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STRONGNESS IN LATTICES

Dedicated to Professor Tadeusz Traczyk

Faigle [3] introduced the notion of a strong join-irreducible element in
lattices of finite length. In this note we extend the concept of strongness
to arbitrary lattices being not necessarily of finite length. Here we give a
generalization of some results of papers [3] and [5].

1. Preliminaries

Let L be a lattice. If L contains a least or a greatest element, these
elements will be denoted by 0 or 1, respectively. An element u € L — {0} is
called join-irreducible iff, for all a,b € L u = a V b implies u = a or u = b.
Denote by J(L) the set of all join-irreducible elements of L. We say that a
is covered by b and write a < bif @ < b and if @ < ¢ < b implies ¢ = a for
all c. For two elements a,b € L(a < b) we define [a,b] = {c€ L:a < c < b}.

A lattice L is called strongly dually atomic if for any a,b € L witha < b
there is p € [a, ] such that p —< b. (This notion is the dual of the concept
“strongly atomic” as used in [2].) In a strongly dually atomic lattice L the
unique lower cover of a join-irreducible element u is denoted by «’.

A lattice L is said to be consistent (see [4])iff a € L and u € J(L) imply
that aVu € J([a,aV u]). We remark that in [1], p. 249, one finds a condition
equivalent to dual consistence (see also [2], p. 53).

A complete lattice L is lower continuous, if

aV/\C’:/\(aVc:cEC)

for all a € L and for all chains C in L.
Now we introduce the concept of a strong lattice. For lattices of finite
length the definition of strongness is given by Stern (see [8] or [9]) by the
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property
(S) vu€ J(L),a€ Landu<aVu implyu<a.

We extend the notion of strongness from lattices of finite length to arbitrary
lattices. Namely, we say that a lattice L is strong if the following condition
is satisfied:

(S) v € J(L),a,be Land b<u<aVbimplyu<a.

It is easy to see that in strongly dually atomic lattices (in particular: in
lattices of finite length) properties (S), (S’) and

(DO) u€J(L),a€ Landufaimplyavu' <aVu

(given in [7], p. 68) are equivalent.

We remark that any atomistic lattice (in particular: each geometric lat-
tice) is strong. (Indeed, each join-irreducible element of an atomistic lattice
is an atom.)

Now we observe that any modular lattice is strong. Let L be a modular
lattice and let v € J(L), a,b € L with b < u < a V b. By the modular law,
u = (@ Au) Vb. Since u is join-irreducible this implies © = a A u, that is
u < a which means that L is strong.

Also, it is not difficult to give examples of lattices which are strong but
neither modular nor atomistic (see Section 23 of [10]).

As a preparation for the next result we need the following

LEMMA 1. Let L be a strong lattice and ¢,d € L with ¢ < d. Ifu € J(L)
and b € L are elements such that b < u < d but u £ ¢, then b < c.

Proof. Suppose that b £ ¢. We have ¢ < bV ¢ < dand ¢ < d. Then
u < d = bV e and strongness implies u < ¢, a contradiction. Therefore, b < c.

2. Results
The first major result is

THEOREM 1. A semimodular lower continuous strongly dually atomic
lattice is consistent iff it is strong.

Proof. Let L be a semimodular lower continuous strongly dually atomic
lattice. Assume first that L is consistent but not strong. Let a join-irreducible
element u € J(L) be such that v < a V' and u £ a for some a € L. Thus
theset T:={z € L:u<zVu and u £ z} is not empty. Let C be a chain
in T. The lower continuity follows

u'V/\C:/\(cVu':cEC)Zu.
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Clearly, © € A C. Therefore A C € T, and T contains a minimal element b,
by Zorn’s lemma. Since L is strongly dually atomic we may choose p € L
with p —< b. Observe that

(1) pVvu <pVu.
Indeed, if pV 4’ = pV u, then p € T, contradicting the minimality of b.

Now we observe that b < p V u' is not possible, since b < pV u' would
imply, bVvu' <pVu' <pVu< bV, a contradiction. Since p < b and
bLpVu weget

bA(pVu')=p<b.
Hence, by semimodularity we conclude that
pvu <bvpvu =bvu' =bVvu.
Thus we have
pVu' <pVu<bVuand pvu' <bVu.
Consequently,
(2) pVu=»bVu,
and therefore pV u = (pV u') vV b. Consistence implies that p V u is a join-
irreducible element of the sublattice [p,1]. This together with (1) and (2)
yields bV u = pV u = b, which contradicts the fact that u £ b. It follows
that L must be strong.

Conversely assume that L is strong but not consistent. This means that
there exist a € L and u € J(L) with e V u & J([a,1]). Thus there are two
distinct elements ¢y, ¢2 € [a, aVu] which are covered by aVu. Since v £ ¢4, ¢2,
by Lemma 1 we get v’ < ¢; for i = 1,2. Thus we have v/ < uA(c;Aez) <u

and obviously u £ ¢; A c;. Hence we obtain v A (¢1 A ¢z) = v’ < u. By
semimodularity we conclude that

caahca <(catAe)Vu=aVu.
This is a contradiction since by our construction we have ¢c;Acy < ¢; < aVu.

Remark 1. The preceding theorem generalizes Theorem 27.1 of [10]
(see also [3], p. 33 and [5], p. 125), since any lattice of finite length is lower
continuous and strongly dually atomic.

As a preparation for the next result we recall the following concepts:

If a is an element of a complete lattice L, then a representation a = \/ T
with T C J(L) is called a join-decomnposition of a. A join-decomposition
a = \/T is irredundant if \/(T — {t}) #aforallt €T.

We say that a complete lattice L has the Kuros-Ore replacement property
(KORP) for join-decompositions (see [10], p. 30) if each element of L has at
least one irredundant join-decomposition, and whenever a = \/T = \/ R are



572 A. Walendziak

two irredundant join-decompositions of an element a € L, for each tg € T
there exists an ro € R such that a = \/(T — {to}) V 7 is also an irredundant
join decomposition.

G. Richter ([6], Theorem 11) has shown that a strongly dually atomic
lower continuous lattice has the KORP for join-decompositions iff it is con-
sistent. From this and Theorem 1 we obtain

THEOREM 2. Let L be a semimodular, lower continuous, strongly dually
atomic lattice. Then the following conditions are equivalent:
(i) L has the KORP for join-decompositions,
(ii) L is consistent,
(iii) L is strong.

Remark 2. From this theorem we obtain Corollary 27.2 of [10] (see also
[5], Theorem 4).
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