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B. P. Pachpatte 

ON MULTIVARIATE GREENE TYPE INEQUALITIES 

In the present paper we establish a new integral inequality of the Greene 
type involving functions of several variables. A corresponding inequality on 
the discrete analogue of the main result is also given. 

1. Introduction 
In 1977, D. E. Greene [3] proved the following lemma. 

LEMMA 1. Let k\, k2 and // be nonnegative constants and let f , g and hi 
be continuous nonnegative functions for all t > 0 with hi bounded such thai 

t t 
f(t)<k!+ J h1(s)f(s)ds + f e^h2(s)g(s)ds, 

0 0 
t t 

g(t)<k2+ f e-f°h3(s)f(s)ds+ f h4(s)g(s)ds, 
0 0 

for all t > 0. Then there exist constants Ci and Mi such that 

/(<)<^ieClt, g(t)<M2ec^, 

for all t > 0. 

The proof of these inequalities given in [3] was elementary but long, and 
much shorter proofs and further generalizations were found in [2], [8], [12]. 
In 1957, while investigating the boundedness of solutions of certain second 
order differential equations, Liang Ou-Iang [7] established the following in-
equality. 
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LEMMA 2 . Let u and p be real-valued nonnegative continuous functions 
defined for all t>0. If 

t 
u2(t) < c2 + 2 f p(s)u(s)ds, 

0 
for all t > 0, where c > 0 is a constant, then 

t 
< c + J p(s) ds, 

o 
for all t > 0. 

The inequality given in Lemma 2 depart somewhat from the structure of 
the classical Gronwall inequality [1], and has some important applications 
in the theory of differential equations [4]-[7], [11]. Due to the successful 
utilization of the inequality given in Lemma 2, it is natural to expect that 
some new extensions of this inequality similar to those of the inequality given 
in Lemma 1 would be equally important in certain new applications. Our 
main objective here is to establish a new integral inequality of the Greene 
type involving functions of several variables which can be used as handy 
tool in the study of certain new classes of partial differential and integral 
equations. The discrete analogue of the main result which can be used in 
the study of certain new classes of difference and sum-difference equations 
is also given. 

2. Statement of results 
Before stating the theorems to be proved in this paper, we summarise 

some basic notations and definitions which will be used throughout our 
discussion. Let R+ = [0, oo) and define by R+ the product R+ x . . . x R+ 
(n times). A point ( x i , . . . , x n ) in R+ is denoted by x. For 0, x in iZlJ. and 
some function p(x) defined for x £ we set 

X Xl xn 

M[x,p]= Jp(y)dy= f . . . f p(yu...,yn)dyn..-dyi. 
0 0 0 

We denote by J5, = a n d Dn .. .Dx = . . . ^ for 1 < i < n. Let 
No = {0,1,2, . . .} and denote by Nft the product N0 X . . . X N0 {n times). A 
point ( x i , . . . , i n ) in is denoted by x. For 0, x in NQ and some function 
p(x) defined for x G we set 

X — 1 X l — 1 xn—l 

L \ X M = = X ) • • • S P ( . S l , . . . , S „ ) . 
3 = 0 31=0 S„=0 



Greene type inequalities 303 

For a n y func t i on u(x) def ined on Nft we def ine t h e ope r a to r s 

Aiu(x) = u(xi + l , x 2 , . . . , x n ) - u(x),..., 

Anu(x) = t t ( ® i , . . . , x n _ i , x n + 1) - u ( x ) , 

A 2 A I U ( X ) = AIU(XI,X2 + l , x 3 , . . . , x n ) - A\u(x),..., a n d 

AnAn-i... Aiu(x) = An-i... A i u ( x i x n _ ! , xn + 1 ) -

- An-1 ...Axu{x). 

For a l l m > n, m, n £ No a n d a n y func t ion p(s) def ined on No, we u se t h e 

u s u a l convent ion p(s) = 0 a n d IIs=m P(s) = 

Our m a i n resu l t is e m b o d i e d in t h e fo l lowing t h e o r e m . 

