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A POINT OF VIEW ON MEASURES 
OF NONCOMPACTNESS 

1. Introduction 
The concept of noncompactness measure is one of the most useful con-

cepts of the general topology. The first measures of noncompactness has 
been defined by Kuratowski [13] in 1930. Other measures were introduced 
in [3], [8] and [11]. The use of these measures is discussed for example in 
[2] and [6]. Banas and Goebel in their monograph [2] give a review of those 
measures and characterize the measures of noncompactness in an axiomatic 
way. 

It is of our interest to know whether one can define a measure in such 
a way that the previous definitions will be contained and advantages of the 
axiomatic approach will not be wasted. In section 2 we shall give a general 
scheme of construction of measures of noncompactness in a useful way. This 
construction was motivated partially by [10]. We shall show the properties 
of measures and we shall briefly present a discussion for known measures. 
Section 3 contains an example of application of our measures in the theory of 
nonlinear differential equations, generalizing the results with the Kuratowski 
measure of noncompactness [5], [16]. We refer the reader to [3], [7], [9] and 
[2], [6] with references given there. 

2. Measures and their properties 
Let (E , ||.||) denote a Banach space and let B° denote a unit ball of E. 

Fix some further notation for the families of sets that will be used in the 
sequel: 

ME — the family of all nonempty bounded subsets of E , 
ME — the family of all nonempty and relatively compact subsets of E, 
KE — the family of all convex and bounded neighbourhoods of zero of E. 
For fixed E we shall write M, M and K, instead ME, ME and KE-
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Let V C Af be a family of sets such that: 
(Ai) x e v ^ x e v , 
( A 2 ) x ev, Y # 0, Y c x =>Y er, 
(A3) X G V =>• convX G V, 
(A4) The subfamily of all closed sets in V is closed in the family of all 

nonempty bounded and closed subsets of E with respect to the 
Hausdorff topology. 

Following Banas and Goebel [2] we introduce the following notation: 

DEFINITION 2.1. The function N : M —* [0, oo) is said to be a measure 
of noncompactness with the kernel V if it is a subject to the following 
conditions: 
(Bl) n{X) = 0 € V, 
(B2) »(X) = 
(B3) XCY^ fi(X) < fi(Y), 
(B4) /x(convX) = n(X). 

Denote by B a basis of neighbourhoods of zero which is composed of 
closed convex sets. Let B' = {rB : B € B, r > 0}. 

Now, we introduce some class of functions p : B' —> [0,oo) satisfying the 
following conditions: ( X , Y € B') 
(CI) XcY^p{X)<p{Y), 
(C2) p(convX) = p(X), 
(C3) V£ > 0 3V e & p(V) < e, 
(C4) p(V) > 0 whenever V <£ V. 

A function p satisfying (C1)-(C4) will be called a p-function. 

DEFINITION 2.2. The function / / : ME -»• [0, oo) is said to be a (V , B,p)-
measure of noncompactness [(V,B,p) — mnc] iff 

H(W) = inf{e > 0 : 3H € V W C H + V, V e B', p{V) < e} , 
where W € ME-

THEOREM 2.1. Each (V,B,p) — mnc is a measure of noncompactness (in 
the sense of Definition 2 .1 . ) . 

Proof . (B3) X,Y e M, X C Y, let H G V and V E B' be such that 
Y C H + V, p(V) < fi(Y) + £. So X C H + V and ft(X) < n(Y) + e. As e 
is arbitrary we have /x(X) < fi(Y). 

(B4) X C convX, so by (B3) n(X) < fi(convX), if H G V and V G B' 
be such that X C H + V, p(V) < fi(X) + e then conv X C conv H + V. But 
convH G V, so /i(convX) < p(V) < n(X) + e. Finally n(X) = /x(convX). 

_(B2) As above let X C H + V, p(V) <jt(X) | £ , s o ! c I | F and 
fi(X) < p(V) < n{X) + £. Consequently fi(X) = fi(X) (by (B3)). 
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(Bl) /x(A') = 0 =• n(X) = 0 =>W eB' 3H G V X C H + V_ and by 
the closedness of V in the Hausdorff topology X G V. Thus X C X and by 
(A2) X € V. _ _ 

l e P ^ X C l + Vfor each V G B'. Obviously X G V. But for every 
£ > 0 there exists V G B' such that p(V) < £, so finally fi(X) = 0. 

R e m a r k s . If V = ME (so-called full measures) then we can replace the 
set H G V by the finite set. It is necessary to remark that our viewpoint sheds 
some new light on measures of noncompactness. This concept of construction 
of mnc gives a general class of noncompactness measures containing the 
Kuratowski mnc a 

n 

(a (W) = inf (e > 0 : W C ( J A{, d i a m A i < £ , i = l , . . . , n ) , W G M^J, 
i=l 

The Hausdorff mncj3(j3(W) = inf(£ > 0;W C { z i , . . . , x n } + eB°),W G 
M) and many others (see [2]). For example: the Kuratowski mnc is the 
(JVE,/C, diam(.) — mnc, the Hausdorff mnc is the (NE^B0, ||.||) — mnc (B° = 
{TB° : r > 0}), the norm of the set is the ({0},/C, ||.||) — mnc and the 
diameter of the set is the (E\ , K, diam(.)) — mnc, where Ei is a family of all 
one-point sets (singeltons). Choosing V, B and p we can obtain the different 
measures. 

