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ON THE RATE OF CONVERGENCE
OF SOME DISCRETE OPERATORS

We consider a certain class of discrete approximation operators L, which
include e.g. the Bernstein polynomials, the Baskakov operators, the Meyer—
Konig and Zeller operators or the Favard operators. For bounded or some
locally bounded functions f on an interval I there is estimated the rate of
convergence of L,[f](z) at these points z at which the one-sided limits f(z+
0) exist. In the main theorems the Chanturiya’s modulus of variation is used.

1. Preliminaries

Let I be a finite or infinite interval and let M(I) [resp. C(I)] be the class
of all complex-valued functions bounded [continuous] on I. In the case when
I is not compact interval, denote by Mj,.(I) the class of all functions defined
on I and bounded on every compact subinterval of I. Introduce, formally,
for functions f belonging to these classes the discrete operators L, given by

(1) La[fl(2) = Y f(Ein)Pin(z) (z€I,neN),
JEJa
where N :={1,2,...}, J, € Z := {0,£1,%2,.. .}, §;» € I, pjn € C(I).
Suppose that
(2) Z |pjn(z)] < p1(x) forallze€landne N.
J€Jn
where ¢, is a positive function (with finite values) on I. In this case, oper-

ators (1) are well defined in the whole class M(I). Assume further that, for
everyz € I,

(3) on(z) := Z pj,n(x) —1—-0 asn—o0
Ji€Js
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and

(4) lu2,0l(2) := Y (€in — 2)’|Pjn(a)| < 0 ifn€EN.

j€Ja
Then (see e.g. [12], pp. 28-29), at every point z of continuity of f € M(I)
at which |p2,,/(z) — 0 as n — o0,

lim La[f)(z) = (=)

In case f € C(I)NM(I) this convergence is uniform on every interval Y C I
such that ¢; € M(Y) and

sup |on(2)] = 0, sup|pzn|/(z)—>0 asn— 0.
z€Y z€Y

The same is also true for unbounded functions f € C(I), satisfying a suit-
able growth condition. The rate of this uniform convergence is evaluated
in [8]. Also, in [8] there are applied the recent results of W. Kratz and
U. Stadtmiiller [6] concerning the moduli of continuity of L,[f], and there
are investigated the degrees of approximation of f € C(I) by operators (1)
in the Hélder type norms.

In this paper we present some inequalities for the rate of pointwise con-
vergence of L,[f](z) for functions f € M(I) (or f € Mioc(I)) at these points
z € I at which the one-sided limits f(z £ 0) exist. For the sake of brevity
we use the notation

s(z):={f(z+0)+ f(z - 0)}/2, r(z):={f(z+0)- f(z -0)}/2,
Our main estimates concerning the difference {L,[f](z)—s(z)} are expressed
in terms of the modulus of variation of the function

f(w)- f(z+0) ifu>z,
gz(u):=<¢ 0 ifu=z, (uel).
fu)—f(z-0) fu<z

Given any positive integer k, the modulus of variation vx(g;Y) of a
bounded function g on a finite or infinite interval Y is defined as the upper
bound of all numbers

k
> " 19(85) — 9(a;)|
=1
over all systems II; of k non-overlapping intervals (a;,3;) contained in Y.
If k = 0 we take v9(g;Y) = 0. Clearly, v(g;Y) is a non-decreasing function
of k. Some basic properties of this modulus can be found e.g. in [1], [9].
In our considerations, the integral part of a real number u is denoted

by {u].
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2. Main results

Let f € M(I) {or f € Moc(I)) and let (1) be meaningful. Consider a
point z € Int I at which both limits f(z £ 0) exist.

It is clear that, for all u € I,

f(u) = go(u) + s(2) + r(z)sgn,(u) + {f(2) - s(2)}6=(u),

where
1 fu>z, 1 ifu=z
sgn,(u) :={ 0 fu=z, 6&:(u) :={ e,
-1 ifu<z, 0 ifufas.
Therefore,
(8 La[f(z) = s(z) = Ln[gz)(z) + An(f;2) + s(z)en(z),
with

(6) An(fi2) := () Lnlsgn,](z) + {f(z) — s(2)} Lu[bs])(2) -
In order to evaluate the term L,[g.](z) it is convenient to write

(7) Ln[g:)(z) = Z 9=(&5n)Pimn(z)+

l€,n—z|<a
+920 Y, Gal&im)Pin(z) (a>0),
[¢j,n—z|>a
where 9, , = 0 if neither of the points = £+ a belongs to Int I, and ¥, , =1
otherwise.