THEOREM 1. Let u(x), v(x), / i , (x ) , i = 1 , 2 , 3 , 4 , be real-valued, non-

negative, continuous functions defined for x G R+ and let c\, c2 and fi be 

nonnegative constants such that 

( 1 ) u2(x) < Ci + M[x,hiu] + M[x,h2v], 

(2) v2(x) < c2 + M[x,h2u] +M[x,h4v], 

for x G -R", where 

n n 

u ( x ) = e x p ( — 2/z X j ) u(x) and v(x) = exp ^2/z x^j v(x) 

i=l i=1 

for x£ Rl. Then 

n 

( 3 ) u(x) < exp (ji ^ ^ x t ) [c + M[x, /&]], 

¿=i 

(4) v(x) < c + M[x,h], 

for x 6 R\, where c = y/2(ci + c2) and 

( 5 ) h(x) = m a x f l ^ x ) + h3(x)], [h2(x) + / i 4 (x ) ]} , 

for x € 
A use fu l d i sc re te vers ion of T h e o r e m 1 i s g iven in t h e fol lowing t h e o r e m . 

THEOREM 2. Letu(x), v(x), / i , (x ) , i = 1,2,3,4, be real-valued, nonnega-

tive functions defined for x £ Nq and ci, c2 and \i be nonnegative constants 

such that 

( 6 ) u 2 ( x ) < c i + L[x,hiu] + L[x, h2v], 

( 7 ) v 2 ( x ) < c 2 + L[x, h3u] + L[x, / i 4v] , 

for x 6 No, where 
n n 

u(x) = e x p ^ — 2/i ^ x,-^ u ( x ) and v(x) = exp ^2f i ^ x,-^ v ( x ) 
1=1 i=l 
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for x € Nn. Then 
n 

(8) u ( a ; ) < e x p ( 2 / i ^ i j ) [ c + ii[2;,/i]], 
t=i 

(9) v(x) < c + L[x, h], 

for x 6 Ntf, where c = \f2(c\ + c2) and 

(10) h(x) = max{[/ii(x) + /i3(x)], [h2(x) + 

for x e iV0
n. 

3. Proof of Theorem 1 
Multiplying (1) by exp(-2f i x«) w e observe that 

n j 
(11) j exp ^ — n < c\ + M[x,hiu] + M[x,h2v]. 

¿=1 
Define 

n 
(12) F(x) = exp ( - / / ^ x t ) u ( x ) + r ( x ) . 

»=i 

By squaring both sides of (12) and using the elementary inequality (a+fc)2 < 
2(a2 + 62), (a, b reals), and by (11), (2), we observe that 

n 2 
(13) F 2 ( x ) < 2 [ { e x p ( - / z £ x t ) U ( x ) ) } + r 2 (x)] < 

¿=1 
<c2 + 2M[x, {hx + h3)u] + 2M[x, (h2 + h^v]. 

Now, by using the fact that e x p ( — x , ) < e x p ( — x « ' ) an(^ ^y 
(5), we can rewrite (13) in the form 

(14) F2(x) < c2 + 2M[x, hF]. 

In order to obtain the bound on the function F(x) in (14), we first assume 
that c > 0 and define a function z(x) by 

(15) z(x) = c2 +2M[x,hF]. 

From (15) it is easy to observe that 

(16) Dn ... Dxz(x) = 2h(x)F(x). 

Using the fact that F(x) < y/z(x) in (16) we have 

(17) Dn...D1z(x)<2h(x)y/z(x). 
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From (17) we observe that 

Dn...Diz(x) < [Dn-1...D1z(x)][Dny/4Ïj] 

i.e. 

