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THEORÈME DE POSITIVITÉ D'UN SYSTÈME DISCRET 
EN CAS NON COMPLÈTEMENT CONTRÔLABLE 

ET SON APPLICATION 

1. Introduction 
Considérons le système suivant 

(1) xk+1 = Axk + Buk, k = 0,1,... 

(2) r?(0,fci) = [®¡t^fc]o1+1 + £ HKuk + x*kLuk + u*kL*xk + x*kMxk] 
k=0 

dans lequel rj est appelé "fonction de coût", uk fonction vectorielle de com-
mande à m composantes au moment k, xk vecteur à n composantes qui 
décrit l'état du système au moment k, et les matrices constantes: A, J, M 
à n lignes et n colonnes, B, L à n lignes et m colonnes, K k m lignes, m 
colonnes. Les matrices K, J, M sont supposées hermitiennes (c'est-à-dire 
K = K*, J = J", M = M*', le signe * veut dire transposer et prendre le 
conjugué). 

Le couple (A,B) n'étant pas complément contrôlable (c.c), d'après la 
proposition 3 de [1] (p. 342), il existe une matrice non singulière R telle 
que 

Â = RAR-> e, B = RB, £ ) , 

avec les matrices constantes Au à k lignes et k colonnes (A; < n, éventuelle-
ment k = 0), A12 à k lignes et n — k colonnes, A22 à n — k lignes et n — k 
colonnes; (An, Bi) étant c.c. Si l'on applique la transformation x = Rx et 
si l'on met 

"-£)• " ( s £)• «-(¡S £)• '-(£)• 
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alors le système (1) se transforme en 

/3x f 2/fc+i = Anyk + A12zk + Biuk, 
{ ' \ Zk+l = ¿22Zk-
Remarquons qu'on peut reécrire (2) sous la forme plus compacte 

7/(0 ,k1) = [xlJxk]o1+1 + Y , s î D s * 
k=0 

avec 

* - ( : ) • * - ( î s ) -
On voit aisément que D = D*. 

V. M. Popov [1] a énoncé le théorème de positivité du système (1), (2) 
en cas du couple (A, B) étant c.c. Dans ce qui suit nous établissons un tel 
théorème pour (A, B) n'étant pas c.c. 

2. Théorème de positivité pour (A, B) n'étant pas c.c. 
Nous rappelons, suivant [1], les définitions suivantes. 
DÉFINITION 2.1. Le système (1 ) , (2 ) est appelé positif, si r}(0,ki) peut 

être ramené à la forme suivante 
ki 

77(0, = [a(z)]*1+1 + £ (3(x¡b, uk) avec 0{xk, uk)>0. 
k=0 

DÉFINITION 2.2 . La matrice caractéristique H ( \ , a ) et le polynôme ca-
ractéristique II(A, <r) sont définis par les formules suivantes 

( tf(A,<r) = K + L\{oE\ - A11)~1B1 + B{{\E\ - AtJ^Lx 
(4) l +BU*E1-Aï1)-1[Mn + (\<T-l)Jn](<TE1-A11)-1B1, 

{ n{X,a) = det(a£i - An)det.ff(A,<r)det(A.Ei - An) 

dans lesquels A, a sont des variables complexes et E\ une matrice unité dont 
la dimension est celle de An. 

Supposons que le système (1), (2) vérifient les conditions suivantes 

(Ci) n { a ~ \ a ) i 0; 
(C2) A22 est une matrice invertible; 
(C3) les polynômes det(cr£,2 — (A^Y) et /7(<r-1, <7) n'ont pas de racines 

communes dans le disque |a| < 1, où E2 est une matrice unité dont la 
dimension est celle de A22', 

(C4) les racines Aj, du polynôme det(A^22 — A22) vérifient la relation 
A¿Aj, ^ 1 avec i,j 6 {1,2, . . . , dim A22}' 
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THÉORÈME 2.1. Si les conditions (Ci)-(C4) sont vérifiées, les proposi-
tions suivantes sont équivalentes: 

1) Le système (1), (2) est positif. 
2) H(cr~l,(j) > 0 (semi-définie positive) avec tout a vérifiant det(<x2?i — 

Au) jÉ 0 et M = 1. 
3) Il existe au moins un polynôme i>(<r) qui vérifie soit ip(<r) = 0 soit 

ip(<r) / 0 de manière que 
(3.a) nier'1, a) = ^ ( ( T " 1 ) . ^ ) , ip(<r) ^ 0 implique ip(0) ^ 0 avec 

^ ( a - 1 ) = v ^ " 1 ) ; 
(3.b) il existe une matrice hermitienne N et des matrices V, W telles que 

H(o~x,o) = T?{a-^.Foia) (notons que TRa"1) = fo^"1)); 
(3.c) F0(a) = V + W*(oE - A)~lB; 

y/v étant le coefficient de factorisation; 
, , ( K L*\ (B*NB B*NA \_(VV 

\L M ) \A*NB A*NA-N)~\WV WW* )' 
(3.f) 7/(0, ki) peut être reécrit sous la forme T](0,ki) = [x\{J—N)xk\o1+1 

+ E \Vuk + W*xk\K 
k=0 

4) Il existe une matrice hermitienne N telle que 

(K + B*NB (L + A*NB)*\ 
\L + A*NB M + A*NA-Nj~ 

La démonstration de ce théorème est analogue à celle de [2]. 

