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ON THE RATE OF CONVERGENCE 
OF SOME DISCRETE OPERATORS 

We consider a certain class of discrete approximation operators Ln which 
include e.g. the Bernstein polynomials, the Baskakov operators, the Meyer-
Konig and Zeller operators or the Favard operators. For bounded or some 
locally bounded functions / on an interval I there is estimated the rate of 
convergence of i n [ / ] (x ) at these points x at which the one-sided limits / ( x ± 
0) exist. In the main theorems the Chanturiya's modulus of variation is used. 

1. Preliminaries 
Let I be a finite or infinite interval and let M(I) [resp. C(/)] be the class 

of all complex-valued functions bounded [continuous] on I . In the case when 
I is not compact interval, denote by M\oc(I) the class of all functions defined 
on I and bounded on every compact subinterval of I . Introduce, formally, 
for functions / belonging to these classes the discrete operators Ln given by 

(1) Ln[f](x) := ^ /&,„>;,„(*) (xeI,neN), 

jeJn 

where N := {1,2,...}, Jn C Z := {0, ±1, ±2, . . .} , € J, Pj,n € C(I). 
Suppose that 

(2) 5 3 b j>( x ) l ^ for all a; € / and ne N. 

where ip\ is a positive function (with finite values) on I . In this case, oper-
ators (1) are well defined in the whole class M(I). Assume further that, for 
every x 6 / , 

( 3 ) 6n(x) : = 5 3 Pj,n(x) - 1 —> 0 a s n —• oo 
j€Jn 
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and 

(4) K n | ( x ) := X ) " x f \ P j M \ < 0 ° if » € N . 
jeJn 

Then (see e.g. [12], pp. 28-29), at every point x of continuity of / € M(I) 
at which |/i2,nK1) —>• 0 as n —• oo, 

lim L n [ f ] ( x ) = f ( x ) . 
n—*oo 

In case / G C ( / ) f l M ( / ) this convergence is uniform on every interval Y C I 
such that <pi 6 M(Y) and 

s u p 0 , s u p \H2,n\(x) 0 a s 71 —• OO . 
xev xeY 

The same is also true for unbounded functions / € C( / ) , satisfying a suit-
able growth condition. The rate of this uniform convergence is evaluated 
in [8]. Also, in [8] there are applied the recent results of W. Kratz and 
U. Stadtmiiller [6] concerning the moduli of continuity of L n [ f ] , and there 
are investigated the degrees of approximation of / £ C( I ) by operators (1) 
in the Holder type norms. 

In this paper we present some inequalities for the rate of pointwise con-
vergence of L n [ f ] ( x ) for functions / € M ( / ) (or / € M \ o c ( I ) ) at these points 
x € / at which the one-sided limits / ( x ± 0) exist. For the sake of brevity 
we use the notation 

s(x) := { f ( x + 0) + f(x - 0)}/2, r(x) := { / (x + 0) - f(x - 0)}/2 , 

Our main estimates concerning the difference {Ln[/](x)—s(x)} are expressed 
in terms of the modulus of variation of the function 

' f ( u ) - f ( x + 0) if u > x , 

gx(u) := 0 if u = x, (u 6 7) . 
f { u ) - f ( x - 0) if u < x 

Given any positive integer k, the modulus of variation V k ( g \ Y ) of a 
bounded function g on a finite or infinite interval Y is defined as the upper 
bound of all numbers 

E -

j=i 
over all systems 11̂  of k non-overlapping intervals (atj,(3j) contained in Y. 
If k = 0 we take v o ( g ' , Y ) = 0. Clearly, Vk(g',Y) is a non-decreasing function 
of A;. Some basic properties of this modulus can be found e.g. in [1], [9]. 

In our considerations, the integral part of a real number u is denoted 
by [«]. 
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2. Main results 
Let / € M(I) {or / 6 M\0C(I)) and let (1) be meaningful. Consider a 

point x G Int I at which both limits / ( x ± 0) exist. 
It is clear that, for all u € I, 

/(«) = 9x(u) + s(x) + r(x)sgnx(u) + { f ( x ) - s(x)}6x(u), 
where 

{1 if u > x , 
0 if u = x , £x(u) := 

—1 if u < x , 
Therefore, 

(5) Ln[f](x) - s(x) = Ln[gx](x) + An(f; x) + s(x)gn(x), 

with 

(6) An(f; x) := r (x)£„[sgnj (x) + { f ( x ) - s(x)}Ln[£x](x). 

