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MONOTONICITY THEOREMS
FOR THE I-PROXIMAL LOCAL SYSTEM

In paper [1] it was proved that if a local system S fulfils the so-called
condition (SD), then the monotonicity of a function f is implied by some
conditions of (S)-limits and (S)-derivatives of f. In our paper we show that
the local system which consists of complements of sets I-sparse at a point
fulfils the condition (SD). We also formulate some monotonicity theorems
which follow from this fact.

Throughout the paper, I denotes the ideal of meager sets and B the
family of sets having the Baire property on the real line R. Forany A C R
andz € R,weput A—z = {a—z;a € A} and z- A = {za;a € A}. By an
n-subinterval of an interval [a,b] we mean each interval [a + (b - a),a +
H#1(p—a)] fori =0,1,...,n — 1. By a B-measurable kernel of a set A C R

we mean a set AcA having the Baire property, such that £ € I whenever
EC A\ Aand E € B. It is known that every subset of the real line has a
B-measurable kernel.

Let E be a set having the Baire property. We write df(E,z) = 0
if there is a sequence {t,} of real numbers tending to infinity such that
Xt (E-z)n[0,] — 0 I-a.e. (i.e. the set of points for which the convergence
does not hold is of the first category). We say that a set A C R is I-sparse
on the right at a point z, if there exists a set £ O A having the Baire
property, such that df (E U F,z) = 0 for any F € B with df (F,z) =0. A
set I-sparse on the left at z is defined similarly. We say that E is I-sparse
at z if it is I-sparse on the right and on the left at this point. Conditions
equivalent to those definitions can be found in [2].

THEOREM 1. Let A C [0,1) and B = [0,1)\ A. If
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(i) 0 € A,
(ii) B is I sparse on the right at each point of A,
(iii) A is I-sparse on the left at each point of B,
then B = 0.

Proof. First, we show that A has the Baire property. Let A be a B-
measurable kernel of A and G4 an open set such that AAG4 € I. For any
E C R, put

#T(E) = {z; R\ E is I-sparse on the right at z}.

Then (ii) implies A C AcC ¢t(A) = ¢*(A) = ¢7(G4) C G4. Therefore, as
Ga\Ae€I,Ac B.Let Ay = ANG4 and By = BN Gp where Gp is an
open set such that BAGpg € I. Then for each z € Ao, there is a positive
number ¢ such that (z —¢,2+¢)\ A € I, and a similar property holds also
for By.

Now, suppose to the countrary that B # (. Then, evidently, Ag # @
and By # §. We shall define inductively two sequences {a,} and {b,}. Since
0 € A, there are points a; € Ay and by € By with a; < b;. Assume we have
defined points a,, € Ag, b, € By such that a, < b,. Let ¢, = inf{z;][z,b,] \
B € I}. Then as a,4; we take any point from Aon(a,,, en)N(en— 9"'—% yCn)-
It is easy to see that, for each t € [ap+1,bn),

(1) INnBy is of the second category for any n-subinterval I of the interval
8, by).

In the same way one can define b,y as a point of By N (@nt1,0.) N
(ant1,n41 + %) such that for each ¢t € (ant1,bny1],

(2) InAgis of the second category for any n-subinterval I of the interval
[an+11 t]-

Since @y < @n41 < bny1 < bn and bpp1 — anyy < 1, there is a number
z € (0,1) for which z = lima,, = lim b,. But, since (0,1) C AU B, z must
belong to A or to B. Without loss of generality we may suppose that z € A.
From [3, Lemma 4] it follows that there is a positive integer ko such that, for
any h € (0,1), there exists a ko-subinterval I of [z,z + h] for which T\ A is
of the first category. Put ng = 2ko + 1. Let I; be a ko-subinterval of [z, by,,]
with I; \ A € I and let I; be an ng-subinterval of [z,b,,] included in I;. As
@no+1 < 2, condition (1) implies that I N By is of the second category. On
the other hand, , N By C 1 N B = I1 \ A € I. This contradiction ends the
proof.

Theorem 1 can be expressed as follows:

“The local system

(*) S(z)={AC R;z € Aand R\ A is I-sparse at z}

has the condition (SD)” (see [1]).
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In order to formulate the monotonicity theorems announced before, we
give a lot of definitions. By an I-proximal upper (lower) limit of a real
function f at a point z we mean

I-pr-lim sup f(y) = inf{t; f~[t, 00) is I-sparse at z},
y—z

I-pr-timinf f(y) = sup{t; f~1(—o0,1] is I-sparse at z},
y—z

If, in the preceding definitions, one replaces the phrase “I-sparse” by “I-
sparse on the right” (“I-sparse on the left”), then one obtains the defini-
tions of right-hand (left-hand) I-proximal extreme limits. They are denoted
I-pr-limsup,_,,+ f(y), I-pr-liminfy_ o+ f(y), I-pr-limsup,_.,- f(y) and
I-pr-liminf,_ .- f(y), respectively.

By an I-proximal lower derivative of a function f we mean the I-proximal
lower limit of its differente quotient, i.e.

_ o f() - f(2)
I-pr-Df(z) = I-pl’-h;[lg‘lf o

In an analogous way we define the I-proximal Dini derivates I-pr-D + f(z),
I-pr-D* f(z), I-pr-D ™ f(x), I-pr-D~ f(x).

In Thomson’s book [4] and in [3] one can find definitions of limits and
derivatives of a function with respect to a local system S (the so-called (S5)-
limits and (S)-derivates). It is evident that, for the local system S defined
by (%), we have

I-pr-liminf f(y) = (5) - liminf f(y),
I-pr-liminf f(y) = (§7) — liminf f(y),
y—z y—=z

I-pr-Df(z) = (§) - Df(z), I-pr-D*f(z)=(5*)—- Df(z)

and similar equations hold also for the remaining limits and derivates (where

§*(z) = {A;(—00,z)U A € §(z)} and §~(z) = {4;(z,00) U A € §(z)}).

Thus Theorems 1 and 2 and Corollary 3 from [1] imply the following theo-

rems.

THEOREM 2. If a real function f satisfies the following properties:

(a) I-pr-limsup, .- f(y) < f(z) for every z,

(b) I-pr-D*f(z) > 0 almost everywhere,

() [I-pr-D*f(z) > —oo everywhere except possibly at points of the denu-
merable set whose every point satisfies the inequality f(z) <
I-pr-liminf,_ .+ f(y),

then f is nondecreasing

THEOREM 3. If a real function f satisfies the following properties: -
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(a) Fpr-lmsup,_.,- f(y) < f(z) < I-pr-limint,_ v £(y) for every 2,
(b)  f(E) has void interior, where

E={z;I-pr-D*f(z) <0 and I-pr-D~f(z) <0},
then f is nondecreasing.

THEOREM 4. If f is a real function such that I-pr-D f(z) > 0 for every
z, then f is nondecreasing.
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