Ewa Schmeidel

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF THE SECOND ORDER DIFFERENCE EQUATIONS

Let N denote the set of positive integers, R the set of real numbers. For a function $f: N \to R$ one introduces the difference operator Δ in the following way $\Delta f = f_{n+1} - f_n$ where $f_n = f(n)$ and $\Delta^k f = \Delta^{k-1}(\Delta f)$ for $k > 1, k \in N$.

Next Lemma was presented in [1].

LEMMA 1. The difference equation

$$\Delta^2 z_n = a_n z_{n+1}, \quad n \in N$$

where $a: N \to R$, has linearly independent solutions u, v which fulfil the equation

(2)
$$\begin{vmatrix} u_n & v_n \\ \Delta u_n & \Delta v_n \end{vmatrix} = -1, \quad \text{for } n \in \mathbb{N}.$$

DEFINITION 1. We will say $B \in B_F$, if $B: N \times R \to R_+$ and B possesses the following properties

1°
$$0 \le B(n, x_1) \le B(n, x_2)$$
, for $0 \le x_1 \le x_2$
2° $B(n, kx) \le F(k)B(n, x)$, for $x \ge \varepsilon > 0$

where F is continuous, nondecreasing and positive function.

LEMMA 2. Let u, v denote linearly independent solutions of the difference equation (1) for which (2) holds. Moreover, let $a:N\to R$ and function $f:N\times R\to R$ possessing the following properties

(3)
$$|f(n,x)| \leq B(n,|x|), \text{ for every } x \in R$$

where $B \in B_F$, and F fulfil the condition

(4)
$$\lim_{x\to 0} \int_{0}^{x} \frac{ds}{F(s)} = -\infty \quad (\text{for every positive constant } \varepsilon).$$

If

(5)
$$\sum_{j=1}^{\infty} U_j B(j, U_j) = K < \infty \quad (for some positive constant K)$$

(6) where
$$U_j = \max\{|u_j|, |v_j|, |u_{j+1}|, |v_{j+1}|\}$$

then the solution of the equation

$$\Delta^2 y_n = a_n y_{n+1} + f(n, y_n), \quad n \in N$$

exists and it can be written down in the form

$$(7) y_n = \alpha_n u_n + \beta_n v_n$$

where

$$\lim_{n\to\infty}\alpha_n=\alpha,\quad \lim_{n\to\infty}\beta_n=\beta.$$

Proof. Let us choose two linearly independent solutions u, v of (1) fulfilling the condition (2). Moreover, let us denote

$$A_n = v_n \Delta y_n - y_n \Delta v_n$$

$$(9) B_n = y_n \Delta u_n - u_n \Delta y_n.$$

Then

$$(10) y_n = u_n A_n + v_n B_n.$$

Applying the difference operator Δ to (8) and (9) we obtain

$$\Delta A_n = v_{n+1} \Delta^2 y_n - y_{n+1} \Delta^2 v_n$$
$$\Delta B_n = y_{n+1} \Delta^2 y_n - y_{n+1} \Delta^2 y_n$$

Using (7) and (1) we have

$$\Delta A_n = v_{n+1} f(n, y_n)$$

$$\Delta B_n = -u_{n+1} f(n, y_n).$$

From (10) we obtain

(11)
$$\Delta A_{j} = v_{j+1} f(j, A_{j} u_{j} + B_{j} v_{j}) \Delta B_{j} = -u_{j+1} f(j, A_{j} u_{j} + B_{j} v_{j}), \quad j \in N.$$

Putting from j = 1 to j = n - 1 and adding obtaining equations one yields

(12)
$$A_n = A_1 + \sum_{j=1}^{n-1} v_{j+1} f(j, A_j u_j + B_j v_j)$$
$$B_n = B_1 - \sum_{j=1}^{n-1} u_{j+1} f(j, A_j u_j + B_j v_j).$$

Then

$$|A_n| \le |A_1| + \sum_{j=1}^{n-1} |v_{j+1}| |f(j, A_j u_j + B_j v_j)|$$

$$|B_n| \le |B_1| + \sum_{j=1}^{n-1} |u_{j+1}| |f(j, A_j u_j + B_j v_j)|.$$

We have

$$|A_n| + |B_n| \le |A_1| + |B_1| + \sum_{j=1}^{n-1} [|v_{j+1}| + |u_{j+1}|] |f(j, A_j u_j + B_j v_j)|.$$

