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ON REPRODUCTIVE SOLUTIONS 
OF BOOLEAN EQUATIONS 

In this paper we determine a class of general reproductive solutions of 
arbitrary Boolean equations. We, namely, prove that Deschamps's theorem 
can be used for the actual finding the general reproductive solutions of 
Boolean equations. 

1. Introduction 
Let 5 be a given non-empty set and S(x) be any equation (x is an 

unknown element of S and € is a given unary relation of S) supposing that 
there is at least one element x such that S(x) is true. 

DEFINITION 1. Let h:E E be a given function. The formula x = h(t) 
represents a general reproductive solution of x-equation S(x) if and only if 

(Vt)£(h(t)) A (Vx)(£(x) => (3t)x = h(t)). 

DEFINITION 2. Let h: E ->• E be a given function. The formula x = h(t) 
represents a general reproductive solution of x-equation £(x) if and only if 

(Vt)£{h{t)) A (Vi)(£(0 =i> t = h{t)). 

DEFINITION 3. The Horn formulas over language L are defined as: 
— The elementary Horn formulas are defined as the atomic formulas and 

the formulas of the form V\ A. . . A V3 where V\,..., Vs, V are atomic, 
— Every Horn formulas is built from elementary Horn formulas using A, 

V, 3. 

THEOREM 1 (Vaught). Let 7i be a Horn sentence (formula without free 
variables) in language LB of Boolean algebras. If B2 (= H then B\= 7i. 

See, for instance, [4]. 
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2. Boolean equations 
Let n be a natural number and N = {0,1 , . . . , n}. We shall also use the 

notation: X = ( x i , . . . ,xn) and T = ( f i , . . .,tn). 
Let B = (B, U, H, ' , 0,1) be a Boolean algebra. 

T H E O R E M 2 [7]. The function f:Bn B is Boolean if and only if it can 
be writen in the canonical disjunctive form 

f(x) = [Jf(A)XA 

A 

where means the union over all A € {0, l}n. 

T H E O R E M 3 [7]. Let f:Bn B be a Boolean function. The equation 
f ( X ) = 0 is consistent if and only if f j ^ f(A) = 0. 

T H E O R E M 4 [7] . If f:Bn B is a Boolean function then 

(VX € Bn)f( X) = 0 # ( V i G {0, l} n ) / (A) = 0. 

THEOREM 5 [3] (Deschamps). Let f , gi,... ,gn: Bn B be Boolean 
functions and G = (gi,...,gn)• The formula X = G(T) i.e. 

Xi = gi(U,... ,tn) ( i = l , . . . , n ) 
represents a general reproductive solution of the consistent Boolean equation 
f ( X ) = 0 if and only if 

(VX)f(G(X)) = 0 A (VX)f(X) = ( j (gj(X) + xj). 
3=1 

T H E O R E M 6 [5]. Let f , g: Bn —• B be Boolean functions and assume that 
f ( X ) = 0 is consistent. Then the following conditions are equivalent: 

(VA-€2T)( / (X) = 0=>i/(A-) = 0), 

( V X e { o , I D G j P O < / ( A ' ) ) . 

3. Disjunctive normal forms of general solutions 
We prove that every general solution of a given Boolean equation 

f(xi,...,xn) = 0 can be written as a disjunctive normal form of n vari-
ables and coefficients of that equation. 

T H E O R E M 7 . Let a Boolean equation f ( X ) = 0 be written in the form 
h(X,Y) = 0, where h:Bn x Bm —• B is a simple Boolean function and 
Y G Bm. Let gi,.. .,gn' Bn —• B be Boolean functions. If the formulas 

Xj = gj(h,... ,tn) (j= 1, ...,n) 
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represent a general solution of consistent equation f ( X ) = 0 then there are 
coefficients Pj,A,c € B such that 

(1) (VT)9j(T) = { j ( \ J p j t A , c Y c ) T A ( j = 1,...,»), 
A C 

where Ux and U c mean the unions over all A G {0, l} n and C G {0, l } m , 
respectively. 

P r o o f . Let P be r-tuple of all Pj<A,c occuring in (1), where r = 2 n 2 m n . 
We can write Theorem 7 as follows: 

71 
( V M i , . . •, < /„ ) ( (3A>(A,y) = 0 A ( V J K ) h ( X , Y ) = J] I J O ^ ) + xi) 

A j=l 

=> ( 3 P ) ( V T ) ( V j G N)gj(T) = ( J [ \ J P j , A , c Y c ) T A ) 
A C 

(because of Theorem 5) 
i.e. 

n 

(VÄ, 51, • • •, 9n) ( n h( A, Y ) = 0 A (VA-)h(A', y ) + J ] ( J (9j(A) + X j ) = 0 
A A j=l 

=> (3P)(VT) [ J (GJ(T) + ( J ( ( J P J , A , C Y c ) T A ) = o) 
j= 1 A C 

(because of (Va, b G B){a = 0 •«> a + b = 0) and (Va, b G -B)(a = 0 A b = 
0 o a U 6 = 0)). 

