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Dragié¢ Bankovié

ON REPRODUCTIVE SOLUTIONS
OF BOOLEAN EQUATIONS

In this paper we determine a class of general reproductive solutions of
arbitrary Boolean equations. We, namely, prove that Deschamps’s theorem
can be used for the actual finding the general reproductive solutions of
Boolean equations.

1. Introduction

Let S be a given non-empty set and £(z) be any equation (z is an
unknown element of § and £ is a given unary relation of 5) supposing that
there is at least one element z such that £(z) is true.

DEFINITION 1. Let h: E — E be a given function. The formula z = h(2)
represents a general reproductive solution of z-equation £(z) if and only if

(V)E(R()) A (Vz)(E(z) = (3t)z = h(t)).

DEFINITION 2. Let h: E — E be a given function. The formula z = h(t)
represents a general reproductive solution of z-equation £(z) if and only if

(V1)E(R(L)) A (VE)(E(L) = t = h(2)).

DeriNITION 3. The Horn formulas over language L are defined as:

— The elementary Horn formulas are defined as the atomic formulas and
the formulas of the form Dy A...AD; = D, where Dy,...,D,, D are atomic,

— Every Horn formulas is built from elementary Horn formulas using A,

v, 3.

THEOREM 1 (Vaught). Let H be a Horn sentence (formula without free
variables) in language Lp of Boolean algebras. If B; = H then B = H.

See, for instance, [4].
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2. Boolean equations

Let n be a natural number and N = {0,1,...,n}. We shall also use the
notation: X = (z;,...,2,) and T = (t3,...,1,).

Let B=(B,u,Nn,’,0,1) be a Boolean algebra.

THEOREM 2 [7]. The function f: B* — B is Boolean if and only if it can
be writen in the canonical disjunctive form

f(=)=J f(4)x4
y .

where | J, means the union over all A € {0,1}".

THEOREM 3 [7]. Let f: B® — B be a Boolean function. The equation
f(X) = 0 is consistent if and only if [] , f(A) = 0.

THEOREM 4 [7]. If f: B* — B is a Boolean function then
(VX e B")f(X)=04 (VA€ {0,1}")f(A) = 0.
THEOREM 5 [3] (Deschamps). Let f, g1,...,9n: B® — B be Boolean
functions and G = (g1,...,9n). The formula X = G(T) i.e.
z; = gi(tiy...,tn) (1=1,...,n)

represents a general reproductive solution of the consistent Boolean equation
f(X) =0 if and only if

(VX)f(G(X)) = 0 A (vVX)f(X) = |J(9;(X) + =) -

j=1

THEOREM 6 [5]. Let f, g: B® — B be Boolean functions and assume that
f(X) = 0 is consistent. Then the following conditions are equivalent:

(VX € B*)(f(X)=0=g(X)=0),
(VX € B")(¢(X) £ f(X)),
(VX € {0,1}")(9(X) < f(X))-

3. Disjunctive normal forms of general solutions

We prove that every general solution of a given Boolean equation
f(z1,...,2z) = 0 can be written as a disjunctive normal form of n vari-
ables and coefficients of that equation.

THEOREM 7. Let a Boolean equation f(X) = 0 be written in the form
h(X,Y) = 0, where h: B® X B™ — B is a simple Boolean function and
Y € B™. Let g1,...,9: B® — B be Boolean functions. If the formulas

zj=gj(t17-'-)tn) (j=1,...,n)
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represent a general solution of consistent equation f(X) = 0 then there are
coefficients pj a,c € B such that

(1) g1 =UJ (U p,-,A,cYC)TA (G=1,...,n),
A C

where |, and |Jo mean the unions over all A € {0,1}" and C € {0,1}™,
respectively.

Proof. Let P be r-tuple of all p; 4 ¢ occuring in (1), where r = 2"2™n,
We can write Theorem 7 as follows:

(Vh, g1, »92) (BXR(X,Y) = 0 A (VX)R(X,Y) = [T U (5(4) + =)
A j=1

= (AP)(VT)(Vj € N)g;(T) = (UPJ'-A,CYC)TA)
A C

(because of Theorem 5)
ie.

(Vh,g1,.. ,gn)(H B4, Y) = 0A (OB, V) + [T U o (4) +25) = 0

A j=1

= @POT) U (50 + U (Upino¥)74) = 0)
j=1 A C

(because of (Va,b € B)(a=04< a+b=0)and (Va,b€ B)(a=0Ab=
0& aUb=0)).