LEMMA. Suppose that f is bounded on an interval [z —a,z+a)N I and
that conditions (2), (4) are satisfied. Choose a positive null sequence (d,)
such that d,, < % and write m := [1/d,]. Then, for everyn € N,

(8) | Z gz(fj.n)]’j.n(z)| <
[€,n —x|<a
m-1

1 1 a
< Py(a,z) Z ~_3'vj(ga:;1;)+ _2'vm(gz;1 ) (>
] m

i=1
where [* = I%(z) 1= [z —a,z+a]NI, I} = I}(z) := [z - jad,, T+ jad,]N],
i=12,...,m—1 and Py(a,z) := 2{p1(z) + 8|u2.»|(z)/(ad,)?}.
Proof. Write g, = g. Introduce the points
tj:=z+jad,, j=12,....om, tnpy1:=2z+a,

and the intervals T} := [z,¢;]NI, 7 = 1,2,...,m+1. Denote by [ the integer
not greater than m, such that ¢; € I, tiy1 € I, and put I = m in the case
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when all points t;, j = 1,...,m + 1, belong to I. Then

(9) Z g({i,n)pj,n(z) = Z g(fj,n)pj,n(x)'*'

z<§jn<zta z<€ja <t
i i
+Y9) Y, pin@ . Y. {9(&in)-9(t)}pin(z)=
k=1 te <€ Str41 k=1 tx<{j,n <tit1

=Zl+22+23’ say .
Obviously, by (2),
1Y X 19 - 9@)lIpin(@)] < er(@)nilei Th)

-‘BS{,‘,» Stl

Applying the inequality

1

(10) | Y pin(@)] € gluzale) (2> 0),

[€,n —z[22

and arguing similarly to the proof of Theorem 1 in [9] we conclude that

K2 n|\T 1 1
lz | 'nglg ){ E Svj(g;Tj)+ﬁ-v1(g;T,+1)}
j=1
and

IZ | Il‘:;dlg-’f){ Z,iavj(g;Tj)+ll2v,(g;T,+l)},
j=2

Thus, we get the estimate of the left-hand side of equality (9).
By symmetry, we obtain the analogous estimate for the sum of g(§;,) -
Pjn(z) when 2 — a <, < z, and our assertion follows.

If the function f is bounded on I and if at least one of the points z £ a
belongs to Int I then inequality (10) yields

(1) | Y almpin(a)| < 20l g1y,
€i,n—z|>0a

Denoting by w(gz;-)r the modulus of continuity of g; on I and using its
well-known properties one can get the estimate

(12) |.€.§.>ag’(£"")p""(z)|<“(g” di{er(@)+ s linal(@)}

Suppose now that there exists a null sequence (d,), 0 < d, <1/2 and a
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positive function ¢; on I, such that
(13) lu2,l(z) < @2(z)d,  forallzel, neN.

Taking into account identities (5), (7), our Lemma and inequalities (11),
(12) we can state the first main result as follows.

THEOREM 1. Let conditions (2), (13) be satisfied. Suppose that f € M(I)
and that at a fized point z € Int I the one-sided limits f(z £ 0) ezist. Then,
for all positive integers n,

m—1
Lal11(0) - s()] < P@){ Y- Zroslosi 1) + ozom(asi 1) [+
j=1
+92002(2)dr01 (903 T) + [An(f52)] + Is(2)llen(2)]
where m, I', I} are as in the Lemma (with a = 1), Pi(z) := 2{¢1(z) +
8p2(2)}, An(f; ) and pn(z) are defined by (6) and (3), respectively. For con-
tinuous f the term 2(x)d%v1(gz; ) can be replaced by {¢1(z) + @2(z)dn} -
‘w(ga:; dn)I-
Now a result for unbounded f will be given.

