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B. P. Pachpatte

ON MULTIVARIATE GREENE TYPE INEQUALITIES

In the present paper we establish a new integral inequality of the Greene
type involving functions of several variables. A corresponding inequality on
the discrete analogue of the main result is also given.

1. Introduction
In 1977, D. E. Greene [3] proved the following lemma.

LEMMA 1. Let ky, k2 and pu be nonnegative constants and let f, g and h;
be continuous nonnegative functions for all t > 0 with h; bounded such thai

f®) <kt [ m(s)f(s)ds+ [ e**hy(s)g(s)ds,
0 0

9 <kt [ e ha(s)f(s)ds+ [ hy(s)g(s)ds,

for allt > 0. Then there ezist constants ¢; and M; such that
f(t) < Myet,  g(t) < Mze™,
for allt > 0,

The proof of these inequalities given in [3] was elementary but long, and
much shorter proofs and further generalizations were found in [2], [8], [12].
In 1957, while investigating the boundedness of solutions of certain second
order differential equations, Liang Ou-Iang [7] established the following in-
equality.
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LEMMA 2. Let u and p be real-valued nonnegative continuous functions
defined for allt > 0. If

t
(t) < +2 [ p(s)u(s)ds,
0
for allt > 0, where ¢ > 0 is a constant, then
t
u(ty<c+ [ p(s)ds,
0

forallt > 0.

The inequality given in Lemma 2 depart somewhat from the structure of
the classical Gronwall inequality [1], and has some important applications
in the theory of differential equations [4]-[7], [11]. Due to the successful
utilization of the inequality given in Lemma 2, it is natural to expect that
some new extensions of this inequality similar to those of the inequality given
in Lemma 1 would be equally important in certain new applications. Our
main objective here is to establish a new integral inequality of the Greene
type involving functions of several variables which can be used as handy
tool in the study of certain new classes of partial differential and integral
equations. The discrete analogue of the main result which can be used in
the study of certain new classes of difference and sum-difference equations
is also given.

2. Statement of results

Before stating the theorems to be proved in this paper, we summarise
some basic notations and definitions which will be used throughout our
discussion. Let Ry = [0,00) and define by R} the product Ry X ...X Ry
(n times). A point (z1,...,%,) in RY is denoted by z. For 0, z in R} and
some function p(x) defined for z € R}, we set

Mz,p] = fp(y)dy: fl fp(yl,...,yn)dyn...dyl.
0 0 0

We denote by D; = a%.-‘ and D, ...D, = 52—“...8% for 1 <7 < n. Let
Ny = {0,1,2,...} and denote by NJ the product Ng X ...x Np (n times). A
point (z1,...,Z,) in N is denoted by z. For 0, z in N§ and some function
p(z) defined for z € N§, we set

r1—-1 zn—1

z~-1
Llz,pl =D _p(s)= D ..o Y P(s1,-+-18n)
s=0

51=0 8,=0
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For any function u(z) defined on N we define the operators
Au(z) = u(zy + 1, 29,...,2,) — u(z),...,
Apu(z) = w(z1, ..., Tn1,2n + 1) — u(z),

A Avu(z) = Aqyu(zy, 2z + 1,23,...,2,) — A1u(z),..., and
AnAn—l .o .Alu(x) = An—l .o .Alu(a:l, ceeyTp-19Tn + 1)—
—Anq ... Au(z).

For all m > n, m,n € Ny and any function p(s) defined on Ny, we use the
usual convention Y ,_, p(s) =0 and [],_,, p(s) = 1.

Our main result is embodied in the following theorem.

THEOREM 1. Let u(z), v(z), hi(z), ¢+ = 1,2,3,4, be real-valued, non-
negative, continuous functions defined for z € R} and let c1, c; and p be
nonnegative constants such that
(1) u*(z) < ¢1 + M[z, hyu] + M[z, ho7],

(2) v2(z) S c2+M[Z,h2H]+M[Z,h4’U],
for z € RY, where
n n
u(x) = exp ( - 2u Ez;) u(z) and 7T(z)=exp (2;12 :ci) v(z)
i=1 i=1
for z € R}. Then

n

®) u(z) < exp (1 ) i)l + Mz, bl

(4) o(z) < ¢ + Mz, ],

Jor z € R}, where ¢ = \/2(cy + ¢2) and

(5) h(z) = max{[hi(2) + ha(2)]; [h2(2) + ha(2)]},
forz € RY.

A useful discrete version of Theorem 1 is given in the following theorem.

THEOREM 2. Let u(z), v(z), hi(z), i =1,2,3,4, be real-valued, nonnega-
tive functions defined for ¢ € N§ and ¢y, c; and p be nonnegative constants
such that

(6) u*(z) < ¢; + L[z, h1u] + L[z, ko],
(7 v¥(z) < ¢z + L[z, ha®] + L[z, hyv],
Jor z € Ng', where

T(z) = exp (— 2u _i :c,-) u(z) and v(z)=exp (2ui z;)v(z)

=1
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for z € N™. Then

@ u(@) < exp (203" 2:) e+ Lo, A,
i=1
(9) v(z) < ¢+ Llz, h],
for x € N, where ¢ = \/2(¢1 + ¢2) and
(10) h(z) = max{[h1(z) + ha(2)], [h2(2) + ha(2)]}
for z € N§.

