

Grażyna Anioł

ON THE RATE OF CONVERGENCE
OF SOME DISCRETE OPERATORS

We consider a certain class of discrete approximation operators L_n which include e.g. the Bernstein polynomials, the Baskakov operators, the Meyer-König and Zeller operators or the Favard operators. For bounded or some locally bounded functions f on an interval I there is estimated the rate of convergence of $L_n[f](x)$ at these points x at which the one-sided limits $f(x \pm 0)$ exist. In the main theorems the Chanturiya's modulus of variation is used.

1. Preliminaries

Let I be a finite or infinite interval and let $M(I)$ [resp. $C(I)$] be the class of all complex-valued functions bounded [continuous] on I . In the case when I is not compact interval, denote by $M_{loc}(I)$ the class of all functions defined on I and bounded on every compact subinterval of I . Introduce, formally, for functions f belonging to these classes the discrete operators L_n given by

$$(1) \quad L_n[f](x) := \sum_{j \in J_n} f(\xi_{j,n}) p_{j,n}(x) \quad (x \in I, n \in N),$$

where $N := \{1, 2, \dots\}$, $J_n \subseteq Z := \{0, \pm 1, \pm 2, \dots\}$, $\xi_{j,n} \in I$, $p_{j,n} \in C(I)$.

Suppose that

$$(2) \quad \sum_{j \in J_n} |p_{j,n}(x)| \leq \varphi_1(x) \quad \text{for all } x \in I \text{ and } n \in N.$$

where φ_1 is a positive function (with finite values) on I . In this case, operators (1) are well defined in the whole class $M(I)$. Assume further that, for every $x \in I$,

$$(3) \quad \varrho_n(x) := \sum_{j \in J_n} p_{j,n}(x) - 1 \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

and

$$(4) \quad |\mu_{2,n}|(x) := \sum_{j \in J_n} (\xi_{j,n} - x)^2 |p_{j,n}(x)| < \infty \quad \text{if } n \in N.$$

Then (see e.g. [12], pp. 28–29), at every point x of continuity of $f \in M(I)$ at which $|\mu_{2,n}|(x) \rightarrow 0$ as $n \rightarrow \infty$,

$$\lim_{n \rightarrow \infty} L_n[f](x) = f(x).$$

In case $f \in C(I) \cap M(I)$ this convergence is uniform on every interval $Y \subseteq I$ such that $\varphi_1 \in M(Y)$ and

$$\sup_{x \in Y} |\varrho_n(x)| \rightarrow 0, \quad \sup_{x \in Y} |\mu_{2,n}|(x) \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

The same is also true for unbounded functions $f \in C(I)$, satisfying a suitable growth condition. The rate of this uniform convergence is evaluated in [8]. Also, in [8] there are applied the recent results of W. Kratz and U. Stadtmüller [6] concerning the moduli of continuity of $L_n[f]$, and there are investigated the degrees of approximation of $f \in C(I)$ by operators (1) in the Hölder type norms.

In this paper we present some inequalities for the rate of pointwise convergence of $L_n[f](x)$ for functions $f \in M(I)$ (or $f \in M_{\text{loc}}(I)$) at these points $x \in I$ at which the one-sided limits $f(x \pm 0)$ exist. For the sake of brevity we use the notation

$$s(x) := \{f(x+0) + f(x-0)\}/2, \quad r(x) := \{f(x+0) - f(x-0)\}/2,$$

Our main estimates concerning the difference $\{L_n[f](x) - s(x)\}$ are expressed in terms of the modulus of variation of the function

$$g_x(u) := \begin{cases} f(u) - f(x+0) & \text{if } u > x, \\ 0 & \text{if } u = x, \\ f(u) - f(x-0) & \text{if } u < x \end{cases} \quad (u \in I).$$

Given any positive integer k , the modulus of variation $v_k(g; Y)$ of a bounded function g on a finite or infinite interval Y is defined as the upper bound of all numbers

$$\sum_{j=1}^k |g(\beta_j) - g(\alpha_j)|$$

over all systems Π_k of k non-overlapping intervals (α_j, β_j) contained in Y . If $k = 0$ we take $v_0(g; Y) = 0$. Clearly, $v_k(g; Y)$ is a non-decreasing function of k . Some basic properties of this modulus can be found e.g. in [1], [9].