THEOREM 2. Let I = [0,00) or I = (—00,00) and let conditions (2), (13)
be fulfilled. Suppose that a function f of class M\,c(I) satisfies the growth
condition

(14) If(@)| < ¥(z) (z€1)
with a positive function ¥ € C(I) such that for alln > ng € N
(15) D Y (Enlpin(2)| S pa(z) (2 € 1,0 < p3(2) < 00).,
J€Jn
If at a point x € Int 1 the limits f(z £ 0) exist and if A is an arbitrary
positive number for which |z| < A then, for every integer n > ngy, we have

m-—1

|La[f}(=) — s(z)] < PA(z){ > jlsvj(gz;lf) + #vm(gz;-”‘)}+

i=1
+ A(z)dn + |An(f; )| + |5(2)[l0n(z)]
where m, I4, I are as in the Lemma (with a = A), P4(z) := 2{p1(z) +
8py(2)/A%}, A(z) := % (p3(2)e2(2))' 2+ 55 ¥(2)@2(2), An(f; 7) and on(2)
are defined by (6) and (3), respectively.

Proof. Take A > 0 and write L,[g;](z) in the form (7) witha = A. In
view of (14),

> selEGapin@| S Y {#(En) + ¥(@)Hpin(2)] <

{jn—z|>A [€in—z|>A
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<7 Y Yemlin=elipn(@ 49 3 (o) <

15,0 €5, —z|2 A

< (es()P2(@) 2 + 3 ()r(2)h < Ale)d,

by the Cauchy—Schwarz inequality and (13), (15). The above inequality,
identities (5), (7) and estimate (8) (with a = A) give our assertion, imme-
diately.

Remark 1. In the case when I is non-compact finite interval one can re-
duce the problem to the case of infinite intervals. For example, if I = [a, ),
we can choose a one-to-one mapping h of [a, 3) into [0, 00) and we can apply
our theorems to function w = f o h~! and operators

Lo[w)(y) := Y w(n5)g5m(¥) 5
jeJu
where 7j,n = h({j ), 4jn(¥) = Pjn(h7 (1)), y € [0,00).
Remark 2. For many well-known operators of the form (1), condition
(3) is satisfied and

im L,[sgn )(z) = lim L,[é;](z)=10

at every z € Int I. Consequently, for these operators, the right-hand sides
of the inequalities given in Theorems 1 and 2 converge to zero as n tends to
infinity (see [10], Remark 1).

3. Corollaries

Consider the class BV3(I) of all functions of bounded &-variation on I.
Denote by V(g;Y) the total é-variation of a function g on an interval
Y C I, defined as in [9] or [10]. Proceeding similarly to [10] (pp. 152-153)
we get from Theorem 1 the following

COROLLARY 1. Suppose that conditions (2) and (13) are satisfied. If
f € BVg(I) then, for every z € Int I and for every n € N, we have

[La{f)2) - s(2)| < P(z) Z e (L vt v ) ¢
+ |An(f,l‘)| + [s(z)len(z)l s
where Yy := [z — ﬁ,x+ \/LE] NIifk=12,...,m*-1,Y =1, P(z) :=

15{¢1(z) + 8p2(z)}, An(f;z) and p.(z) have the same meaning as in
Theorem 1.

Analogously, Theorem 2 leads to
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COROLLARY 2. Let I be infinite interval (I = [0,00) or I = (—00,0))
and let conditions (2) and (13) be satisfied. Suppose that f € Mioc(I) is of
bounded ®-variation on each finite subinterval of I and that it satisfies the
growth condition (14) with a function v for which (15) holds true. Then, for
everyz € I,  # 0 and for every n > ng, we have

(W

[Lalf1(z) - s(2)] € P*(e) > Z o Va(ssi¥i) )+
b 4@+ 18, 2)| 4 1(D)en(2)]

where Y}! := [z — -\I;L :c+{;l]ﬂl ifk=1,2,...,m*—1, P*(z) := 15{¢(z)+

8py(z)/2%}, A*(2) := ]—[(803(ftf)saz(f'«‘))l/2 + m‘/’(z)w(z), An(f;z) and
ox(z) have the same meaning as in Theorem 2.