3. Proof of Theorem 1
Multiplying (1) by exp(—2x > &, z;) we observe that
n
2
(11) {exp (—uzz;)u(a:)} <e1 + Mz, hya] + Mz, hov].
i=1
Define

(12) F(z) = exp ( - i i :1:,-) u(z) + v(z).

By squaring both sides of (12) and using the elementary inequality (a+5)? <
2(a® + b?), (a, b reals), and by (11), (2), we observe that

(13) Fi(z) < 2[{ exp ( - pzn:z,-) u(:c))}2 + vZ(z)] <
i=1

<él + 2M[z, (h1 + h3)u] + 2M [z, (ha + hq)v].

Now, by using the fact that exp(—2u Y[, z;) < exp(—p Y1, ;) and by
(5), we can rewrite (13) in the form

(14) F%(z) < c® + 2M[z,hF).

In order to obtain the bound on the function F(z) in (14), we first assume
that ¢ > 0 and define a function z(z) by

(15) 2(z) = ¢ + 2M[z,hF].
From (15) it is easy to observe that
(16) D, ...Dyz(z) = 2h(z)F(z).

Using the fact that F(z) < y/2(z) in (16) we have
an D, ...Dyz(z) < 2h(z)/2(z).
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From (17) we observe that

D, ...Dyz2(z) [Dn-1...D12(z)][Dnv/2(z ]

Vv 2(z) < 2h(z) + z(z)
(18) Dn{ b ""l\‘/'z_'(_f)‘z(z)} < 2h(z).

By keeping z;,...,2,-; fixed in (18), we set z, = y, and then integrating
with respect to y, from 0 to z,, we have

Dn—l o Dlz(:c)
19
(19) o).
Again as above from (19) we get

Dny { Duoa - Daalz) } f (ZT15-- 3 Tn-1,Yn) dyn -

z(:c

Ty
S 2 f h(zlv"-,zn—layn)dyn-
0

By keeping z;,...,Z,—2 and z, fixed in the above inequality, set z,_; =
Yn—1 and then integrating with respect to y,—; from 0 to z,_,, we have

Dy_o...Dy2(z Frst oo
12( )<2 f f h(z1y+ s Tn-2,Yn-1,Yn) @Yn dYpn-1 -

\/z(x

Continuing in this way, we obtain

Dy2(z)
20 <2 h(z ye n) QYn - - -dy2 .
( ) \/z(_z f f (z1,92,.-+,Yn) dy Y2
Now keeping z3,...,z, fixed in the above inequality, we set z; = y; and

then integrating with respect to y; from 0 to z;, we have

(21) Vz(z) < ¢+ Mz, h].

By using the fact that F(z) < \/2(z) in (21) we get

(22) F(z) < ¢ + M[z, h].

Now suppose that ¢ = 0. Then from (14) we see that the inequality
F*(z) < €* + 2M[z,hF]

holds for every arbitrary positive number ¢ and z € R}, which by the above
argument yields the estimate

(23) F(z) < & + Mz, h].



306 B. P. Pachpatte
Since F(z) > 0 and ¢ > 0 is arbitrary number independent of z € R%, then
as € — 0, it follows from (23) that

F(z) < M[z,h].

This shows that (22) gives the upper bound on F(z) for all ¢ > 0. The
desired inequalities in (3), (4) follow by using (22) in (12) and splitting.
This completes the proof of Theorem 1.

4. Proof of Theorem 2
Multiplying (6) by exp(—2u >_i—, ;), we observe that

(24) {exp ( -1 Ej: a:i) u(ar:)}2 < ¢ + L[z, hya) + Lz, hyv] .
Define
(25) G(z) = exp (— B Zzi) u(z) + v(z).

By squaring both sides of (25) and using the elementary inequality (a+b)% <
2(a? + b%), (a, b reals), (24), (7) we observe that

(26) G%(z) < 2[{ exp(—ui:cg)u(z)}z +,,2(z)] <
<+ 2Lz, ( -;hg)ﬂ] + 2L{z,(hs + hy)v].

Now by using the fact that exp(—2pu Y &, ;) < exp(—p Y i, z;) and by
(10) we can rewrite (26) in the form

(27) G*(z) < & + 2L[z, hG].

In order to obtain the bound on the function G(z) in (27), we first assume
that ¢ > 0 and define a function z(z) by

(28) 2(z) = ¢* 4+ 2L[z,hG].
From (28) it is easy to observe that
(29) A, ... A12(z) = 2h(2)G(2).