In our considerations, the integral part of a real number u is denoted by $[u]$.

2. Main results

Let $f \in M(I)$ (or $f \in M_{\text{loc}}(I)$) and let (1) be meaningful. Consider a point $x \in \text{Int } I$ at which both limits $f(x \pm 0)$ exist.

It is clear that, for all $u \in I$,

$$f(u) = g_x(u) + s(x) + r(x)\text{sgn}_x(u) + \{f(x) - s(x)\}\delta_x(u),$$

where

$$\text{sgn}_x(u) := \begin{cases} 1 & \text{if } u > x, \\ 0 & \text{if } u = x, \\ -1 & \text{if } u < x, \end{cases} \quad \delta_x(u) := \begin{cases} 1 & \text{if } u = x, \\ 0 & \text{if } u \neq x. \end{cases}$$

Therefore,

$$(5) \quad L_n[f](x) - s(x) = L_n[g_x](x) + \Delta_n(f; x) + s(x)\vartheta_{x,a}(x),$$

with

$$(6) \quad \Delta_n(f; x) := r(x)L_n[\text{sgn}_x](x) + \{f(x) - s(x)\}L_n[\delta_x](x).$$

In order to evaluate the term $L_n[g_x](x)$ it is convenient to write

$$(7) \quad \begin{aligned} L_n[g_x](x) &= \sum_{|\xi_{j,n}-x| \leq a} g_x(\xi_{j,n})p_{j,n}(x) + \\ &+ \vartheta_{x,a} \sum_{|\xi_{j,n}-x| > a} g_x(\xi_{j,n})p_{j,n}(x) \quad (a > 0), \end{aligned}$$

where $\vartheta_{x,a} = 0$ if neither of the points $x \pm a$ belongs to $\text{Int } I$, and $\vartheta_{x,a} = 1$ otherwise.

LEMMA. *Suppose that f is bounded on an interval $[x - a, x + a] \cap I$ and that conditions (2), (4) are satisfied. Choose a positive null sequence (d_n) such that $d_n \leq \frac{1}{2}$ and write $m := [1/d_n]$. Then, for every $n \in N$,*

$$(8) \quad \begin{aligned} (8) \quad \left| \sum_{|\xi_{j,n}-x| \leq a} g_x(\xi_{j,n})p_{j,n}(x) \right| &\leq \\ &\leq P_n(a, x) \left\{ \sum_{j=1}^{m-1} \frac{1}{j^3} v_j(g_x; I_j^a) + \frac{1}{m^2} v_m(g_x; I^a) \right\}, \end{aligned}$$

where $I^a = I^a(x) := [x - a, x + a] \cap I$, $I_j^a = I_j^a(x) := [x - jad_n, x + jad_n] \cap I$, $j = 1, 2, \dots, m - 1$ and $P_n(a, x) := 2\{\varphi_1(x) + 8|\mu_{2,n}|(x)/(ad_n)^2\}$.

Proof. Write $g_x = g$. Introduce the points

$$t_j := x + jad_n, \quad j = 1, 2, \dots, m, \quad t_{m+1} := x + a,$$

and the intervals $T_j := [x, t_j] \cap I$, $j = 1, 2, \dots, m+1$. Denote by l the integer not greater than m , such that $t_l \in I$, $t_{l+1} \notin I$, and put $l = m$ in the case

when all points t_j , $j = 1, \dots, m + 1$, belong to I . Then

$$(9) \quad \begin{aligned} \sum_{x \leq \xi_{j,n} \leq x+a} g(\xi_{j,n}) p_{j,n}(x) &= \sum_{x \leq \xi_{j,n} \leq t_1} g(\xi_{j,n}) p_{j,n}(x) + \\ &+ \sum_{k=1}^l g(t_k) \sum_{t_k < \xi_{j,n} \leq t_{k+1}} p_{j,n}(x) + \sum_{k=1}^l \sum_{t_k < \xi_{j,n} \leq t_{k+1}} \{g(\xi_{j,n}) - g(t_k)\} p_{j,n}(x) = \\ &= \sum_1 + \sum_2 + \sum_3, \quad \text{say.} \end{aligned}$$

Obviously, by (2),

$$\left| \sum_1 \right| \leq \sum_{x \leq \xi_{j,n} \leq t_1} |g(\xi_{j,n}) - g(x)| |p_{j,n}(x)| \leq \varphi_1(x) v_1(g; T_1).$$

