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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE SECOND ORDER DIFFERENCE EQUATIONS

Let N denote the set of positive integers, R the set of real numbers.
For a function f : N — R one introduces the difference operator A in the
following way Af = foy1 — fo Where f, = f(n) and A¥f = A*-1(Af) for
k>1,keN.

Next Lemma was presented in [1].

LEMMA 1. The difference equation
(1) A2zn = @nZp41, NE N
where a : N — R, has linearly independent solutions u, v which fulfil the
equation

(2)

Un Un

Au, Av,

DEFINITION 1. We will say B € Br,if B: N X R — R4 and B possesses
the following properties

1° 0 < B(n,z;) < B(n,z;3),for 0 < z7 <

2° B(n,kz) < F(k)B(n,z),forz >e >0

where F' is continuous, nondecreasing and positive function.

=-1, forné€N.

LEMMA 2. Let u, v denote linearly independent solutions of the difference
equation (1) for which (2) holds. Moreover, let a : N — R and function
f:N X R — R possessing the following properties

(3) |f(n,2)| < B(n,|z|), for everyz € R
where B € Bp, and F fulfil the condition
z
d
4) lim ® - (for every positive constant ).

= ) FG)
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If
[ =]

(%) Z U;B(j,U;) = K < 0o (for some positive constant K)
ij=1

(6) where U;j = max{|u;l, |vj], [uj4al, [vjs1l}

then the solution of the equation
Azyn =@QnYns+1 + f(na yn)7 neEN

ezists and it can be written down in the form
(7) Yn = Qply + ﬂnvn
where
lim e, =a, lim g8, =p.
n—oo n—o0
Proof. Let us choose two linearly independent solutions u, v of (1) ful-
filling the condition (2). Moreover, let us denote

(8) An = UnAYy — YnAvy
9) By = ynAty — g Ayn.
Then

(10) Yn = UnAp + v By,

Applying the difference operator A to (8) and (9) we obtain

AA, = vn+1A2yn - yn+1A2'Dn
ABp = yny14%un — un31 A%yn.
Using (7) and (1) we have
AAy = vpq41 f(n,9n)
AB,, = —uay41 f(n, Yn)-
From (10) we obtain
(1) AAj = viy1f(4, Aju; + Bjv;)
ABj = —uj41f(j, Aju; + Bjv;), jEN.
Putting from j = 1 to j = n — 1 and adding obtaining equations one yields
n-1
An = Av+ Y v f(G, Ajus + Bjvy)

=1
(12) -

B. = B1— ) ujs1f(j, Ajuj + Bjv;).

Jj=1
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Then

n-1

|Aal < 1A1] + ) loiall £, Ajuj + Bjoj))
i=1
n—1

|Bnl < |B1l + ) ujsal|f(4, Aju; + Bjvi)l.

j=1
We have

n-1

|4al + |Bal < 41| + Bul + D _llvjal + lujaal] 150, Aju; + Bjvs)l-
i=1

Let us denote
(13) hy, =|A| +|Bs|, n€N.
From (6) we have

lv;l U, il < Uj,  |vja| S Uj,  |ujpal £ Uj.
We can see that
(14) [Ajuj + Bjvi| < |Ajllujl + | Bjllvil < Uj(|4;] + | B;))-
Hence by (3) we get

|f(4, Ajuj + Bjv;)l < B(j,|Ajuj + Bjv;l).

Therefore, (13) yields

n—1
hn < k1 +2) ] UiB(j,|Aju; + Bjvj).
=t
Where, (13) and (14) lead to the following inequality
n—1
hn < by +2) U;B(j,Ujh;).
j=1
Let
n—1
b = h1 +2)_ U;B(j, Ujh;).
i=1
Then
(15) hi<b;, i€N.

From definition of b it follows that
Ab; = b,‘+1 - b.‘ = 2U,‘B(i, U.'h,').
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From (15) and properties of B we have
Ab; < 2U;B(3,Usb;) < 2U:F(b;)B(3, U;).
This and condition 2° imply

(16) 5 <

Since function F is nondecreasing, so the function % is nonincreasing. This
yields

Ab; B ds
(") 7 2 J oy

From (16) and (17) we have

(18) bf F‘z“) < 2U;B(i,U;), i€ N.

Putting from¢i=1toi=n—1and adding obtaining equations one yields
by

(19) fF()_?.ZUB(zU)

Denoting

(20) f 7 ( ) = G(z), where ¢ is a positive constant

we obtain tha.t
f F( ) = G(bn) - G(bl)'

From this and (19) we can observe

n—-1
(21) G(bn) < G(b1) +2)_ U:B(;, Uy).

i=1
Function G is increasing from (20) and properties of function F. Then,
(22) G~! is increasing.
We have two possibilities:

(i) limg—oo G(z) = =¢. Then G(by) + 231 ! U:B(3, U;) belongs to the
domain of function G, for every n € N
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(i) limy—e G(z) = g < co. We can take, because of condition (4), by =
|A1| + | B1| which implies

G(by) +2) UiB(i,U;) < g.
i=1
Then G(by) + 23X o2, U:B(i,U;) belongs to domain of function G~ in

this case, too.
Above, (21) and (22) are followed by

n—1
ba < GTH{G(br) +2 ) UiBG, V) }.
i=1
Applying (15) we have
n-1

he < GH{G(b1) +2 > U:BG, U,-)}.

i=1
From (5) and (13) we have
|Anl + |Bn| € G"Y{|A1|+ |B1| + 2K} = C; < 00, where n € N.
Properties of function B and (3) give the following inequalities
|visall f(3, Aju; + Bjv;)l < U;B(,|A;u; + Bjvjl)
< U;B (5, V(1451 + |B51))
< U;B(5,U;Ch) < F(C1)U;B(5,U;) = F(C1)K.