In order to evaluate the term Ln[gx](x) it is convenient to write 

(7) Ln[gx]{x) = ^ 9x(Zj,n)Pj,n(x) + 
\tj,n~x\<a 

+ #x,a 9x{Zi,n)Pj,n(«) (<* > 0) , 
|iy,„-x|>a 

where i?Xia = 0 if neither of the points x ± a belongs to Int I, and tfXta = 1 
otherwise. 

LEMMA. Suppose that f is bounded on an interval [x — a, x + a] H I and 
that conditions (2), (4) are satisfied. Choose a positive null sequence (dn) 
such that dn <\ and write m := [1 /dn]. Then, for every n £ N, 

(8) | £ | ^ 

{m-1 j j 1 

E -¿3vi(9xl I j ) + — j M f l W Ia) \ , 
j=l 3 ) 

where 7° = /°(x) := [x-a,x + a](~\I, If = 7?(x) := [ x - j a d n , x + j a d n ] n l , 
j = 1 , 2 , . . . , m - 1 and Pn(a, x) := 2{<fi(x) + 8\n2,n\(x)/(adn)2}. P r o o f . Write gx = g. Introduce the points 

tj:=x + jadn, j = l , 2 , . . . , m , f T O + i : = x + a , 

and the intervals Tj := [x, tj] fl I, j = 1 , 2 , . . . , m +1 . Denote by I the integer 
not greater than m, such that ti € 7, ^ 7, and put / = m in the case 

f l if u = x , 
1 0 if u ^ x . 
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when all points t j , j = 1 , . . . , m + 1, belong to I. Then 

(9) E S(£;,nKn(*) = E S(tj,n)Pj,n(*)+ 

I I 

+ $ > ( * * ) E + E E { 9 ( t j , n ) - g ( t k ) } P j , n ( x ) = 
k=l ik<£j,n<tk+1 fc=l tk<ij,n<tk + 1 

Obviously, by (2), 

| E l I ^ E -ff(®)lbi,n(x)| < ip i ixfa ig iTt) . 
*<£i.n<tl 

Applying the inequality 

(10) I E Pi.»(*)| ^ K n l O O ( * > 0 ) . 

and arguing similarly to the proof of Theorem 1 in [9] we conclude that 
i-i 

and 

£ 3 1 s j s r t M ) + U « ) } . 
3 =2 

Thus, we get the estimate of the left-hand side of equality (9). 
By symmetry, we obtain the analogous estimate for the sum of g(£j,n) • 

Pj,n{x) when x — a < £jiU < x, and our assertion follows. 
If the function / is bounded on I and if at least one of the points x ± a 

belongs to I n t / then inequality (10) yields 

(11) | £ 
| i y , n -ar |>a 

Denoting by u(gx\ •)/ the modulus of continuity of gx on I and using its 
well-known properties one can get the estimate 

( 1 2 ) | E Sx(ti,n)Pj,n(x) ^ u(9x\dn)Il.<p1(x)+ ^ l / ^ . n | ( * ) } • 

Suppose now that there exists a null sequence (dn), 0 < dn < 1/2 and a 
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positive function f2 on I, such that 

(13) \H2,n\(x) < <p2(x)d2n for all x € J , neN. 

Taking into account identities (5), (7), our Lemma and inequalities (11), 
(12) we can s ta te the first main result as follows. 

THEOREM 1. Let conditions (2), (13) be satisfied. Suppose that f € M(I) 
and that at a fixed point x € Int I the one-sided limits f(x ± 0) exist. Then, 
for all positive integers n, 

f m _ 1 1 1 1 
\Ln[f](x) - ,(®)| < P a ( x ) j £ ~j3Vj(Sx', Ij) + ^ v m ( g x ] I l ) | + 

+ ^x,W2{x)d2nvl{gx-, I) + \An(f; x)\ + | 5 ( x ) | | ^ n ( x ) | , 
where m, I1, Ij are as in the Lemma (with a = 1), Pi(x) 2{y>i(x) + 

¿„(/; x) and gn(x) are defined by (6) and (3), respectively. For con-
tinuous f the term ifi2(x)d^Vi(gx; I) can be replaced by (y>i(x) + <fi2(x)dn} • 
Mux; dn)i-

Now a result for unbounded / will be given. 