Applying the inequality

$$(10) \quad \left| \sum_{|\xi_{j,n} - x| \geq t} p_{j,n}(x) \right| \leq \frac{1}{t^2} |\mu_{2,n}|(x) \quad (t > 0),$$

and arguing similarly to the proof of Theorem 1 in [9] we conclude that

$$\left| \sum_2 \right| \leq \frac{|\mu_{2,n}|(x)}{a^2 d_n^2} \left\{ 2 \sum_{j=1}^{l-1} \frac{1}{j^3} v_j(g; T_j) + \frac{1}{l^2} v_l(g; T_{l+1}) \right\}$$

and

$$\left| \sum_3 \right| \leq \frac{|\mu_{2,n}|(x)}{a^2 d_n^2} \left\{ 6 \sum_{j=2}^l \frac{1}{j^3} v_j(g; T_j) + \frac{1}{l^2} v_l(g; T_{l+1}) \right\}.$$

Thus, we get the estimate of the left-hand side of equality (9).

By symmetry, we obtain the analogous estimate for the sum of $g(\xi_{j,n}) \cdot p_{j,n}(x)$ when $x - a \leq \xi_{j,n} \leq x$, and our assertion follows.

If the function f is bounded on I and if at least one of the points $x \pm a$ belongs to $\text{Int } I$ then inequality (10) yields

$$(11) \quad \left| \sum_{|\xi_{j,n} - x| > a} g_x(\xi_{j,n}) p_{j,n}(x) \right| \leq \frac{|\mu_{2,n}|(x)}{a^2} v_1(g_x; I).$$

Denoting by $\omega(g_x; \cdot)_I$ the modulus of continuity of g_x on I and using its well-known properties one can get the estimate

$$(12) \quad \left| \sum_{|\xi_{j,n} - x| > a} g_x(\xi_{j,n}) p_{j,n}(x) \right| \leq \omega(g_x; d_n)_I \left\{ \varphi_1(x) + \frac{1}{ad_n} |\mu_{2,n}|(x) \right\}.$$

Suppose now that there exists a null sequence (d_n) , $0 < d_n \leq 1/2$ and a

positive function φ_2 on I , such that

$$(13) \quad |\mu_{2,n}|(x) \leq \varphi_2(x)d_n^2 \quad \text{for all } x \in I, n \in N.$$

Taking into account identities (5), (7), our Lemma and inequalities (11), (12) we can state the first main result as follows.

THEOREM 1. *Let conditions (2), (13) be satisfied. Suppose that $f \in M(I)$ and that at a fixed point $x \in \text{Int } I$ the one-sided limits $f(x \pm 0)$ exist. Then, for all positive integers n ,*

$$|L_n[f](x) - s(x)| \leq P_1(x) \left\{ \sum_{j=1}^{m-1} \frac{1}{j^3} v_j(g_x; I_j^1) + \frac{1}{m^2} v_m(g_x; I^1) \right\} + \\ + \vartheta_{x,1} \varphi_2(x) d_n^2 v_1(g_x; I) + |\Delta_n(f; x)| + |s(x)| |\varrho_n(x)|,$$

where m , I^1 , I_j^1 are as in the Lemma (with $a = 1$), $P_1(x) := 2\{\varphi_1(x) + 8\varphi_2(x)\}$, $\Delta_n(f; x)$ and $\varrho_n(x)$ are defined by (6) and (3), respectively. For continuous f the term $\varphi_2(x) d_n^2 v_1(g_x; I)$ can be replaced by $\{\varphi_1(x) + \varphi_2(x) d_n\} \cdot \omega(g_x; d_n)_I$.

Now a result for unbounded f will be given.