Now, let us suppose that f € C(I). Then, s(z) = f(z), the term A,(f;z)
in (5) is equal to zero and Theorems 1, 2 can be applied also at the end-
points of the interval I (if they belong to I). Applying the known inequality
involving the modulus of variation v;(f;Y) and the modulus of continuity
w(f; )y of f on an interval Y C I (see e.g. [1] or [9]) we easily deduce from
Theorems 1 and 2 the estimates for the rate of uniform convergence of L,{f],
which are given below.

COROLLARY 3. Let f € C(I)NM(I). Suppose that conditions (2) and (13)
are satisfied with 1 € M(I), 2 € M(I) and that p,(z) — 0 asn — oo uni-
formly inx € I. Then, for every x € I and every positive integer n, we have

ILa[f)(z) = f(@)| < erw(Sf5dn)r + (I Fllrllonllr

where ||g||1 := supyc|9(t)| and ¢1 is a positive constant not greater than
23|11z + 170|221

COROLLARY 4. Let I = [0,00) or I = (~00,00) and let A be an arbitrary
positive number. Write Y = [—A,A]N T and 2Y = [-2A,2A] N I. Suppose
that conditions (2), (13) are fulfilled with ¢1,p3 € Mioc(I) and that a func-
tion f of class C(I) satisfies the growth condition as in Theorem 2 in which
@3 € Myoc(I). Then, for every z € Y and n > ng, we have

ILa[fl(z) — f(2)| < caw(f; Adp)2y + cadn + || fllyllenlly

with positive constants c; <22{||¢1lly+8llw2lly A=} and c3 < A~ || @203}/
+ 3472 | Y]l
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4, Examples

The class of operators of type (1) is very wide; it mcludes many well-
known discrete operators. We specify here only a few examples for which
our results can be applied.

I. The generalized Favard operators F), are defined for bounded or some
unbounded f on I = R by formula (1) in which J, = Z, §;, = j/n and

Pin(®) = pinlri®) = (Vima)to (- 2zt (1 -2) ),

where v = (7,){° is a positive null sequence such that
1
nty? > %w‘z logn forn > 2, 7% > §7r_2 log2.

Applying Lemma 2 of [4] one can get the following estimates concerning

the quantities (3) and (4):
4
lon(2)| <2 or |en(2)| < — < Try. and |pal(z) <51y, (n€N)

uniformly in z € R. In order to evaluate the quantity A,(f;z) defined by
(6) let us denote by v the integral part of nz. If v = nz then F,[6;](z) =

Pun(v/n) = (V21ny,) ") and Fy[sgn,](z) = 0. If v # nz, then Fy[6;])(z) =
0 and

IFalsgnJ@) = | Y pin(@) = Y pin(2)] < (Vorna) .
j=v+1 j=—o00
Thus, Theorem 1 applies with
1An(fi )| € {Ir(@)] + | £(=) - s(2)}(V2rnya) 7!,

v1(z) = 3, p2(z) = 51k? and d, = yn/k, where k := max{1,2sup,en 7}
Also, Theorem 2 can be applied for functions f € Mj,c(R) satisfying the
growth condition (14) with ¢(z) = exp(oz?), ¢ > 0. Indeed, assuming

ov2 < 3/32 we get
Z ’¢'2( )pjn( )=

j=—o0
. 2
R ORI B CHA D)
= exp | 20 — 4oz’ |exp| — =7, =—< <
2T nYn j—z..:oo P b 27 n
. 2
T 2o ((o=3) (3-2) )
< ex 40 — z <
T V2rny, J_z__:oo P 27" n =

< 2{1 + 0n(27; z)} exp(402z?) < 6 exp(40z?);
whence condition (15) holds with ¢3(z) = 6 exp(402?).
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Note that the above results remain valid for classical Favard operators
for which v, = v/¢/v2n,n € N, ¢ = const. > 0. However, using Lemmas 2.1
and 2.2 of [2] we verify that, in this case,

en(@) < Geen) ™, lusal(@) < (Ge+ 2oy )a™t (wem)

uniformly in z € R. Therefore, conditions (2) and (13) are satisfied with
@1(2) = (1+3ce)?, go(s) = Je + 2ee)?, dn = n~V/2 I |f(2)] <
exp(oz?), ¢ > 0, then condition (15) holds for n > 8oc, with ¢5(z) =
V2(1 + (6¢ce)~2) exp(4oz?).