T H E O R E M 2. Let I = [0, oo) or I = ( - o o , oo) and let conditions ( 2 ) , ( 13 ) 

be fulfilled. Suppose that a function f of class M\oc(I) satisfies the growth 
condition 
(14) | / ( x ) | < V(x) (x € I) 

with a positive function if) € C(I) such that for all n > no € N 

(15) ^ 4>2(tj,n)\Pj,n(x)\ < Mx) (xel, 0 < <p3(x) < oo) . 
jeJn 

If at a point x € Int I the limits f(x ± 0) exist and if A is an arbitrary 
positive number for which |x| < A then, for every integer n > no, we have 

\Ln[f](x) - s(x)I < PA(x)\ £ tf) + -U«(ir,;/*)} + 
I j=l J m ) 

+ A(x)dn + |An(f; x) | + Kx) | | f> n (x) | , 

where m, IA, If are as in the Lemma (with a = A), Pa(x) := 2{y>i(x) + 
8^2(z)M2}, A{X) := \{^(x)ip2{x)fl^^{x)^(x), An(f;x) and gn(x) 
are defined by (6) and (3), respectively. 

P r o o f . Take A > 0 and write Ln[gx}{x) in the form (7) with a = A. In 
view of (14), 

| 9x(Zj,n)Pj,n(X) < 2 + ^(X)}\Pj,n(x)\ < 
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< J E *(&.»)!fi .n " *l|Pj,n(*)| + E * 

< i(v»3(a!)v>2(a:))1/2d» + ^(x)<f2(x)dl < A{x)dn, 

by the Cauchy-Schwarz inequality and (13), (15). The above inequality, 
identities (5), (7) and estimate (8) (with a = A) give our assertion, imme-
diately. 

R e m a r k l . I n the case when I is non-compact finite interval one can re-
duce the problem to the case of infinite intervals. For example, if I = [a,/3), 
we can choose a one-to-one mapping h of [a, ¡3) into [0, oo) and we can apply 
our theorems to function w = f o h-1 and operators 

Ln[w](v) '= E u , ( ^ > ) i » > ( » ) ' 
jeJ„ 

where 7?iin = hfan), qj,n(y) = Pj,n(h~l(y))i V € [0,oo). 

R e m a r k 2. For many well-known operators of the form (1), condition 
(3) is satisfied and 

lim X„[sgnJ(x) = lim Ln[6x](x) = 0 n—> oo n—> oc 
at every x € Int 7. Consequently, for these operators, the right-hand sides 
of the inequalities given in Theorems 1 and 2 converge to zero as n tends to 
infinity (see [10], Remark 1). 

3. Corollaries 
Consider the class BV$(I) of all functions of bounded ^-variation on I. 

Denote by V$(g;Y) the total ^-variation of a function g on an interval 
Y C /, defined as in [9] or [10]. Proceeding similarly to [10] (pp. 152-153) 
we get from Theorem 1 the following 

C O R O L L A R Y 1. Suppose that conditions (2) and (13) are satisfied. If 
f £ BV$(I) then, for every x € Int / and for every n £ N, we have 

\Ln[f](x) - s(x)\ < P(x)i + 

+ |zln(/,*)| + K * ) | M * ) l , 
where Yk := [x - + n I if k = l , 2 , . . . , m 2 - 1, Y0 = I, P(x) := 
15{y i (x ) + 8v2(^)}, An(f',x) and £>„(x) have the same meaning as in 
Theorem 1. 

Analogously, Theorem 2 leads to 



Some discrete operators 373 

COROLLARY 2. Let I be infinite interval ( I = [0,oo) or I = ( — 0 0 , 0 0 ) ) 
and let conditions (2) and (13) be satisfied. Suppose that f € Mioc(I) is of 
bounded variation on each finite subinterval of I and that it satisfies the 
growth condition (14) with a function V> for which (15) holds true. Then, for 
every 1 £ / , 1 / 0 and for every n > no, we have 

|Ln[f](x) - , (x) | < P ' ( « ) l r ; ) ) + 

+ A*(x)dn + \An(f,x)\ + K*)0»(*)|> 

where Y£ := [ a -J*L,® + ^ L ] n / i f k = l , 2 , . . . , m 2 - l , P*(x) := 15{<?i(x) + 
8<p2(x)/x2}, A*(x) := ¿j(<P3(x)<P2(x))1/2 + ^(x)cp2(x), An(f;x) and 
gn(x) have the same meaning as in Theorem 2. 