THEOREM 2. *Let $I = [0, \infty)$ or $I = (-\infty, \infty)$ and let conditions (2), (13) be fulfilled. Suppose that a function f of class $M_{\text{loc}}(I)$ satisfies the growth condition*

$$(14) \quad |f(x)| \leq \psi(x) \quad (x \in I)$$

with a positive function $\psi \in C(I)$ such that for all $n \geq n_0 \in N$

$$(15) \quad \sum_{j \in J_n} \psi^2(\xi_{j,n}) |p_{j,n}(x)| \leq \varphi_3(x) \quad (x \in I, 0 < \varphi_3(x) < \infty).$$

If at a point $x \in \text{Int } I$ the limits $f(x \pm 0)$ exist and if A is an arbitrary positive number for which $|x| \leq A$ then, for every integer $n \geq n_0$, we have

$$|L_n[f](x) - s(x)| \leq P_A(x) \left\{ \sum_{j=1}^{m-1} \frac{1}{j^3} v_j(g_x; I_j^A) + \frac{1}{m^2} v_m(g_x; I^A) \right\} + \\ + \Lambda(x) d_n + |\Delta_n(f; x)| + |s(x)| |\varrho_n(x)|,$$

where m , I^A , I_j^A are as in the Lemma (with $a = A$), $P_A(x) := 2\{\varphi_1(x) + 8\varphi_2(x)/A^2\}$, $\Lambda(x) := \frac{1}{A}(\varphi_3(x)\varphi_2(x))^{1/2} + \frac{1}{2A^2}\psi(x)\varphi_2(x)$, $\Delta_n(f; x)$ and $\varrho_n(x)$ are defined by (6) and (3), respectively.

Proof. Take $A > 0$ and write $L_n[g_x](x)$ in the form (7) with $a = A$. In view of (14),

$$\left| \sum_{|\xi_{j,n} - x| > A} g_x(\xi_{j,n}) p_{j,n}(x) \right| \leq \sum_{|\xi_{j,n} - x| \geq A} \{\psi(\xi_{j,n}) + \psi(x)\} |p_{j,n}(x)| \leq$$

$$\begin{aligned} &\leq \frac{1}{A} \sum_{|\xi_{j,n} - x| \geq A} \psi(\xi_{j,n}) |\xi_{j,n} - x| |p_{j,n}(x)| + \psi(x) \sum_{|\xi_{j,n} - x| \geq A} |p_{j,n}(x)| \leq \\ &\leq \frac{1}{A} (\varphi_3(x) \varphi_2(x))^{1/2} d_n + \frac{1}{A^2} \psi(x) \varphi_2(x) d_n^2 \leq \Lambda(x) d_n, \end{aligned}$$

by the Cauchy–Schwarz inequality and (13), (15). The above inequality, identities (5), (7) and estimate (8) (with $a = A$) give our assertion, immediately.

Remark 1. In the case when I is non-compact finite interval one can reduce the problem to the case of infinite intervals. For example, if $I = [\alpha, \beta)$, we can choose a one-to-one mapping h of $[\alpha, \beta)$ into $[0, \infty)$ and we can apply our theorems to function $w = f \circ h^{-1}$ and operators

$$\tilde{L}_n[w](y) := \sum_{j \in J_n} w(\eta_{j,n}) q_{j,n}(y),$$

where $\eta_{j,n} = h(\xi_{j,n})$, $q_{j,n}(y) = p_{j,n}(h^{-1}(y))$, $y \in [0, \infty)$.

Remark 2. For many well-known operators of the form (1), condition (3) is satisfied and

$$\lim_{n \rightarrow \infty} L_n[\operatorname{sgn}_x](x) = \lim_{n \rightarrow \infty} L_n[\delta_x](x) = 0$$

at every $x \in \operatorname{Int} I$. Consequently, for these operators, the right-hand sides of the inequalities given in Theorems 1 and 2 converge to zero as n tends to infinity (see [10], Remark 1).

3. Corollaries

Consider the class $BV_\Phi(I)$ of all functions of bounded Φ -variation on I . Denote by $V_\Phi(g; Y)$ the total Φ -variation of a function g on an interval $Y \subseteq I$, defined as in [9] or [10]. Proceeding similarly to [10] (pp. 152–153) we get from Theorem 1 the following

COROLLARY 1. *Suppose that conditions (2) and (13) are satisfied. If $f \in BV_\Phi(I)$ then, for every $x \in \operatorname{Int} I$ and for every $n \in N$, we have*

$$\begin{aligned} |L_n[f](x) - s(x)| &\leq P(x) \frac{1}{m} \sum_{k=0}^{m^2-1} \frac{1}{\sqrt{k+1}} \Phi^{-1} \left(\frac{\sqrt{k+1}}{m} V_\Phi(g_x; Y_k) \right) + \\ &\quad + |\Delta_n(f, x)| + |s(x)| |\varrho_n(x)|, \end{aligned}$$

where $Y_k := [x - \frac{1}{\sqrt{k}}, x + \frac{1}{\sqrt{k}}] \cap I$ if $k = 1, 2, \dots, m^2 - 1$, $Y_0 = I$, $P(x) := 15\{\varphi_1(x) + 8\varphi_2(x)\}$, $\Delta_n(f; x)$ and $\varrho_n(x)$ have the same meaning as in Theorem 1.