Let (VA G {0, l} n ) hA = Ä(A,y) and (Vj G iV)(VA G {0, l} n ) gj<A = 
^•(A) i.e. 

(2) h(X,Y) = {JhAXA and 9J(X) = {J9J,AXA ( j = l , . . . , n ) . 
A A 

The 2n-tuple of all hA occuring in (2) will be denoted by Hn and the n • 2n-
tuple of all 9JTA occuring in (2) will be denoted by GN. 

Now, we can write Theorem 7 as 
n 

( V y ) ( V t f n ) ( V G n ) ( 3 P ) ( n > ^ = 0 A ( J (hD + n (9j,A + (£>);)) = 0 
A D A j= 1 

n 

U U + U { \ } P Ì ^ C Y c ) D a ) = o) 
D 3=1 A C 

where [J^ means the union over all D = ( d i , . . . , dn) G {0, l} n . 
Since the latter formula is the Horn sentence it is sufficient to prove 

Theorem 8 in B2, because of Theorem 1. 
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Let h: {0, l} n x {0 , l} m - {0,1} and gu... ,gn: {0, l} n {0,1} be 
Boolean functions, h(X, F ) = 0 be consistent and the formulas 

x j = 9j(h,---,tn) (j=l,...,n) 

represent a general solution of / ( A ) = 0 in B?. From Y G {0, l } m follows 

(3) U{(JPi,A,cYc)TA = l J p j t A , y T \ A C A 
If we take 

(Vj G N)(VA G {0, l}m)pj,A,Y — Sj,i 
we get (1) because of (3) and Theorem 4. • 

4. General reproductive solutions 
THEOREM 8. Let a Boolean equation /(A") = 0 be written in the form 

h(X, y ) = 0, where h: Bn x Bm —• B is a simple Boolean function and 
Y e Bm. The formulas 

(6) *i = U ( U P^,cYc)TD ( j = l , . . . , n ) 
D C 

( U c and (Jc "icon the unions over all D G {0, l } n and C G {0, l } m resp.) 
represents a general reproductive solution of the consistent equation / ( A ) 
= 0 if and only if 

(7) (Vy € F)(VA G { o , i } " ) ( U / ( ^ ) ( K U , y - - K ^ . r ) = o 
E 

n 
Ah(X,Y) = + 

j=1 
where V = {Y \ Y G {0,1}TO A ( 3 A ) h ( A , y ) = 0} and \JE means the union 
over all E = (ei,...,e„) 6 {0 , l} n . 

COMMENT. If we solve the system (7) we get the general solution (6). 

P r o o f . Bearing in mind Theorem 3 and Theorem 6 we have 

(Vy G jBm)((3A')/i(A',y) = 0 A(VA G Bn)G(f(X)) = 0 

A (VA G Bn)h(X,Y) = [ J I J {{JPi,D,cYc)xD + * , ) 
j=1 D C 

( v y g 5 m ) ( f [ / i ( A , y ) = o 
A 

(VA G Bn)\j{[jf(E)(g1(A)r...(gn(A)r'')xA = 0 
A E 
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A (VX e {0 , lmx.y) = U (J ( ( J P j , D , c Y c ) x D + Z j ) 
j=l D C 

& (W e Bm)(yx e 5B)( JJfc(A,y) = o 
A 

* U ( U m ( 9 i ( A ) y i . . . ( g n ( A ) y « ) x A = 0 
A E 

i= 1 D C 

o- (vy 6 5m)(vx € = o 
A 

=» U ( { J f m a d A ) ) 6 1 . . . M A ) ) " ) x A 

A E 

U h(X, Y ) + ( J U ( ( J P J , D , c Y c ) x D + X j = o ) 
j= 1 D C 

* (vy 6 {0, l}m)(VA' G {0,1}")(U (U/(£)(5l(A)r 
A £ 

u ¿(x,y) + U |J ( U P J I D I C Y C ) X D + XJ < 
j=l D C A 

(by Theorem 6) 

O (vy € {0,l}m)(VA' € {0,i}B)(nM^n = 0 
A 

=> U ( U f ( E ) i s M ) r ...(gn(A)y")xA 

A E 

U h ( X , Y ) + Q U ( U P i , D , c Y c ) x D + XJ = o ) 
j=1 D C 

(by Theorem 6) 

o- (vy e {o, i}m)(vx e {o, i}n)(J] H{A, Y) = o 
A 

( J ( \ J m ( g i ( A ) y ^ . . ( 9 n ( A ) y " ) x A = 0 
A E 

A h(X,Y) + ( J | J ( ( J P J , D , C Y c ) X D + XJ = 0) 
j=1 D C 
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* (VY G V)<yx G { 0 , 1 } " ) ( U ( { J f ( E ) ( g i ( A ) ) e i . . . ( g n ( A ) ) e " ) x A = 0 
A E 

A h ( X , Y ) + U U ( U P J , v , c Y ° ) x D + X j = o ) 

j=1 D C 

(V = { Y \ Y £ { 0 , l } m A ( 3 X ) h ( X , Y ) = 0 } ) 