Let (VA € {0,1}") hg = h(A,Y) and (Vj € N)(VA € {0,1}") g; 4 =
g;i(A) i.e.

2 MX,Y)=|JhaX? and gi(X)=Jg;aX? (G=1,...,n).
A A
The 2™-tuple of all h4 occuring in (2) will be denoted by H, and the n-2"-

tuple of all g; 4 occuring in (2) will be denoted by G .
Now, we can write Theorem 7 as

(VY)(VHH)(VGn)(BP)(H ha=0A U (ho +]] U (95,4 + (D)) =0

A j=1
= U U (9:,0 + U (Up,,A cYC) D") = 0)
D ;=1
where |, means the union over all D = (dy,...,d,) € {0,1}".

Since the latter formula is the Horn sentence it is sufficient to prove
Theorem 8 in B, because of Theorem 1.
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Let h:{0,1}" x {0,1}™ — {0,1} and ¢1,...,9,:{0,1}* — {0,1} be
Boolean functions, h(X,Y) = 0 be consistent and the formulas
zj=gi(t1,...,tn) (F=1,...,n)
represent a general solution of f(X) = 0in B;. From Y € {0,1}™ follows

(3) U (UP;,A CYC) UPJ,A yT4

A
If we take

(Vi € N)(VA € {0,1}™")pjay = gji
we get (1) because of (3) and Theorem 4. »

4. General reproductive solutions

THEOREM 8. Let a Boolean equation f(X) = 0 be written in the form
h(X,Y) = 0, where h: B x B™ — B is a simple Boolean function and
Y € B™. The formulas

(6) zj=J (Upj,o,cYc)TD (G=1,...,n)
D c
(Up and |, mean the unions over all D € {0,1}" and C € {0,1}™ resp.)

represents a general reproductive solution of the consistent equation f(X)
=0 if and only if

@ eV)vX € (0,11 (U SE)opiixy - -Poxy) = 0
E

ARX,Y) = | J(pixy + Zj))
~
where V = {Y | Y € {0,1}™ A (3X)h(X,Y) = 0} and U means the union
over all E = (ey,...,e,) € {0,1}".
COMMENT. If we solve the system (7) we get the general solution (6).

Proof. Bearing in mind Theorem 3 and Theorem 6 we have
(VY € B’")((EJX)h(X Y)=0= A(VX € BYG(f(X)) =0
A (VX € B)R(X,Y) = U U (Up,,D c¥°)XP + z;)
j=1D

& (vv € B™)([] a4, v) =0
A

= (vX € Y (USB@() ... (an(4))) X4 =
A E
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A (VX € {0,1})h(X,Y) = Lnj u(u pj,D,CYC)XD + zj)

j=tD C

& (v € B)(vX € B")([[ M4, ¥) =0
A

= (Uf(E)(.‘h(A))e1 ...(gn(A))en)XA -0
A E

A RX,Y)= 0 U (UPj,D,CYc)X P+ xj)
C

j=1D

& (VY € B™)(VX € B")(Hh(A,Y) =0
A

= U (UAE) @ (a) ... (gn(4) ) X4
A E

U R(X,Y)+ Lnj U (Up,-,D,cYC)XD tz;= 0)

j=1D C

A

& (v € {0,1™)(vx € {0, 3") (U (U S(BX o)) ... (gn(a))™ ) X4
. E-

U h(X,Y) + 0 U(U#ip.cY€)XP +2; < [T h(4,Y))
A

=1 D C
(by Theorem 6)

& (VY € {0,1}™)(VX ¢ {0, 1}")(Hh(A, Y)=0
A

=>U (Uf(E)(sh(A))e1 : ..(gn(A))en)XA
A E

U A(X,Y)+ 0 U(U#ip.cY®)XP +2;=0)

i=1D ¢
(by Theorem 6)

& (VY € {0,1}™)(VX € {0, 1}")(Hh(A, Y)=0
A

= (Uf(E)(gx(A))e1 ...(gn(A))en)XA —0
A E

A KX, Y) + Lnj U (Upj,D,CYC)XD to;= 0)

j=1D C
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& (VY € V)(VX € (0, 1}")(U (Uf(E)(gl(A»e' - (ga(A))") XA =0