Analogously, Theorem 2 leads to

COROLLARY 2. *Let I be infinite interval ($I = [0, \infty)$ or $I = (-\infty, \infty)$) and let conditions (2) and (13) be satisfied. Suppose that $f \in M_{\text{loc}}(I)$ is of bounded Φ -variation on each finite subinterval of I and that it satisfies the growth condition (14) with a function ψ for which (15) holds true. Then, for every $x \in I$, $x \neq 0$ and for every $n \geq n_0$, we have*

$$|L_n[f](x) - s(x)| \leq P^*(x) \frac{1}{m} \sum_{k=1}^{m^2-1} \frac{1}{\sqrt{k+1}} \Phi^{-1} \left(\frac{\sqrt{k+1}}{m} V_\Phi(g_x; Y_k^*) \right) + \\ + \Lambda^*(x) d_n + |\Delta_n(f, x)| + |s(x) \varrho_n(x)|,$$

where $Y_k^* := [x - \frac{|x|}{\sqrt{k}}, x + \frac{|x|}{\sqrt{k}}] \cap I$ if $k = 1, 2, \dots, m^2-1$, $P^*(x) := 15\{\varphi_1(x) + 8\varphi_2(x)/x^2\}$, $\Lambda^*(x) := \frac{1}{|x|}(\varphi_3(x)\varphi_2(x))^{1/2} + \frac{1}{2x^2}\psi(x)\varphi_2(x)$, $\Delta_n(f; x)$ and $\varrho_n(x)$ have the same meaning as in Theorem 2.

Now, let us suppose that $f \in C(I)$. Then, $s(x) = f(x)$, the term $\Delta_n(f; x)$ in (5) is equal to zero and Theorems 1, 2 can be applied also at the endpoints of the interval I (if they belong to I). Applying the known inequality involving the modulus of variation $v_j(f; \tilde{Y})$ and the modulus of continuity $\omega(f; \cdot)_{\tilde{Y}}$ of f on an interval $\tilde{Y} \subseteq I$ (see e.g. [1] or [9]) we easily deduce from Theorems 1 and 2 the estimates for the rate of uniform convergence of $L_n[f]$, which are given below.

COROLLARY 3. *Let $f \in C(I) \cap M(I)$. Suppose that conditions (2) and (13) are satisfied with $\varphi_1 \in M(I)$, $\varphi_2 \in M(I)$ and that $\varrho_n(x) \rightarrow 0$ as $n \rightarrow \infty$ uniformly in $x \in I$. Then, for every $x \in I$ and every positive integer n , we have*

$$|L_n[f](x) - f(x)| \leq c_1 \omega(f; d_n)_I + \|f\|_I \|\varrho_n\|_I,$$

where $\|g\|_I := \sup_{t \in I} |g(t)|$ and c_1 is a positive constant not greater than $23\|\varphi_1\|_I + 170\|\varphi_2\|_I$.

COROLLARY 4. *Let $I = [0, \infty)$ or $I = (-\infty, \infty)$ and let A be an arbitrary positive number. Write $Y = [-A, A] \cap I$ and $2Y = [-2A, 2A] \cap I$. Suppose that conditions (2), (13) are fulfilled with $\varphi_1, \varphi_2 \in M_{\text{loc}}(I)$ and that a function f of class $C(I)$ satisfies the growth condition as in Theorem 2 in which $\varphi_3 \in M_{\text{loc}}(I)$. Then, for every $x \in Y$ and $n \geq n_0$, we have*

$$|L_n[f](x) - f(x)| \leq c_2 \omega(f; Ad_n)_{2Y} + c_3 d_n + \|f\|_Y \|\varrho_n\|_Y,$$

with positive constants $c_2 \leq 22\{\|\varphi_1\|_Y + 8\|\varphi_2\|_Y A^{-2}\}$ and $c_3 \leq A^{-1} \|\varphi_2\varphi_3\|_Y^{1/2} + \frac{1}{2}A^{-2} \|\psi\varphi_2\|_Y$.