3. Application 
Puisque (A,B) n'est pas c.c., reprenons le système (3), où (An, Bi) est 

c.c. et 
77(0,00) = lim 7/(0, k), 77(0,k) étant donné par (2). k—kx> 
DÉFINITION 3.1 . (yk,zk)k^ est appelé solution du système ( 3 ) , s'il 

vérifie les conditions suivantes 

(i) (yk,Zk)ketf vérifie le système (3), 
(ii) lim yk = 0, lim zk = 0, 

k—* 00 k—* 00 

(iii) 77(0,00) < +OO. 

THÉORÈME 3 .1 . Supposons que les conditions suivantes soient vérifiées 
1) la matrice K + B*NB est invertible, 
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2) N{a-l,a) ? 0, Va € C : H = 1, 
3) toute valeur propre A de An vérifie 0 < |A| < 1. 

En outre, si le système (5) vérifie l'une des conditions suivantes: 

0. 

(4.ii) la matrice caractéristique H (a-1, a) est semi-définie positive, Le. 

H(<T~1,<T)>0, Va e C : |<r| = 1, ei det(<r£i - A n ) ^ 0 , 

alors le système (S) admet la fonction de commande optimale 
unique qui minimise la fonction de coût 7/(0, oo). 

P r e u v e . Remarquons que les conditions (C2)-(C4) serons vérifiées si 

(C5) toute valeur propre de la matrice A22 est dans le disque {A Ç C : 
0 < |A| < 1}. 

En effet, la matrice A22 n'a pas de valeur propre nulle, donc det A22 î 0, 
d'où A22 est invertible, et l'on a (C2). Supposons det(<7i?2 — (A^1)*) = 0, 
alors <f_1 est aussi une valeur propres de A22, d'où 

et on trouve (C3). Enfin pour tous valeurs propres A,-, Aj de la matrice A22 
on a |A,Aj| < 1, d'où (C4) est vérifiée. 

Pour démontrer le Théorème 3.1, remarquons que la condition 3) n'est 
que (C5). Ainsi la contrôlabilité du couple ( A u , B i ) et les conditions 2) 
et 3) vérifient toutes les hypothèses du Théorème 2.1. Fixons KI G AI. La 
condition 4) indique que le système (1), (2), et aussi (3), est positif. La 
condition (4.ii) est identique à 2) du Théorème 2.1. D'où les relations (3.a)-
(3.f) sont vérifiées. Nous allons démontrer que le polynôme ^(<7) peut être 
tellement choisi que le module de chacune de ses racines est plus petit que 
l'unité. En effet, si <ro est une racine du polynôme caractéristique II(<r-1, er), 
alors ITQ1 l'est aussi, puisqu'on a II(CT, CT-1) = II(a-1, <R). Or |<To| -l^o"1! = 
nous pouvons donc, sans perdre de généralité, prendre |<7o| < 1. Suivant la 
condition 3) du Théorème 2.1, on peut tellement choisir c 0 que ip(o0) = 
0 =>• |(To| < 1. Or, si \(TQ| = 1, alors II(GQ1,^) = 0, ce qui est contraire à la 
condition 2) du Théorème 3.1. Donc = 0 =>• \a\ < 1. 

Nous prouvons ensuite que la matrice V est invertible. Or, en tenant 
compte de la condition 3) du Théorème 2.1, nous avons K + B*NB = V*V. 
D'où l'invertibilité de la matrice V se déduit aisément de l'hypothèse 1) du 
Théorème 3.1. 
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Pour la fonction de commande uk = —V~1W*xk nous avons 

xk+1 = Axk + Buk = (A - BV~lW*)xk 

_ f A n - B i V ^ W r A n - B 1 V - 1 W ï \ ( y k \ 
\ 0 A22 J ' \ ? k J ' 

Vu Théorème 2.1, on peut écrire 

(5) det (<r£ - (A - B V ^ W ) ) 

= det^f?! - ( A n - B{V~lWÎ)) • det(<r£2 - M i ) 

= V~l{V + W^aEi - Ai i ) - 1 ^!) • àet(aE\ - A n ) • det(<r£2 - ¿22) 
= V - i y / v f W à e t (OE2 - A 2 2 f ) . 

Les polynômes et det(ai^2 — ^22) n'ont pas de racines a avec \<r\ > 1 
donc la matrice ( A — BV~lW*) est stable, d'où lim xk = 0. 

k-* 00 

Ayant la condition initiale xo quelconque, posons xo = xq. D'après (3) 
et en tenant compte de u = —V~1W*xk, on a 

7 / ( 0 , 0 0 ) = lim 7/(0, Ai) 
k 1—>oo 

= fcJimoo " N)xkl+i ~ T0{J - N)x0] 

fc=0 
= , lim [*î1+1( J - N)xkl+1 - x*Q(J - N)x0] ki—>oo = J - N)xo = xt(J - N)x0 . 

Ainsi, (xk,ûk)kçjf est une solution de (3) avec 77(0,00) = x j ( N — J)x0 < 
+00. Soit maintenant (xk,uk)kg.v une solution de (3). D'après (3.f), on à 

ki 
«7(0, A i ) = [x*k(J - N)xk]k

0>+1 + £ \ V u k + W*xk|2 , 
k=0 

d'où il vient 
00 

7/(0,00) = lim 7/(0,Ai) = x*0(N-J)x0+^2\Vuk+Wxk\2 > x*0(N-J)x0. 
1->0° k=0 

1) Dans l'analyse matricielle nous avons la proposition 

det ^ = d e t A d e t ( 5 - Z>*A -1C) 

pour A non singulière. 
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Done 7/(0, oo) > 7/(0, oo). L'égalité aura lieu pour u* = —V-1W*xa;, k € Ai. 
Enfin, on conclut que (x*, est la solution optimale du système (3). 
Théorème 3.1 est donc démontré. 
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