Let us denote

(13)
$$h_n = |A_n| + |B_n|, \quad n \in N.$$

From (6) we have

$$|v_i| \le U_i, \quad |u_i| \le U_i, \quad |v_{i+1}| \le U_i, \quad |u_{i+1}| \le U_i.$$

We can see that

$$(14) |A_j u_j + B_j v_j| \le |A_j||u_j| + |B_j||v_j| \le U_j(|A_j| + |B_j|).$$

Hence by (3) we get

$$|f(j, A_j u_j + B_j v_j)| \le B(j, |A_j u_j + B_j v_j|).$$

Therefore, (13) yields

$$h_n \leq h_1 + 2 \sum_{j=1}^{n-1} U_j B(j, |A_j u_j + B_j v_j|).$$

Where, (13) and (14) lead to the following inequality

$$h_n \leq h_1 + 2 \sum_{j=1}^{n-1} U_j B(j, U_j h_j).$$

Let

$$b_n = h_1 + 2 \sum_{j=1}^{n-1} U_j B(j, U_j h_j).$$

Then

$$(15) h_i \leq b_i, \quad i \in N.$$

From definition of b it follows that

$$\Delta b_i = b_{i+1} - b_i = 2U_i B(i, U_i h_i).$$

From (15) and properties of B we have

$$\Delta b_i \leq 2U_i B(i, U_i b_i) \leq 2U_i F(b_i) B(i, U_i).$$

This and condition 2° imply

(16)
$$\frac{\Delta b_i}{F(b_i)} \le 2U_i B(i, U_i).$$

Since function F is nondecreasing, so the function $\frac{1}{F}$ is nonincreasing. This yields

(17)
$$\frac{\Delta b_i}{F(b_i)} \ge \int_{b_i}^{b_{i+1}} \frac{ds}{F(s)}.$$

From (16) and (17) we have

(18)
$$\int_{b_i}^{b_{i+1}} \frac{ds}{F(s)} \le 2U_i B(i, U_i), \quad i \in N.$$

Putting from i = 1 to i = n - 1 and adding obtaining equations one yields

(19)
$$\int_{b_1}^{b_n} \frac{ds}{F(s)} \le 2 \sum_{i=1}^{n-1} U_i B(i, U_i).$$

Denoting

(20)
$$\int_{-\infty}^{X} \frac{ds}{F(s)} = G(x), \text{ where } \varepsilon \text{ is a positive constant}$$

we obtain that

$$\int\limits_{b_n}^{b_n}\frac{ds}{F(s)}=G(b_n)-G(b_1).$$

From this and (19) we can observe

(21)
$$G(b_n) \le G(b_1) + 2 \sum_{i=1}^{n-1} U_i B(i, U_i).$$

Function G is increasing from (20) and properties of function F. Then,

(22)
$$G^{-1}$$
 is increasing.

We have two possibilities:

(i) $\lim_{x\to\infty} G(x) = \infty$. Then $G(b_1) + 2\sum_{i=1}^{n-1} U_i B(i, U_i)$ belongs to the domain of function G^{-1} , for every $n \in N$.

(ii) $\lim_{x\to\infty} G(x) = g < \infty$. We can take, because of condition (4), $b_1 = |A_1| + |B_1|$ which implies

$$G(b_1) + 2 \sum_{i=1}^{\infty} U_i B(i, U_i) < g.$$

Then $G(b_1) + 2 \sum_{i=1}^{\infty} U_i B(i, U_i)$ belongs to domain of function G^{-1} in this case, too.

Above, (21) and (22) are followed by

$$b_n \le G^{-1}\Big\{G(b_1) + 2\sum_{i=1}^{n-1} U_i B(i, U_i)\Big\}.$$

Applying (15) we have

$$h_n \leq G^{-1}\Big\{G(b_1) + 2\sum_{i=1}^{n-1} U_i B(i, U_i)\Big\}.$$

From (5) and (13) we have

$$|A_n| + |B_n| \le G^{-1}\{|A_1| + |B_1| + 2K\} = C_1 < \infty$$
, where $n \in \mathbb{N}$.