4. Examples

The class of operators of type (1) is very wide; it includes many well-known discrete operators. We specify here only a few examples for which our results can be applied.

I. The generalized Favard operators F_n are defined for bounded or some unbounded f on $I = R$ by formula (1) in which $J_n = Z$, $\xi_{j,n} = j/n$ and

$$p_{j,n}(x) = p_{j,n}(\gamma; x) = (\sqrt{2\pi}n\gamma_n)^{-1} \exp\left(-\frac{1}{2}\gamma_n^{-2}\left(\frac{j}{n} - x\right)^2\right),$$

where $\gamma = (\gamma_n)_{1}^{\infty}$ is a positive null sequence such that

$$n^2\gamma_n^2 \geq \frac{1}{2}\pi^{-2} \log n \quad \text{for } n \geq 2, \quad \gamma_1^2 \geq \frac{1}{2}\pi^{-2} \log 2.$$

Applying Lemma 2 of [4] one can get the following estimates concerning the quantities (3) and (4):

$$|\varrho_n(x)| \leq 2 \quad \text{or} \quad |\varrho_n(x)| \leq \frac{4}{n} \leq 7\pi\gamma_n \quad \text{and} \quad |\mu_{2,n}|(x) \leq 51\gamma_n^2 \quad (n \in N)$$

uniformly in $x \in R$. In order to evaluate the quantity $\Delta_n(f; x)$ defined by (6) let us denote by ν the integral part of nx . If $\nu = nx$ then $F_n[\delta_x](x) = p_{\nu,n}(\nu/n) = (\sqrt{2\pi}n\gamma_n)^{-1}$ and $F_n[\operatorname{sgn}_x](x) = 0$. If $\nu \neq nx$, then $F_n[\delta_x](x) = 0$ and

$$|F_n[\operatorname{sgn}_x](x)| = \left| \sum_{j=\nu+1}^{\infty} p_{j,n}(x) - \sum_{j=-\infty}^{\nu} p_{j,n}(x) \right| \leq (\sqrt{2\pi}n\gamma_n)^{-1}.$$

Thus, Theorem 1 applies with

$$|\Delta_n(f; x)| \leq \{ |r(x)| + |f(x) - s(x)| \} (\sqrt{2\pi}n\gamma_n)^{-1},$$

$\varphi_1(x) = 3$, $\varphi_2(x) = 51\kappa^2$ and $d_n = \gamma_n/\kappa$, where $\kappa := \max\{1, 2 \sup_{\nu \in N} \gamma_{\nu}\}$. Also, Theorem 2 can be applied for functions $f \in M_{\text{loc}}(R)$ satisfying the growth condition (14) with $\psi(x) = \exp(\sigma x^2)$, $\sigma > 0$. Indeed, assuming $\sigma\gamma_n^2 \leq 3/32$ we get

$$\begin{aligned} & \sum_{j=-\infty}^{\infty} \psi^2\left(\frac{j}{n}\right) p_{j,n}(x) = \\ & = \frac{\exp(4\sigma x^2)}{\sqrt{2\pi}n\gamma_n} \sum_{j=-\infty}^{\infty} \exp\left(2\sigma\left(\frac{j}{n}\right)^2 - 4\sigma x^2\right) \exp\left(-\frac{1}{2}\gamma_n^{-2}\left(\frac{j}{n} - x\right)^2\right) \leq \\ & \leq \frac{\exp(4\sigma x^2)}{\sqrt{2\pi}n\gamma_n} \sum_{j=-\infty}^{\infty} \exp\left(\left(4\sigma - \frac{1}{2}\gamma_n^{-2}\right)\left(\frac{j}{n} - x\right)^2\right) \leq \\ & \leq 2\{1 + \varrho_n(2\gamma; x)\} \exp(4\sigma x^2) \leq 6 \exp(4\sigma x^2); \end{aligned}$$

whence condition (15) holds with $\varphi_3(x) = 6 \exp(4\sigma x^2)$.

