

Jan Samsonowicz*

A REMARK TO THE
"CHERN CLASSES OF BUNDLES OF RANK TWO ON P^5 "

In [1] we have studied the necessary conditions on coefficients $c_i \in \mathbb{Z}$, for existence of a 2-dimensional vector bundle E on P^5 with Chern classes $c_i(E) = c_i$. The list of this numbers is there not complete: in (1) the cases $m = 3, 8, 11$ are omitted. The former calculations implies that the main theorem should be the following:

THEOREM 1. *The Chern polynomial of any normalized 2-bundle on P^5 is of the form:*

1. $(12n + m)t^2 + 1$, $m = 0, 3, 8, 11$,
2. $6nt^2 + t + 1$,
3. $(6n + 10)t^2 + t + 1$.

Moreover such polynomial is reducible if and only if:

1. $n = -3k^2$, $m = 0$,
2. $n = -k(3k - 1)/2$ or $n = -k(3k + 1)/2$,
3. $n = -(3k^2 + 3k + 4)/2$.

□

References

[1] J. Samsonowicz, *Chern classes of bundles of rank two on P^5* , Demonstratio Math. 26 (1993), 529–533.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY OF TECHNOLOGY
Pl. Politechniki 1
00-661 WARSZAWA, POLAND

Received March 17, 1994.

Key words: Chern class, Chern polynomial.

*Thanks for Prof. Robert D. Little from Honolulu, the real author of this remark.

