 
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As we have seen in this section, the Boi loop Β of Part B.l is well suited 
to this semi-direct product technique for constructing new Bol loops. It may 
be profitable to examine the remaining five Bol loops of order 8 which are not 
groups to see whether or not they too can be exploited in a similar manner. 

5. Epilogue 
There are, of course, many interesting constructions of quasigroups and 

loops throughout the literature which are not semi-direct products. One of 
the best surveys of such constructions is due to 0 . Chein (see Chapter II of 
0 . Chein, H.O. Pflugfelder, J.D.H. Smith [4]). 
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