Note that the above results remain valid for classical Favard operators for which $\gamma_n = \sqrt{c}/\sqrt{2n}$, $n \in N$, $c = \text{const.} > 0$. However, using Lemmas 2.1 and 2.2 of [2] we verify that, in this case,

$$|\varrho_n(x)| \leq (3cen)^{-2}, \quad |\mu_{2,n}|(x) \leq \left(\frac{1}{2}c + \frac{2}{3}(ce)^{-2} \right) n^{-1} \quad (n \in N)$$

uniformly in $x \in R$. Therefore, conditions (2) and (13) are satisfied with $\varphi_1(x) = (1 + 3ce)^{-2}$, $\varphi_2(x) = \frac{1}{2}c + \frac{2}{3}(ce)^{-2}$, $d_n = n^{-1/2}$. If $|f(x)| \leq \exp(\sigma x^2)$, $\sigma > 0$, then condition (15) holds for $n > 8\sigma c$, with $\varphi_3(x) = \sqrt{2}(1 + (6ce)^{-2}) \exp(4\sigma x^2)$.

II. Let $G := \{p_{j,1}(x), x \in I\}$ be a lattice distribution concentrated on some set $J_1 \subset Z \cap I$, with expectation equal to x and finite variance $\sigma^2(x)$. Put $\xi_{j,n} = j/n$ and suppose that $\{p_{j,n}(x)\}$ is the n -fold convolution of G . Taking into account quantities (3) and (4) we have

$$\varrho_n(x) = 0, \quad |\mu_{2,n}|(x) = \sigma^2(x)/n$$

for every $x \in I$ and every $n \in N$. Hence, conditions (2) and (13) are fulfilled with $\varphi_1(x) = 1$, $\varphi_2(x) = \sigma^2(x)$ and $d_n = n^{-1/2}$. Further, consider a point $x \in I$ at which $\sigma^2(x) > 0$ and

$$|\mu_{3,1}|(x) := \sum_{j \in J_1} |j - x|^3 p_{j,1}(x) < \infty.$$

In view of the Berry-Esséen Theorem [3, p. 515],

$$\left| \sum_{j-nx \leq t\sigma(x)\sqrt{n}} p_{j,n}(x) - \mathfrak{N}(t) \right| \leq \frac{\tau|\mu_{3,1}|(x)}{\sqrt{n}\sigma^3(x)} \quad (n \in N, t \in R),$$

where

$$\mathfrak{N}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t \exp(-u^2/2) du$$

and the positive number τ is not greater than 0.82 (see [5], p. 93). From this it follows that

$$|L_n[\text{sgn}_x](x)| = \left| \sum_{j > nx} p_{j,n}(x) - \sum_{j < nx} p_{j,n}(x) \right| \leq \frac{5\tau|\mu_{3,1}|(x)}{\sqrt{n}\sigma^3(x)}$$

and

$$|L_n[\delta_x](x)| \leq \frac{3\tau|\mu_{3,1}|(x)}{\sqrt{n}\sigma^3(x)}.$$

Consequently, for the expression $\Delta_n(f; x)$ defined by (6), we have the estimate

$$|\Delta_n(f; x)| \leq 4\{|r(x)| + 0.6|f(x) - s(x)|\}|\mu_{3,1}|(x)/(\sqrt{n}\sigma^3(x)) \quad (n \in N)$$

at every $x \in I$ at which $\sigma^2(x) > 0$ and $|\mu_{3,1}|(x) < \infty$.

In particular, from these inequalities and Theorems 1, 2 one can get estimates for the rate of pointwise convergence of the Baskakov operators and, via Remark 1, for the Meyer–König and Zeller operators.

5. Appendix

Choosing $I = [0, \infty)$ or $I = (-\infty, \infty)$, let us consider the Lupaş type modification of operators (1), defined by

$$(16) \quad L_{n,t}[f](x) := \sum_{j \in J_n} f(t + \xi_{j,n}) p_{j,n}(x) \quad (x \in I, t \in I, n \in N).$$

For bounded continuous functions f on $[0, \infty)$ the above modifications of the Baskakov operators and the Szász–Mirakyan operators were investigated in [7] and [11].

Clearly, all our results given in Section 2 and 3 can be transferred to operators (16). In particular, the analogue of Theorem 2 and Corollary 4 can be stated as follows.

