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THEOREME DE POSITIVITE D’UN SYSTEME DISCRET
EN CAS NON COMPLETEMENT CONTROLABLE
ET SON APPLICATION

1. Introduction
Considérons le systéme suivant

(1) zk41 = Az + Bug, k=0,1,...
ky

(2) 7(0,ky) = [z3Jzi) T + 3 [up Kug + 25 Lug + ulL*z + 2L Mzy]
k=0

dans lequel 7 est appelé “fonction de coiit”, u, fonction vectorielle de com-
mande & m composantes au moment k, z, vecteur & n composantes qui
décrit 1’état du systéme au moment k, et les matrices constantes: A, J, M
a n lignes et n colonnes, B, L a n lignes et m colonnes, K a m lignes, m
colonnes. Les matrices K, J, M sont supposées hermitiennes (c’est-a-dire
K =K*J=J*M = M";le signe * veut dire transposer et prendre le
conjugué).

Le couple (A, B) n’étant pas complément contrélable (c.c), d’aprés la
proposition 3 de [1] (p. 342), il existe une matrice non singuliere R telle

que
_ (B
“\0

avec les matrices constantes A;; a k lignes et k colonnes (k < n, eventuelle-

ment k = 0), Aj; a k lignes et n — k colonnes, Az; & n — k lignes et n — k

colonnes; (Aj;, B;) étant c.c. Si ’on applique la transformation £ = Rz et
si 'on met

~ Yk Ju J12) (Mu Mn) (Ll)
= ’ J= - ) M= * ) L= )
? (Zk) (le J22 Mp, Mo, L,

on

A=RAR™ o B=RB, A=[4n 4n)
0 A
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alors le systéme (1) se transforme en

3 Yk+1 = Anyx + Ar22x + Byug,
3) Zry1 = A2z
k+1 = A222k.
Remarquons qu’on peut reécrire (2) sous la forme plus compacte

k1
7(0,ky) = [zhJzx]Er+! 4 Z 8y Dsy
k=0

_ Tr _ K L*
= (2). o (5 5).
On voit aisément que D = D*.
V. M. Popov [1] a énoncé le théoréme de positivité du systéme (1), (2)

en cas du couple (A, B) étant c.c. Dans ce qui suit nous établissons un tel
théoréme pour (A, B) n’étant pas c.c.

avec

2. Théoréme de positivité pour (4, B) n’étant pas c.c.
Nous rappelons, suivant [1], les définitions suivantes.

DEFINITION 2.1. Le systéme (1), (2) est appelé positif, si 7(0,k;) peut
étre ramené a la forme suivante

ky
7(0,k1) = [a(z))E**! + Eﬂ(zk,uk) avec fB(zx,ux) >0.
k=0
DEFINITION 2.2. La matrice caractéristique H(\,0) et le polynéme ca-
ractéristique II(A, o) sont définis par les formules suivantes

H(\o)=K + Li(0Ey — Ai1)™'B1 + B{(AE, — A}y) 1Ly
(4) + BY(AEL — A}1) " M1 + (Ao - 1)In](0 By — An )™ By,
II(A o) = det(cEy — Ayy)det H(A, o) det(AE; — AY)

dans lesquels A, o sont des variables complexes et E; une matrice unité dont
la dimension est celle de Ay;.

Supposons que le systéme (1), (2) vérifient les conditions suivantes

(C1) (o7,0) £ 0;

(C2) Az, est une matrice invertible;

(C3) les polynémes det(d E; — (A57)*) et IT(o~1,0) n’ont pas de racines
communes dans le disque jo] < 1, o E; est une matrice unité dont la
dimension est celle de A,,;

(C4) les racines Aj, du polyndéme det(AE;; — Ajz) vérifient la relation
Xidj, # 1 avec i,j € {1,2,...,dim Az}.
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THEOREME 2.1. Si les conditions (Cy)-(C4) sont vérifiées, les proposi-
tions sutvantes sont équivalentes:
1) Le systéme (1), (2) est positif. :
2) H(o71,0) > 0 (semi-définie positive) avec tout o vérifiant det(cEy —
Au) # 0et IO’I =1
3) Il ezxiste au moins un polynéme (o) qui vérifie soit (o) = 0 soit
¥(o) # 0 de maniére que
(3.a) I(o07Y,0) = P(o71).9¥(0), ¥(o) # 0 impliqgue ¥(0) # 0 avec
Y(o™) =9(F);
(3.b) il eziste une matrice hermitienne N et des matrices V, W telles que
H(c™,0)= FOT(O'_I).F()(O’) (notons que Fo(o~1) = Fo(771));
(3.c) Fo(o)=V + W*(¢E — A)™1B;
¥(o)
.d) det Fo(o) =
(3 ) € 0(0) ﬁdet(aEl - Au)’
Vv étant le coefficient de factorisation;
(3.¢) K L* + B*NB B*NA A VvV VW,
’ L M A*NB A*NA-N ) \wWv ww+)’
(3.f) 1(0, ky) peut étre reécrit sous la forme n(0, k1) = [z3(J - N)z,Jir+!
k1
+ Y |Vug + Wz, |2,
k=0
4) Il eziste une matrice hermitienne N telle que

~ (K+B‘NB (L+A*NB)‘)>0

veRt,

D=\ 1. A*NB M+ A*NA-N

La démonstration de ce théoréme est analogue i celle de [2].