Properties of function B and (3) give the following inequalities

$$|v_{j+1}||f(j, A_j u_j + B_j v_j)| \le U_j B(j, |A_j u_j + B_j v_j|)$$

$$\le U_j B(j, U_j (|A_j| + |B_j|))$$

$$< U_j B(j, U_j C_1) < F(C_1) U_j B(j, U_j) = F(C_1) K.$$

This means that the series

$$\sum_{j=1}^{\infty} v_{j+1} f(j, A_j u_j + B_j v_j)$$

is absolute convergent. By (12) finite limit $\lim_{n\to\infty} A_n = \alpha$ exists. Analogously $\lim_{n\to\infty} B_n = \beta < \infty$ exists.

Therefore the assertion of Lemma 2 follows from (12).

THEOREM 1. Let u, v denote linearly independent solutions of the difference equation (1). Moreover, let $a: N \to R$ and function $f: N \times R \to R$ possessing the following properties

$$|f(n,x)| \le B(n,|x|)$$
, for every $x \in R$

where $P \in B_F$ and F fulfil the condition

$$\lim_{x\to 0} \int_{s}^{x} \frac{ds}{F(s)} = -\infty \quad \text{for a positive constant } \varepsilon.$$

If

$$\sum_{j=1}^{\infty} U_j B(j, U_j) = K < \infty$$

(for some positive constant K) where

$$U_i = \max\{|u_i|, |v_i|, |u_{i+1}|, |v_{i+1}|\}$$

then solution of the equation exists

$$\Delta^2 y_n = a_n y_{n+1} + f(n, y_n), \quad n \in \mathbb{N}$$

which can be written down in the form

$$y_n = \alpha_n u_n + \beta_n v_n$$

where $\lim_{n\to\infty} \alpha_n = \alpha$, $\lim_{n\to\infty} \beta_n = \beta$.

Proof. Let us choose two linearly independent solutions \overline{u} , \overline{v} of (1). Let u and v be two linearly independent solutions of (1) fulfilling condition (2).

Then for some constant c_i , i = 1, 2, 3, 4 such that

$$\begin{vmatrix} c_1 & c_2 \\ c_3 & c_4 \end{vmatrix} \neq 0,$$

we have

$$(23) u = c_1 \overline{u} + c_2 \overline{v}, v = c_3 \overline{u} + c_4 \overline{v}.$$

By Lemma 2 solution of (7) exists and

$$(24) y_n = \alpha_n u_n + \beta_n v_n$$

(25)
$$\lim_{n\to\infty}\alpha_n=\alpha,\quad \lim_{n\to\infty}\beta_n=\beta.$$

Using (23) in (24) we get the following result

$$y_n = \overline{u}_n(\alpha_n c_1 + \beta_n c_3) + \overline{v}_n(\alpha_n c_2 + \beta_n c_4).$$

From (25) we can observe that

$$\lim_{n\to\infty}(\alpha_nc_1+\beta_nc_3)=\overline{\alpha}<\infty \quad \text{and} \quad \lim_{n\to\infty}(\alpha_nc_2+\beta_nc_4)=\overline{\beta}<\infty$$
 exist so the theorem is proved.

EXAMPLE 1. The next equation

(*)
$$\Delta^2 y_n = -2y_{n+1} + \frac{1}{n^2} y_n^m, \quad m \ge 1$$

is considered. The following sequences

$$u = \{1, 0, -1, 0, 1, 0, -1, \ldots\}$$
 and $v = \{0, 1, 0, -1, 0, 1, 0, \ldots\}$

are linearly independent solutions of the equation

$$\Delta^2 z = -2z_{n+1}.$$

Let $B(n,x) = \frac{1}{n^2}x^m$ and $F(k) = k^m$. Then assumptions of the Theorem 1 hold and the solution of equation (*) exists. It can be written down in the form

$$y_n = \alpha_n u_n + \beta_n v_n$$

where

$$\lim_{n\to\infty}\alpha_n=\alpha,\quad \lim_{n\to\infty}\beta_n=\beta.$$

THEOREM 2. Let function $f: N \times R \to R$ fulfil conditions (3) and (4) of Lemma 2. If

(26)
$$\sum_{j=1}^{\infty} jB(j,j) = k < \infty \quad (for some positive constant k)$$

then the solution of the equation

(27)
$$\Delta^2 y_n = f(n, y_n), \quad n \in \mathbb{N}$$

exists. It can be written down in the form

$$y_n = an + b + \phi_n$$
 where $\lim_{n \to \infty} \phi_n = 0$.