II. Let G := {p;ji(z),z € I} be a lattice distribution concentrated on
some set Jy C Z N I, with expectation equal to z and finite variance o?(z).
Put §;, = j/n and suppose that {p;.(z)} is the n-fold convolution of G.
Taking into account quantities (3) and (4) we have

en(2) =0, |p2,l(z) = o*(z)/n
for every z € I and every n € N. Hence, conditions (2) and (13) are fulfilled
with ¢;(z) = 1, a(z) = 0%(z) and d,, = n~'/2. Further, consider a point
z € I at which ¢%(z) > 0 and
|uaal(z) := Y 1i — 2’pjn(e) < oo
j€n
In view of the Berry—Esséen Theorem (3, p. 515],

> \/_pj,,,(z) - ‘ﬂ(t)| < %—’%%%) (n€ N,t€R),
j—nz<Lto(z)/n .

where

N(t) := exp(—u?®/2) du

1 ¢
V2r _£
and the positive number 7 is not greater than 0.82 (see [5], p. 93). From this
it follows that

57]u3al(z)
|Ln[sgn,](z)| = im(T) = im(2)| € =57
¢ |j§n:zp jg'r;zp | \/-’IIU (I)
and

3rusz ()
al0z < —=.
[Laltel(o)] < TS
Consequently, for the expression A,(f;z) defined by (6), we have the esti-
mate

|4n(f;2)| < 4{Ir(2)] + 0.6|f(2) - s(z)[} s 11(z)/ (Vo (z)) (n € N)

at every z € I at which 0%(z) > 0 and |p3,.1|(z) < oo.
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In particular, from these inequalities and Theorems 1, 2 one can get esti-
mates for the rate of pointwise convergence of the Baskakov operators and,
via Remark 1, for the Meyer—Ko6nig and Zeller operators.

5. Appendix
Choosing I = [0,00) or I = (—00,00), let us consider the Lupag type
modification of operators (1), defined by

(16)  Lno[flz):= Y f(t+&a)pin(z) (z€l, tel, neN).
J€Jn

For bounded continuous functions f on [0, 00) the above modifications of the
Baskakov operators and the Szasz—Mirakyan operators were investigated in
[7] and [11].

Clearly, all our results given in Section 2 and 3 can be transferred to
operators (16). In particular, the analogue of Theorem 2 and Corollary 4
can be stated as follows.

THEOREM 3. Let assumptions (2), (3), (13) hold. Suppose that a function
f of class My,c(I) satisfies the growth condition (14) with ¢ € C(I) such that

3" PP+ En)pin(2)] < @z, ) (z,t €T, n 2 mp),
j€Jn

@4 being a bivariate positive function on I x I. Ift € I,z € IntI, |z] < A
(A > 0) and if both the limits f(t+z10) ezist then, for everyn > ng, we have

| Lni[f)(2) = s(t + 2)| <

- 1 A 1 A
< Pa@){ X F50s(0ues T +2) + rom(guesi I+ )
j=1
+H{ G ea@) 7+ (e + D)) bt

HAn (fi )| + |3(t + 2)en(2)l,

where Ay, 1(f; z) is of the form (6) with r(z), f(z), s(x) replaced by r(z +1),
f(z + 1), s(z +t), respectively. If, in addition, f is continuous on I and if
¥1, P2, 504(',t) € Mloc(I) fOT te I9 then

sup |Lng[fl(2) = f(t+ 2)| < c2w(f; Adn)2y + ca(t)dn + || (- + Dll¥|lenlly

where Y = [—A, A] N I, the constant ¢, is the same as in Corollary 4 and
ea(®) < A7 lpaCs Deally” + 347D+ Jenlly.
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