A B(X,Y) + U U (UpJ,D cYO)XP 4325 = o)

ji=1D
(V= {Y | Y € {0,1}™ A (3X)h(X,Y) = 0})

& (VY € V)(VX € {0, 1}")(Uf(E)(y1(X))"l . (gn(X)) = 0

A h(X, Y)+UU(Up,, CYC)XD+z _0)

j=1 D
& (VY € V)(VX € {0,1}") (Uf(E)(Upl,x,DY )"
E

n

--(UPn,X,DYD) =0A h X, Y) U (Upj'x,cYc-}-zj) = 0)
D C

& (VY € V)(VX € {0, 1}")(Uf(E)(Upl,x.D . BEx,pYP) =0
E D

A R(X,Y) + CJ (UPj,X,CYc +z,~) = 0)
& (VY € V)(vX € {0,1}" )(Uf(E)(pl Xy -Pixy) =0

AB(X,Y) = U(p,,w+z,) =0) =

Jj=1
Remark 1. IfY €V, X € {0,1}" and A(X,Y) = 0 then the
conjunction

(8) U f(E)(Pffx,y .. -Pf;','x,y) =0AA(X,Y) = U(Pj,X,Y + z;)
E j=1

reduces to

(9) (Vi € N)pixy =7z;.

Proof. If h(X, Y) = 0 then h(X, Y) = U;:l(Pj,X,Y + zj) is equivalent
to (Vj € N)pj.x,y = zj. Since

h(Pl,X,Ya <oy Pn XY Y)= U f(E)(P;:x,y .- -P;':x,y)
E

(9) implies that the equality g f(E)(P'x,y - --Pi™x,y) = 0 is fulfilled.
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Remark2 IfY eV, X € {0,1}" and h(X,Y) = 1 then the conjunc-
tion (8) reduces to

U f(EYpixy Prxy)=0.

Proof. It is ea.sy to proof that the equality U r(Pixy+zi)=1is
equivalent to pi’y y...p"x y = 0. In the other hand f(X)=HnXY)=
1 1mphes that the union UE f(E)(pix,y - -Px,y) contains the product

P1 XY Pn,x Y-
ExAMPLE. Determine a general reproductive solution of
'y Ubzy =0
in arbitrary Boolean algebra.
We shall determine a general reproductive solution in the form
z = (po,pa’d’ Upo1a'bVU pg 2ab’ U po 3ab)t|t)
U (p1,0a'b' U p1,1a’bU py12ad’ U py 3ab)tits
U (p2,0a’d’ U p2,1a'b U ps 2ab’ U p; 3ab)tyt)
U (p3,0a'd’ U p31a'b U p32ab’ U p3 3ab)tyt;,
¥ = (go,0a'd’' U go,1a’b U go 2ab’ U go 3ab)t1 )
U (g1,0a'b" Uq1a'bU gy 2ab" U g 3ab)tjty
U (g2,0a'b" U ga,1a'bU gz 2ab" U g3 3ab)tst
U (g3,0a'b' U g3,1a'b U g3 2ab’ U g3 3ab)tyt; .
Note that V = {0,1}>. If (z,y,a,b) € {0, 1} it is easy to test the statement
h(z,y,a,b) =1 & (2,9,a,b) € {(0,0,1,0),(0,0,1,1),(1,1,0,1),(1,1,1,1)}.

Bearing in mind Remark 1 and Remark 2 we get

(P0,0,90,0) = (P0,1,9,1) = (0,0),

(P1,0,910) = (P1,1,01,1) = (P12, 1,2) = (P13, 01,3) = (0,1),

(P2,0,92,0) = (P21, 02,1) = (P2,2,@2,2) = (2,3, 92,3) = (1,0),

(P3,0,930) = (P3,2,83,2) = (1, 1),

P02%,2 =0, Pp3do3VUPosdos =0, P31gs1=0, p33q33Upssgss=0.

From the latter line we get, for instance,
(Po,2,90,2) = (P0,3,90,3) = (P3,1,431) = (P3,3,933) = (0,1)

(any missing term p§ qf indicates that (a, ) is a solution of the correspond-
ing equation).
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Finaly, we have
z = (a'b' Ua'buab' Uab)tit, Uad'b'tyt;
y = (a’bUab Uab)tjt, U (a'd' Ua’bu ab Uab)tit; U (a'd’ Uab)tyt,.
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