Proof. Equation

$$\Delta^2 z_n = 0$$

has two linearly independent solutions $u_n = n$, $v_n = 1$, $n \in N$. These solutions satisfy condition (2) of Lemma 1. We will prove that condition (5) is also satisfied. From Lemma 1, U_j is equal j + 1. It is worth noticing that condition (26) implies condition (5) of Lemma 2. Indeed,

$$\begin{split} \sum_{j=1}^{\infty} U_j B(j, U_j) &= \sum_{j=1}^{\infty} (j+1) B(j, j+1) \leq \sum_{j=1}^{\infty} (j+j) B(j, j+j) \\ &= \sum_{j=1}^{\infty} (2j) B(j, 2j) \leq 2F(2) \sum_{j=1}^{\infty} j B(j, j) = 2F(2) k < \infty. \end{split}$$

So, we have all assumptions of Lemma 2 are fulfilled and it can be useful for our problem. Solution of equation (27) is

$$(28) y_n = A_n n + B_n$$

where A_n and B_n are defined by (8) and (9) and finite limits of sequences $\{A_n\}, \{B_n\}$ exist. Let

(29)
$$\lim_{n\to\infty} A_n = a, \quad \lim_{n\to\infty} B_n = b.$$

From (12) we get

$$A_n = A_1 + \sum_{j=1}^{n-1} f(j, jA_j + B_j).$$

From this and (29) we obtain

$$a = A_1 + \sum_{j=1}^{\infty} f(j, jA_j + B_j).$$

Using properties of function f we have

$$|A_n - a| = |\sum_{j=n}^{\infty} f(j, jA_j + B_j)| \le \sum_{j=n}^{\infty} B(j, |jA_j + B_j|) \le \sum_{j=n}^{\infty} B(j, j|A_j| + |B_j|).$$

It is followed by

$$n|A_n-a|\leq \sum_{j=n}^{\infty}jB(j,j|A_j|+|B_j|).$$

From (29) constant C exists and

$$|A_n| + |B_n| \le C$$
 for $n \in N$.

Then

$$|n|A_n - a| \le \sum_{j=n}^{\infty} jB(j, jC) \le F(C) \sum_{j=n}^{\infty} jB(j, j)$$

and by (26) we have

$$\lim_{n\to\infty} F(C) \sum_{j=n}^{\infty} jB(j,j) = 0$$

what gives

$$\lim_{n\to\infty} n|A_n-a|=0.$$

The solution (28) of equation (27) can be written in the form

$$y_n = an + b + (A_n - a)n + (B_n - b).$$

This and (30) give us the conclusion:

$$y_n = an + b + \phi(n),$$

where $\phi_n = (A_n - a)n + (B_n - b)$ and $\lim_{n\to\infty} \phi_n = 0$. The theorem is proved.

EXAMPLE 2. The next equation

$$\Delta^2 y_n = \frac{1}{n^5} y_n^2$$

is considered. Let $B(n,x) = \frac{1}{n^5}x^2$ and $F(k) = k^2$. Then the assumptions of the Theorem 2 hold and the solution of this equation exists. It can be written down in the form

$$y_n = an + b + \phi_n$$
 where $\lim_{n \to \infty} \phi_n = 0$.

Remark. We get theorems proved by A. Drozdowicz in [1] as special cases of our results. To get theorems contained therin we take $f(n,x) = g_n x^{2m+1}$ in (6) and (8). In the proof of Lemma 2 estimations like in paper [3] are applied. The second order difference equations were studied also in [1], [4], [5].

References

- [1] A. Drozdowicz, On the asymptotic behaviour of solutions of the second order difference equations, Glasnik Matematicki 22 (1987), 327-333.
- [2] J. W. Hooker, W. T. Patula, A second-order nonlinear difference equation: oscillation and asymptotic behaviour, J. Math. Anal. Appl. 91 (1983), 9-23.
- [3] J. Popenda, On the discrete analogy of Gronwall lemma, Demonstratio Math. 14 (1983), 11-15.
- [4] J. Popenda, Werbowski, On the asymptotic behaviour of the solutions of the difference equations of second order, Comm. Math. 22 (1980), 135-142.
- [5] Z. Szafranski, On some ocsillation criteria for difference equation of second order, Fasc. Math. 14 (1985), 91-99.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY UI. Piotrowo 3a 60-965 POZNAŃ, POLAND

Received August 19, 1991; revised version September 15, 1992.