Now, let us suppose that / G C(I). Then, s(x) = f(x), the term An(f; x) 
in (5) is equal to zero and Theorems 1, 2 can be applied also at the end-
points of the interval I (if they belong to I) . Applying the known inequality 
involving the modulus of variation v j ( f ] Y ) and the modulus of continuity 
u ( f ; -)y of / on an interval Y C I (see e.g. [1] or [9]) we easily deduce from 
Theorems 1 and 2 the estimates for the rate of uniform convergence of Ln[f], 
which are given below. 

COROLLARY 3. Letf € C(I)r\M(I). Suppose that conditions (2 ) and ( 1 3 ) 
are satisfied with tp 1 G M(I), <p2 € M(I) and that g„( i ) —• 0 as n —• 00 uni-
formly in x € I. Then, for every x 6 I and every positive integer n, we have 

\Ln[/](*) - / (* ) | < c l W ( / ; dn)j + ||/||/||^||/, 

where ||p||/ := sup te / |<7(f)| and ci is a positive constant not greater than 
2 3 M / + 1 7 0 M / . 

COROLLARY 4. Let I = [ 0 , 0 0 ) or I = ( — 0 0 , 0 0 ) and let A be an arbitrary 
positive number. Write Y = [—A, A] n I and 2Y = [—2A, 2A] D I. Suppose 
that conditions (2), (13) are fulfilled with <fi,<p2 € M\oc(I) and that a func-
tion f of class C(I) satisfies the growth condition as in Theorem 2 in which 
<P3 € M\oc(I). Then, for every x 6 Y and n > no, we have 

I L n [ f ] ( x ) - f(x)I < c2w(/; Adn)2Y + c3dn + ||/||yMr , 

with positive constants c2 <22{||y>i||y-|-8||v?2||y'-<4-2} andc$ <A~l\\(p2ipz\lY2 

+ iA->W<p2\\Y. 
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4. Examples 
The class of operators of type (1) is very wide; it includes many well-

known discrete operators. We specify here only a few examples for which 
our results can be applied. 

I. The generalized Favard operators Fn are defined for bounded or some 
unbounded / on I = R by formula (1) in which Jn = Z, = j/n and 

Pj,n(z) = P j , n ( r ,  X) = ( V & 7 n ) _ 1 e X P ^ - ~ ) > 

where 7 = ( 7 n ) i ° is a positive null sequence such that 

n27^ > - 7 r - 2 l o g n for n > 2, 72 > - 7 r - 2 l o g 2 . 
2 2 

Applying Lemma 2 of [4] one can get the following estimates concerning 
the quantities (3) and (4): 

|0„(»)| < 2 or |gn(x)| < - < 7TT7n and K » | ( * ) < 5172 (n € N) 
n 

uniformly in x € R . In order to evaluate the quantity A n ( f ; x ) defined by 
(6) let us denote by v the integral part of nx. If v — nx then .Fn[tfx](a;) = 
Pv,n{vln) ~ (V^r^Tn) - 1 and F n [ s gnJ (x ) = 0. If v ^ nx, then Fn[<5x](x) = 
0 and 

00 V 

|Fn[sgnx](x)| = | £ P i , „ ( x ) - £ P U * ) \ < { ^ l n T X . 

j=v+1 i=— 00 

Thus, Theorem 1 applies with 

|4»(/I x)\ < {|r(x)| + | f(x) - 5(x)|}(x/27n7n)"1, 
< f i ( x ) = 3, < f i 2 ( x ) = 51k2 and d n = 7n/K, where k := max{l,2sup1/g^7 l /}. 
Also, Theorem 2 can be applied for functions / € M\oc(R) satisfying the 
growth condition (14) with ip(x) = exp(crx2), a > 0. Indeed, assuming 
<772 < 3/32 we get 

00 / • \ 

j=—00 

< 2{1 + 0 n ( 2 j ; x)} exp(4<rx2) < 6 exp(4ax2 ) ; 

whence condition (15) holds with <¿>3(2) = 6exp(4crx2). 
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Note that the above results remain valid for classical Favard operators 
for which 7 n = y/c/y/2n, n £ N ,c = const. > 0. However, using Lemmas 2.1 
and 2.2 of [2] we verify that, in this case, 

|<?n(*)| < ( 3 c e n ) - 2 , |/i2,n|(x) < Q c + ^ ( c e ) - 2 ) « - 1 (n € N) 

uniformly in x 6 R- Therefore, conditions (2) and (13) are satisfied with 
= (1 + 3 c e ) " 2 , <p2(x) = \c + \{ce)~\ dn = n " 1 / 2 . If |/(x)| < 

exp(<rx2), a > 0, then condition (15) holds for n > 8ctc, with fz{x) = 
>/2( l + (6ce)" 2 )exp(4<7x 2 ) . 