THEOREM 3. *Let assumptions (2), (3), (13) hold. Suppose that a function f of class $M_{\text{loc}}(I)$ satisfies the growth condition (14) with $\psi \in C(I)$ such that*

$$\sum_{j \in J_n} \psi^2(t + \xi_{j,n}) |p_{j,n}(x)| \leq \varphi_4(x, t) \quad (x, t \in I, n \geq n_0),$$

φ_4 being a bivariate positive function on $I \times I$. If $t \in I$, $x \in \text{Int } I$, $|x| \leq A$ ($A > 0$) and if both the limits $f(t+x \pm 0)$ exist then, for every $n \geq n_0$, we have

$$\begin{aligned} & |L_{n,t}[f](x) - s(t+x)| \leq \\ & \leq P_A(x) \left\{ \sum_{j=1}^{m-1} \frac{1}{j^3} v_j(g_{t+x}; I_j^A(t+x)) + \frac{1}{m^2} v_m(g_{t+x}; I^A(t+x)) \right\} + \\ & + \left\{ \frac{1}{A} (\varphi_4(x, t) \varphi_2(x))^{1/2} + \frac{1}{2A^2} \psi(t+x) \varphi_2(x) \right\} d_n + \\ & + |\Delta_{n,t}(f; x)| + |s(t+x) \varrho_n(x)|, \end{aligned}$$

where $\Delta_{n,t}(f; x)$ is of the form (6) with $r(x)$, $f(x)$, $s(x)$ replaced by $r(x+t)$, $f(x+t)$, $s(x+t)$, respectively. If, in addition, f is continuous on I and if $\varphi_1, \varphi_2, \varphi_4(\cdot, t) \in M_{\text{loc}}(I)$ for $t \in I$, then

$$\sup_{x \in Y} |L_{n,t}[f](x) - f(t+x)| \leq c_2 \omega(f; Ad_n)_{2Y} + c_4(t) d_n + \|f(\cdot + t)\|_Y \|\varrho_n\|_Y,$$

where $Y = [-A, A] \cap I$, the constant c_2 is the same as in Corollary 4 and $c_4(t) \leq A^{-1} \|\varphi_4(\cdot, t) \varphi_2\|_Y^{1/2} + \frac{1}{2} A^{-1} \|\psi(t + \cdot) \varphi_2\|_Y$.

Acknowledgement. I would like to express my warmest thanks to Professor Paulina Pych-Taberska for suggesting the problem and many stimulating conversations.

References

- [1] З. А. Чантурия, *Модуль изменений функции и его приложения в теории рядов Фурье*, Dokl. Akad. Nauk SSSR 214 (1974), 63–66.
- [2] M. Becker, P. L. Butzer, R. J. Nessel, *Saturation for Favard operators in weighted function spaces*, Studia Math. 59 (1976), 139–153.
- [3] W. Feller, *An Introduction to Probability Theory and its Applications*, Vol. II, Wiley, New York 1966.
- [4] W. Gawronski, U. Stadtmüller, *Approximation of continuous functions by generalized Favard operators*, J. Approx. Theory 34 (1982), 384–395.
- [5] S. Guo, M. K. Khan, *On the rate of convergence of some operators on functions of bounded variation*, J. Approx. Theory 58 (1989), 90–101.
- [6] W. Kratz, U. Stadtmüller, *On the uniform modulus of continuity of certain discrete approximation operators*, J. Approx. Theory 54 (1988), 326–337.
- [7] G. C. Papanicolaou, *Some Bernstein-type operators*, Amer. Math. Month. 82 (1975), 674–677.
- [8] M. Powierska, P. Pych-Taberska, *Approximation of continuous functions by certain discrete operators in Hölder's norms*, Funct. Approx. Comment. Math. 21 (1992), 75–83.
- [9] P. Pych-Taberska, *On the rate of pointwise convergence of Bernstein and Kantorovich polynomials*, Funct. Approximatio Comment. Math. 16 (1988), 63–76.
- [10] P. Pych-Taberska, *On the rate of convergence of the Feller operators*, Comment. Math. Prace Mat. 31 (1991), 147–156.
- [11] S. P. Singh, O. P. Varshney, *On Szász type operators*, Rend. Mat., (7) 2 (1982), 565–571.
- [12] R. A. DeVore, *The Approximation of Continuous Functions by Positive Linear Operators*, Lecture Notes in Mathematics, Vol. 293, Springer-Verlag, New York, 1972.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY
 J. Matejki 48/49
 60-769 POZNAŃ, POLAND

Received May 7, 1992.