By keeping x i , . . . , x n _ i fixed in (18), we set x n = yn and then integrating 
with respect to yn from 0 to xn, we have 

Dn.: ..Ahz[x) < 2 J ^ ^^^ ^ 

y M * ) - 0 

Again as above from (19) we get 

£>n-l j D n ~ 2 \ < f " ( a 1 , . . . , a n _ i , y n ) < f y „ . 
I J o 

By keeping x i , . . . , x n _ 2 and x n fixed in the above inequality, set x n _ i = 
¡/n_i and then integrating with respect to yn~\ from 0 to x „ _ i , we have 

Y== <2 J J h(x!,..., x n-2, Vn-1, yn) ayn dyn-! . 
Vz(x) o o 

Continuing in this way, we obtain 

(20) 
Dxz{x) 
- j = = <2 f ... f h(x1,y2,...,yn)dyn...dy2 . 

o o 

Now keeping X 2 , . . . , x n fixed in the above inequality, we set Xi = yi and 
then integrating with respect to y\ from 0 to x i , we have 

(21) y/z(x) < c + M[x,h], 

By using the fact that F(x) < z(x) in (21) we get 

(22) F(x)<c + M[x,h]. 

Now suppose that c = 0. Then from (14) we see that the inequality 

F 2 (X) < e2 +2M[x,hF] 

holds for every arbitrary positive number e and x £ R", which by the above 
argument yields the estimate 

(23) F(x)<e + M[x,h]. 
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Since F(x) > 0 and £ > 0 is arbitrary number independent of a; € then 
as e —• 0, it follows from (23) that 

F(x) < M[x, h]. 

This shows that (22) gives the upper bound on F(x) for all c > 0. The 
desired inequalities in (3), (4) follow by using (22) in (12) and splitting. 
This completes the proof of Theorem 1. 

4. Proof of Theorem 2 
Multiplying (6) by e x p ( — x , - ) , we observe that 

n 2 
(24) { exp ^ - / i ^ x , ^ u ( x ) j < c\ + L[x,hiu] + L[x,h,2v]. 

i=l 
Define 

n 
(25) G(x) = exp ( — [i y ^ x,-̂ ) u(x) + v(x). 

«=1 
By squaring both sides of (25) and using the elementary inequality (a+6)2 < 
2(a2 + b2), (a, b reals), (24), (7) we observe that 

n 2 
(26) G2(x) < 2 [{exp ( - / x ^ x i )u(x)} + v2(x)] < 

¿=1 
< c2 + 2L[x, (hi + /i3)u] + 2L[x, (h2 + h4)v]. 

Now by using the fact that exp(—2/x x,) < exp(—/x x,) and by 
(10) we can rewrite (26) in the form 

(27) G2(x)<c2 + 2L[x,hG}. 

In order to obtain the bound on the function G(x) in (27), we first assume 
that c > 0 and define a function z(x) by 

(28) z(x) = c2 + 2L[x,hG]. 

From (28) it is easy to observe that 

(29) An...Alz{x) = 2h(x)G(x). 

Using the facts that G(x) < y/z(x) and y/z(x) < y/z(xi,... , x n _ i , x n + 1) 
in (29) we have 

(30) An...Aiz(x) <2h(x)y/z{x) < 

< 2 / i ( x ) v / z ( x i , . . . , x n _ 1 , x n + 1). 
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From (30) we observe that 
An-1 ...A1z(xi,...,xn-l,xn + 1) (31) 

y/z(x\,. . . ,Xn_i,Xn + 1) 
An-1 ...A1z(xl,...,Xn-1,Xn) , 

< 2h{xi,...,xn-i,xn) 
n— 

Keeping x i , . . . , x n _ i fixed in (31), we set xn = sn and sum over sn = 
0 ,1 ,2 , . . . , xn — 1 to obtain the estimate 

j . i 

An—\ < 2 g h ( x i X n _ t ? S n ) . 