^ ( v r g v ) ( v x g { o , i } n ) ( ( j m ( g i ( x ) r . . . ( g n ( x ) Y " = o 

E 

A h ( X , Y ) + ( J U ( U P i , D , c Y c ) x D + X j = 0 ) 

j=l D C 

o ( v r € V ) ( V J T g { 0 , i r ) ( U / ( £ ) ( L J p w y D ) e i ••• 

E D 

. . . ( \ J p n , x , D Y D ) e n =0A h { X t Y ) + ( j ( \ j M f i Y c + x i ) = o ) 
D j= 1 C 

* (VY 6 V ) ( V X G = 0 
E D 

n 

A / i ( A ' , Y ) + | J ( + * j ) = 0 ) 

¿=i c 

& (VY G V ) ( V X G { 0 , 1 } " ) ( ( J f { E ) { p \ ) x > y . . . Pen,X,Y) =  0 

E 
n 

A h ( X , Y ) = U ( P i . * , y + * i ) = o) • 
j=i 

R e m a r k 1. If Y G V, X G { 0 , 1 } " a n d / i ( X , Y ) = 0 t h e n t h e 
con junc t i on 

n 

( 8 ) ( J f { E ) ( p \ \ X t y . . = 0 A h ( X , Y ) = ( J ( p i | X i y + X j ) 

E j-1 

r educe s to 

( 9 ) ( V j G N)Pi,x,Y = xj . 

P r o o f . If Y ) = 0 t h e n Y ) = \ J n j = l ( P j , x , Y + x j ) i s equ iva l en t 

t o ( V j G N ) p j t x , Y = « j - S ince 

•Pn.X.W 
E 

( 9 ) imp l i e s t h a t t h e e q u a l i t y \ J E f ( E ) ( p e 1 1 < X Y . . . p j ' ' X t y ) = 0 i s fu l f i l l ed . 
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R e m a r k 2. If Y € V, X € {0, l } n and h(X,Y) = 1 then the conjunc-
tion (8) reduces to 

U m<J%X,Y'~P'£c,Y) = °' 
E 

P r o o f . It is easy to proof that the equality \Jj=i(pj,x,Y + x j ) = 1 is 
equivalent to p^x y Pn"x y = 0. In the other hand f(X) = h(X,Y) = 

1 implies that the union \JE fi^iPVx Y • • -PrCx Y) c o n tams the product 
PHX,Y •' 'PN*X,Y' 

EXAMPLE. Determine a general reproductive solution of 
ax'y' U bxy = 0 

in arbitrary Boolean algebra. 

We shall determine a general reproductive solution in the form 
x = {Po,oa'b' U pa^a'b U po^ab' U po^afyt'^ 

U (pitoa'b' U pi,ia'b U pit2db' U Pi^ab)t[t2 

U (p2,oa'b' U p2,ia'b U P2,2db' U P2,zab)t1t'2 

U (p3,oa'b' U p3,ia'b U p^ab' U J>3)3a&)*i*2 , 

V = (qofld'b' U q0,ia'b U qo^ab' U qojab)^ 

U (qifla'b' U qi,ia'b U qi^ab' U q i ja fy t fa 

U (q2,oa'b' U q2,ia'b U 92,2 U q2,3ab)t1t'2 

U (q3,oa'b' U q3,ia'b U g3,2a&' U q3,3db)t1t2 • 

Note that V = {0, l } 2 . If (x, y,a, b) € {0, l } 4 it is easy to test the statement 

h(x,y,a,b) = 1 o (x,y,a,b) € {(0,0,1,0) , (0 ,0 ,1 ,1) , (1 ,1 ,0 ,1) , (1 ,1 ,1 ,1)} . 

Bearing in mind Remark 1 and Remark 2 we get 

(Po,o,9o,o) = 0>o,i,9o,i) = (0 ,0) , 

(Pl.0,91,0) = (pi,i>?i,i) = (ft,2,91,2) = (¿>1,3,91,3) = (0 ,1) , 
(i>2,0,92,o) = (i>2,l,92,l) = (^2,2,92,2) = (^2,3,92,3) = (1 ,0) , 
(i>3,o,93,o) = (^3,2,93,2) = (1 ,1) , 
Po,29o,2 = 0, Po,3q'o,3 Upo,390,3 = 0, p3,l93,l = 0, P3>393,3 U ¿>3,393,3 = 0 . 
From the latter line we get, for instance, 

(P0,2,90,2) = (¿>0,3, 90,3) = (i»3,l,93,l) = (^3,3,93,3) = (0,1) 

(any missing term p%q% indicates that (a, /?) is a solution of the correspond-
ing equation). 
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Finaly, we have 

x = (a'b' U a'b U ab' U ab)txt'2 U a'b'tit2 

y = (a'b U ab' U ab)t[t'2 U (a'b' U a'b U ab' U ab)t[t2 U (a'b' U ab)ht2 . 
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