3. Application
Puisque (A, B) n’est pas c.c., reprenons le systéme (3), ou (A11, B1) est
c.c. et
7(0,00) = klim 7(0,k), n(0,k) étant donné par (2).
—00

DEFINITION 3.1. (yk,2k)ken est appelé solution du systéme (3), s’il
vérifie les conditions suivantes
(1) (yk, 2x)ken vérifie le systéme (3),
(ii) lim Y = 0, lim 2, =0,
o k—o0 k—o0
(iii) (0, 00) < +o0.
THEOREME 3.1. Supposons que les conditions suivantes soient vérifiées
1) la matrice K 4+ B*N B est invertible,
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2) (o7 Y,0)#0,Yo €C:|o| =1,
3) toute valeur propre X de Ajy vérifie 0 < |)| < 1.
En outre, si le systéme (3) vérifie l’'une des conditions suivantes:

. K L*
(44) D = (L M) >0,
(4.ii) la matrice caractéristique H(a~1,0) est semi-définie positive, i.e.
H(a'l,a) 20, VoeC:lo|=1, et det(cEy— A11)#0,
alors le systéme (3) admet la fonction de commande optimale
unique qui minimise la fonction de coiit (0, 00).
Preuve. Remarquons que les conditions (Cy)-(Cy4) serons vérifiées si

(Cs) toute valeur propre de la matrice As; est dans le disque {\ € C :
0< |\ <1}

En effet, la matrice A2; n’a pas de valeur propre nulle, donc det Ay # 0,
d’ott A, est invertible, et I'on a (C;). Supposons det(cE; — (A33})*) = 0,
alors 7! est aussi une valeur propres de Ajz, d’olt

>1

F-1

lo| =

et on trouve (C3). Enfin pour tous valeurs propres A;, A; de la matrice Az
on a |A\;A;] < 1, d’ou (C4) est vérifide.

Pour démontrer le Théoréme 3.1, remarquons que la condition 3) n’est
que (Cs). Ainsi la contrélabilité du couple (Ajy, B;) et les conditions 2)
et 3) vérifient toutes les hypothéses du Théoréme 2.1. Fixons k; € N. La
condition 4) indique que le systéme (1), (2), et aussi (3), est positif. La
condition (4.ii) est identique a 2) du Théoréme 2.1. D’oi les relations (3.a)-
(3.f) sont vérifiées. Nous allons démontrer que le polynéme (o) peut étre
tellement choisi que le module de chacune de ses racines est plus petit que
Punité. En effet, si ¢ est une racine du polynéme caractéristique II(o~1, ),
alors o, ! 1'est aussi, puisqu'on a I1(7,5 ') = II(¢~1, ). Or |00 - Jo5 }| = 1,
nous pouvons donc, sans perdre de généralité, prendre |op| < 1. Suivant la
condition 3) du Théoréme 2.1, on peut tellement choisir og que ¥(gg) =
0 = |oo| < 1. Or, si |og| = 1, alors IT(04,00) = 0, ce qui est contraire a la
condition 2) du Théoréme 3.1. Donc %(c) = 0= |o| < 1.

Nous prouvons ensuite que la matrice V est invertible. Or, en tenant
compte de la condition 3) du Théoréme 2.1, nous avons K + B*NB = V*V.
D’oli invertibilité de la matrice V' se déduit aisément de I’hypothése 1) du
Théoréme 3.1.
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Pour la fonction de commande % = —V ~1W*Z; nous avons
ZTry1 = AZy + By = (A - BV—IW‘)ik

_(Au—-BiVIW? Ap-BVIIWE\ (G
- 0 Azz Zx )’
Vu Théoréme 2.1, on peut écrire

(5) det(cE - (A- BVIW*))
= det(0Ey — (A1 — BiV™IWY)) - det(0 E; — As;)
=V YV + W] (0E) — A11)"1B)) - det(0E; — Apy) - det(c E; — Ajg)
=V (o) det(cE; — Az)Y .
Les polynémes (o) et det(0 E; — Ay2) n’ont pas de racines o avec |o] > 1
donc la matrice (A — BV ~1W*) est stable, d’ol len;o zr = 0.

Ayant la condition initiale z¢ quelconque, posons To = zo. D’aprés (3)
et en tenant compte de & = —V~"1W*Z;, on a

ﬁ(09 °°) = k}linw 17(0, kl)

Jim {31, 41(J = N1 - 55(J - N2

k
+ E Vi + Wz}
k=0

Jim (27,410 = N)En1 = 25(J = V)
=83(J = N)&o = z3(J — N)zo.

Ainsi, (Zk, Uk)ken est une solution de (3) avec 7j(0,00) = z§(N — J)zo <
+00. Soit maintenant (z, ux)ken une solution de (3). D’aprés (3.f), on a

ky
7(0, k1) = [2(J = N)zigt 4+ ) [Vur + Wezif?,

k=0
d’ou il vient

7(0,00) = lim n(0,ky) = 25 (N =J)zo+ ) [Vur+ Wz |* > 23(N—J)zo.
k=0

1) Dans I’analyse matricielle nous avons la proposition

A C ..
det(D. B) =det A.det(B — D*A™1C)

pour A non singuliére.
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Donc 7)(.0,00) > 7(0, 00). L’égalité aura lieu pour ux = ~V-1W*zy, k € N.
Enfin, on conclut que (Zx, Uk )ren est la solution optimale du systéme (3).
Théoréme 3.1 est donc démontré.
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