VZ(X) sUo From (32) and in view of the facts that 

V z ( x ) ^ V z ( x i y ^ x n - 2 , x n - i + l , x n ) 
for all Xi € No, 1 < i < n, we observe that 

An—2 • . .A iz (x i , . . . ,Xn_2%Xn_i + l ,Xn) (33) 
yjz{ 2!i,. . . ,Xn_2,Xn_1 + 1,X„) 

An-2 . . . / i l2:(x1 , . . . ,Xn_2,Xn_i,Xn) 
y/z(x\, . . . ,Xn_2,Xn_i,Xn) 

•>»=0 

Keeping Xx,... ,x n _2,x n fixed in (33), we set xn~\ = 5 n - i and sum over 
5n_i = 0 ,1 ,2 , . . . , x n_i — 1 to obtain the estimate 

An-2...AIZ(X) , 
r = < y , n(Xi , . . ., Xn_2 , , 5n-l, Sn) • 

V*(*) 0 st^o 
Proceeding in this way, we obtain the estimate 

(34) 
Vz\x) ,2=0 «„=o 

Now we observe that 

(35) Ai y/z(x) = y/z(xi + 1, x 2 , . . . , xn) - ¿(x) = 
_ z(xi + l , x 2 , . . . , x n ) - ¿(x) ^ i^ (x) 

y / z ( x i + l , x 2 , . . . , x n ) + v/i(x) ~ 2y/z(x) 

Here in the last step we have used the fact that 

V z ( x ) < + l , x 2 , . . . , x „ ) . 
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Using (34) in (35), we get 
2?n -1 

(36) 
32=0 i„=0 

Now, keeping X 2 , . . . , x n fixed in (36), we set x\ = s j and sum over si = 
0 , 1 , 2 , . . . , x i — 1 to obtain the estimate 

( 3 7 ) V ^ z ) <c + L[x,h]. 

By using the fact that G(x) < y/z(x) in (37), we get 

(38) G(x) <c + L[x, h]. 

The proof of the case when c = 0 can be completed by following the 
arguments as in the proof of Theorem 1 with suitable modifications. This 
shows that (38) gives the upper bound on G(x) for all c > 0. The required 
inequalities in (8), (9) follow by using (38) in (25) and splitting. The proof 
is complete. 

5. Some appl ica t ions 
In this section we indicate some applications of our results to obtain the 

bounds on the solutions of certain partial differential and integral equations 
and partial difference and sum-difference equations for which the earlier 
inequalities do not apply directly (see [1]-[12]). For example consider the 
following system of sum-difference equations 

X — 1 

(39) tt2(x) = / (* ) + A[y, u(y), t,(y)], 
a=0 
x-1 

(40) v 2 (x) = g ( x ) + J 2 B l y , ' u ( y ) , v ( y ) ] , 
3=0 

for x e where /, g : —• R; A, B : iVJ1 x R X R R, in which R 
denotes the set of real numbers. We assume that 

(41) \f(x)\ < C l , |«7(z)| < c2 , 
n 

(42) < /*i(x)M + exp M > 
«=i 

n 

(43) |5[x,ii,t>]| < exp ( - 2 / x ^ x i ) / i 3 ( x ) M + hi(x)\v\, 

¿=1 
where hi, i = 1,2 ,3 ,4 , and ci , C2, /x are as defined in Theorem 2. From 
(39)-(43) we observe that 

(44) |«(x)|2 <c x + L [ x , h M ] + L[xMv\\, 
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(45) |u(x)|2 < c2 + L[x, fc3|tT|] + L[x, h4\v\], 

where u and v are as defined in Theorem 2. Now an application of Theorem 2 
yields 

n 
(46) |«(s) | < exp ( - n Xi) [c + L[x, /»]], 

¿=1 

( 4 7 ) \v(x)\<c + L[x,h], 

where c, h, L are as defined in Theorem 2. The inequalities in (46), (47) give 
the bounds on the solution (u, u) of the equations (39)-(40). 

We finally note that the inequality given in Theorem 1 can be used to 
obtain the bound on the solution of the following system of integral equations 

X 

( 4 8 ) u\x) = f ( x ) + f A[y, u(y),»(»)] dy, 
o 
x 

( 4 9 ) v \ x ) = g{x)+ J B[y,u{y),v(y)]dy, 
o 

under some suitable conditions on the functions / , g, A, B involved in (48), 
(49). Various other applications of these inequalities will appear elsewhere. 
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