This means that the series
(s o)

Z vi+1f(J, Aju; + Bjv;)
ij=1
is absolute convergent. By (12) finite limit lim, . A, = a exists. Analo-
gously lim,_, ., B, = f < oo exists.
Therefore the assertion of Lemma 2 follows from (12).

THEOREM 1. Let u, v denote linearly independent solutions of the differ-
ence equation (1). Moreover, let a : N — R and function f : N X R — R
possessing the following properties

|f(n,z)| £ B(n,|z]|), for everyz € R
where R € By and F fulfil the condition

T
ds
lim ;f m = —o00 for a positive constant €.

z—0
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If

o0

Y U;B(j,U;) = K < o

i=1
(for some positive constant K) where

U; = max{|u;|, [vj], [ujal, [vj4a|}
then solution of the equation ezxists
Azyn = @nYns+1 + f(n, yn)a neEN
which can be written down in the form
Yn = Qpln + ,ann

where lim, o0 an = @, lim,_, Bn = 6.

Proof. Let us choose two linearly independent solutions %, 7 of (1). Let
u and v be two linearly independent solutions of (1) fulfilling condition (2).
Then for some constant ¢;, ¢ = 1,2,3,4 such that

o al#o,
we have
(23) U =C1T+ T, V=C3U+ 4D
By Lemma 2 solution of (7) exists and
(24) Yn = Qnitin + Bntn
(25) s i fasb

Using (23) in (24) we get the following result
Yn = En(ancl + ,Bnc3) + T’-n(a'nc'l + ﬂnc4)-
From (25) we can observe that
lim (aner + Bacs) =@ < 00 and lim (apcz 4 Bres) =B < 0
n—00 n-+00
exist so the theorem is proved.

EXAMPLE 1. The next equation
1
(*) Alyn = ~2ynp1 + Sy, m21
is considered. The following sequences
v = {1,0,-1,0,1,0,-1,...} and »={0,1,0,-1,0,1,0,...}
are linearly independent solutions of the equation

A%z = —22Zp41.
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Let B(n,z) = 272™ and F(k) = k™. Then assumptions of the Theorem 1
hold and the solution of equation (*) exists. It can be written down in the
form

Yn = Qrln, + ﬂnvn
where
lim a, =¢a, lim B, = 4.
n—00

n—0o

THEOREM 2. Let function f : N X R — R fulfil conditions (3) and (4) of
Lemma 2. If

o0

(26) ZjB(j,j) =k < oo (for some positive constant k)
i=1

then the solution of the equation

(27) Aly, = f(n,y2), mEN

ezists. It can be written down in the form

Yyn=an+b+ ¢, where lim ¢, =0.

Proof. Equation
Az, =0
has two linearly independent solutions u, = n, v, = 1, n € N. These
solutions satisfy condition (2) of Lemma 1. We will prove that condition (5)

is also satisfied. From Lemma 1, U; is equal j + 1. It is worth noticing that
condition (26) implies condition (5) of Lemma 2. Indeed,

Z U;B(j,U;) = Z(] +1)B(j,j+1) < 2(1 +3)B(j,5 + 5)
j=1

i=1 Jj=1
=3 (25)B(35,2]) < 2F(2) ZjB(j,j) = 2F(2)k < co.
j=1 Jj=1

So, we have all assumptions of Lemma 2 are fulfilled and it can be useful
for our problem. Solution of equation (27) is

(28) Yn = Ann + B,

where A, and B, are defined by (8) and (9) and finite limits of sequences
{A.}, {Bn} exist. Let

(29) lim A, =a, lim B, =).

n—oo n—oo
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From (12) we get

n-1

A=A + Zf(]aJAJ + Bj)'
j=1
From this and (29) we obtain

a=A1+)_ f(,jA;j+ B;).

i=1
Using properties of function f we have
[e o] [ o] o0
|[An—al =Y f(,5A;+B;)| < Y B(, 1A+ B51) £ Y B(, jlA;l+|Bj)).
j=n i=n i=n

It is followed by

n|4, —al £ ) 7B(,jlA;l + |Bj)).

i=n
From (29) constant C exists and
|Ap| 4+ |Bn| < C formn € N.
Then
o o
n|dn —a| < ) jB(,iC) < F(C) ) iB(j,4)
j=n j=n

and by (26) we have
o0
Jlim F(C) ) jB(jj)=0
j=n
what gives
(30) nleréo n|A, —a| = 0.

The solution (28) of equation (27) can be written in the form
yn=an+b+ (Ap—a)n+ (B, - b).
This and (30) give us the conclusion:
Yn = an+ b+ ¢(n),
where ¢, = (A, — a)n + (B, — b) and lim,—00 ¢n = 0. The theorem is
proved.

ExAMPLE 2. The next equation

1
Azyn = ﬁyrzt
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is considered. Let B(n,z) = Zxz? and F(k) = k?. Then the assumptions
of the Theorem 2 hold and the solution of this equation exists. It can be
written down in the form

Yn=an+b+ ¢, where lim ¢, =0.

Remark. We get theorems proved by A. Drozdowicz in [1] as special
cases of our results. To get theorems contained therin we take f(n,z) =
g,22™*1 in (6) and (8). In the proof of Lemma 2 estimations like in paper
[3] are applied. The second order difference equations were studied also in

[1], (4], [5)-
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