II. Let G : = {pjti(x),x € / } be a lattice distribution concentrated on 
some set J\ C Z fl / , with expectation equal to x and finite variance a 2 ( x ) . 
Put = j/n and suppose that { p J i n ( x ) } is the n-fold convolution of G. 
Taking into account quantities (3) and (4) we have 

Qn{x) = 0, |pa,n|(aO = <T2(x)/n 
for every x £ I and every n € N. Hence, conditions (2) and (13) are fulfilled 
with tpi(x) = 1, <f2(x) = c 2 ( x ) and dn = ra-1/2. Further, consider a point 
x € / at which 0"2(x) > 0 and 

|/i3,i|(®) : = I-7' ~ x \ 3 P i A x ) < 0 0 • 
jeJi 

In view of the Berry-Esseen Theorem [3, p. 515], 

£ ft^-^NS (ne N,te R), 
j—nx<t<j(x)\/n 

where 
I t 

^ ( f ) ^ - ^ f exp(—u 2 /2) du 
V27T j 

—oo 
and the positive number r is not greater than 0.82 (see [5], p. 93). From this 
it follows that 

5r|/i3 li|(s) 
y/ncr3(x) 

|I„[sgnJ(®)| = | P j A x ) ~ £ P i M 
j>nx j<nx 

and 
IT- r* <r ^ i K i K f ) 

Consequently, for the expression An(f;x) defined by (6), we have the esti-
mate 

| 4 » ( / ; * ) | < 4{|r(x)| + 0 .6| / (x ) — s(x)|}|/Z3)i|(x)/(^/rao'3(a;)) ( » € N) 

at every x € / at which <x2(x) > 0 and |/i3,i|(x) < oo. 
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In particular, from these inequalities and Theorems 1, 2 one can get esti-
mates for the rate of pointwise convergence of the Baskakov operators and, 
via Remark 1, for the Meyer-Konig and Zeller operators. 

5. Appendix 
Choosing I = [0,oo) or I = (—00,00), let us consider the Lupa§ type 

modification of operators (1), defined by 

(16) £„, ,[ /](*) := J2 A ' + fc.-Kni*) ( x € l , t e l , n € N ) . 
j£Jn 

For bounded continuous functions / on [0,00) the above modifications of the 
Baskakov operators and the Szasz-Mirakyan operators were investigated in 
[7] and [11]. 

Clearly, all our results given in Section 2 and 3 can be transferred to 
operators (16). In particular, the analogue of Theorem 2 and Corollary 4 
can be stated as follows. 

THEOREM 3. Let assumptions (2), (3), (13) hold. Suppose that a function 
f of class M\oc{I) satisfies the growth condition (14) with tj> G C(I) such that 

2 ^ 3 ( t + fj,n)IPi,n(®)l < <P*0M) OM e I , n > n 0 ) , 
i€J„ 

(fii being a bivariate positive function on I x I. If t € I , x € I n t / , |a:| < A 
{A > 0) and if both the limits / ( i + z i O ) exist then, for every n > no, we have 

|Ln,t[f](x) - s(t + x)\ < 

( 1 7 1 - 1 1 1 1 
* E V 3 * ? ( * +x)) + 3 a iA(t + x)) + I j=1 3 rn J 

+ { j(<P4(z> 0 v 2 ( x ) ) 1 / 2 + + x)<p3(x) } d n + 

+\An,t(f-,x)\ + \s(t + x)gn(x)\, 

where An<t(f',x) is of the form (6) with r(x), f(x), s(x) replaced by r(x + t), 
f{x + t), s(x + t), respectively. I f , in addition, f is continuous on I and if 
<Pi,<P2, V4(-,0 € M, o c ( / ) for t £ I , then 

sup | L n < t [ f ] ( x ) - f{t + :r)| < c2u>(/; Adn)2Y + c4(t)dn + | | /(• + i ) I M M y , 
16 Y 

where Y = [—A, A] fl I, the constant c2 is the same as in Corollary 4 and 

C4(t) < A-'WM-MlT + l
1A-1\W+-)<p2||y. 
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