Using the facts that G(z) < /z(z) and 1/z(z) < \/z(21,...,Zn-1,Zn + 1)
in (29) we have

(30) A, ...A12(z) < 2h(z)V/2(z) <
< 2h($)\/2(21, ceesTu-1,Tn + 1) .
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From (30) we observe that
(31) A,,_l...Alz(:cl,...,:vn_l,:cn+1)_
\/;(1:1,.. 3 Tn=1,Zn + 1)

_An_l...Alz(a:l,...,a:n_l,:c,,) < 2h(z; Tt n)
— b | n—1» nj-.

\/2(271, ceeyTn-1, x'n)
Keeping z1,...,z,—; fixed in (31), we set z, = s, and sum over s, =
0,1,2,...,z, — 1 to obtain the estimate

A Alz(:v) ol
32 <2 h(z1,...,Zn-1,8n).

From (32) and in view of the facts that
Vz(z) < \/z(:cl, ceesTp—2,Zn-1+ 1,Zy)
for all z; € Ny, 1 < i < n, we observe that
Ap_g ... 0 2(Z1,. . Tpe2,Tn-1+ 1,24,) _
V(@1 oy Tne2,Tn-1 + 1,24,)
Ap_z...A12(21,y. 0y Tp—2,Tp—1,Ty) <
\/z(zl, ceeyTpo2,Tn—1,Zn)

Tn~1

<2 Z h(z1y...,Zn-2,Tn-1,54).

8,=0

(33)

Keeping z;,...,Z,-2,%, fixed in (33), we set z,_1 = $,-; and sum over
S$p—1=0,1,2,...,2,.1 — 1 to obtain the estimate

Tp-1—-1lz,-1

A"‘—2 Alz(z) < 2 Z Z h(zlv 3 Tn-2, ’sn—lvs‘n) .

z(z)

8p-1=0 3,=0

Proceeding in this way, we obtain the estimate

ra—1 Ta—1
(34) AIZ(I) < 2 Z E h(Zl,Sg, )

V(z) 3220  5,=0
Now we observe that
(35) A1V 2(z) = \2(z1 + 1,22,...,2,) — V2(z) =
_ 2(z1 4+ 1,29,...,2,) — 2(z) < A12(z) .
Vazi+1,22,...,25) + /2(2) T 24/2(z)

Here in the last step we have used the fact that

V2(z) < V2(z1 + 1,29,...,2,).
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Using (34) in (35), we get
1‘2—1 1‘"—1

(36) A1y/z(z) < Z Z h(z1,82,...,8n).
32=0 3, =0

Now, keeping z3,...,z, fixed in (36), we set z; = s; and sum over s; =
0,1,2,...,z; — 1 to obtain the estimate

(37) vz(z) <c+ L[z,h].
By using the fact that G(z) < \/z(z) in (37), we get
(38) G(z) < ¢+ L[z,h].

The proof of the case when ¢ = 0 can be completed by following the
arguments as in the proof of Theorem 1 with suitable modifications. This
shows that (38) gives the upper bound on G(z) for all ¢ > 0. The required
inequalities in (8), (9) follow by using (38) in (25) and splitting. The proof
is complete.

5. Some applications

In this section we indicate some applications of our results to obtain the
bounds on the solutions of certain partial differential and integral equations
and partial difference and sum-difference equations for which the earlier
inequalities do not apply directly (see [1]-[12]). For example consider the
following system of sum-difference equations

-1

(39) w¥(z) = f(z) + ) Aly, u(y),v(¥)],
=0

(40) (@) = g(e) + 3 Bly, u(y), v(s)]
3=0

for z € Ng, where f,g: N > R; A,B: N} Xx R x R — R, in which R
denotes the set of real numbers. We assume that

(41) f(@l <, lg(@)<er,

(42) | Az, u, ]| < h1(z)|u] + exp (Qp > zi)hQ(:t)|v| :

(43) |B[z, u, v]| < exp ( = a:g)hg(z)|u| + hy(2)|v],
i=1

where h;, i = 1,2,3,4, and ¢;, ¢z, ¢ are as defined in Theorem 2. From
(39)-(43) we observe that

(44) lu(z)I* < e1 + Lz, haful] + L{z, hol5]],
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(45) lo()* < e2 + Liz, halal] + Llz, halvl],

where 7 and 7 are as defined in Theorem 2. Now an application of Theorem 2
yields

(46) ju(@)| < exp (- > 2:)le + Lz, b,

(47) lo()] < ¢+ L[z, ],

where ¢, h, L are as defined in Theorem 2. The inequalities in (46), (47) give
the bounds on the solution (u,v) of the equations (39)—(40).

We finally note that the inequality given in Theorem 1 can be used to
obtain the bound on the solution of the following system of integral equations

(48) Wa) = f&)+ | Alyru(y), o)l dy,
0

(49) v*(z) = g(z)+ [ Bly,u(y),v(y)ldy,
0

under some suitable conditions on the functions f, g, A, B involved in (48),
(49). Various other applications of these inequalities will appear elsewhere.
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