The special cases: 
(i) Let V be a bounded closed neighbourhood of zero of E. So Bv = 

{rV : r > 0} = Bv , is the basis of neighbourhoods of zero of E. If V = ME 
then by V — mnc we denote the {V,Bv,pv} — mnc. Compare: the Hausdorff 
mnc is B° — mnc. 

(ii) Two-steps procedure (cf. [10]). 

Q{W) = {B G B : W C H + B for some H eV} 

(so-called measure of precompactness) 

H(W) = inf{£ > 0 : p(B) < e, Vi? G Q(W)} . 
We recall that D(V,V) denote the Hausdorff distance between V and V (cf. 
[2])-

COROLLARY 2.1. ([2] th. 3.1.1.): For arbitrary kernel V (T>,JC,D(.,V)-
mnc is the measure of noncompactness. 

For the proof it suffices to check the properties of D(.,V). 
Now, we can give the properties of (73,5,p)-measures. Our lemmas are 

parallel to those given in [2], [6] and [12]. We omit the proofs on acount of 
its clearity. 
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LEMMA 2.1. If E^ = {x e E : {x} E V} and for every AeV and x € E^ 
we have A U {2} € V then each (V,B,p) — mnc has the following property: 
(B6) / i ( A u H ) = / » ( 4 x e E ^ A e M s -

LEMMA 2 . 2 . Each of the full (V,B,p) — mnc \i has the following property: 
(B7) If An G ME, An — An,An^-i c An, n = 1 , 2 , . . . and l i m ^ o o M-^n) 

= 0 then Aoo = f | ~ i An ji 0 and A^ € V. 

LEMMA 2 . 3 . Each (P,B,p) — mnc satisfies: 
(B8) fi(Af)B) < mm(fi(A),n(B)), A,B e Me, An B £ 0. 

LEMMA 2 . 4 . Assume that: 
(A6) A,B AUB ev, 
(C5) W, V eB' 3W eB' W DV,U and p(W) = p(U) or p(W) = p(V). 
Under the above assumptions (V,B,p) — mnc has the maximum property: 
(B9) fi(A U B) = max{(i{A), fi(B)). 

R e m a r k . Naturally B°',BV' and K satisfy (C5) for each p-function p(.). 

EXAMPLE 1. L e t P = { 0 } . 
Let A = {(x, y) e R2 : 3x - 3 < y < 3x + 3, -3x -3 <y< -3x + 3} and 
let B = {(x,j/) e R 2 : \x - 1 < y < \x + 1, -\x - 1 <y< -\x + 1}. Put 
B = {rA,rB : r > 0} = B' and p(rA) = p{rB) = r. Thus (B,p) does not 
satisfy ( C 5 ) and we see that: n(A) = n(B) = 1 ( A C { 0 } + L , F I C { 0 } + B), 
but AUB C {0} + 3 5 o r A U f i C {0} + 2 A It is clear that n(AL) B) - 2 > 
max(fi(A),fj,(B)) = 1. This ( V , B , p ) — mnc not satisfy (B9). 

LEMMA 2 . 5 . Assume that: 
(A7) AeV,k>0^ kAeV, 
(C6) P{kV) = kp(V), V € B', k > 0. 
Under the above assumptions (V,B,p) — mncfi has the following property: 
(B10) fi(kA) = kfi(A), k > 0, A e ME-

Replacing (A7) by 
(A7)' l e P , k e R ^ k A e V 
and (C6) by 
(C6)' kV e B\ p(kV) = |k\p{V), VeB',ke R 
we obtain 
(B10)' n(kV) = | % ( F ) , V e B', k G R. 
Now we shall investigate the subadditivity of the (V,B,p) — mnc: 

LEMMA 2 . 6 . Assuming: 
(A8) A,B6V=> A + BeV, 
(C7) V,U £ B' V + U e B' and p(V + U) < p(V) + p(U), we obtain 
the (V,B,p) — mnc fi satisfying: 
( B l l ) N(A + B)<N(A) + N(B),A,B€ME. 
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COROLLARY 2 .2 . Let { 0 } € E I f we assume ( A 7 ) a n d ( C 6 ) then: 
n n 

[ ( £ * • ' = r ' A i ^ M E , i = 1 ,2 , . . . .n ) 
t=i «=i 

n 

t'=l 

Proof . If T > 0 then 

< t . £ M * ) = £ 
¿=1 t=i 

The case when T = 0 is obvious. 
COROLLARY 2 .3 . [ { 0 } e J5^, (B10) ] ( B l l ) . 
The proof is obvious. 
The most general scheme of construction of measures in [2] which is 

described in paragraph 12.2 can be obtained by taking 
V = {M E ME • limsup sup fn(x) = 0} , 

n—<-oo i£M 
B = fC and p(V) = ||V||, V € B. 

Here (/n)n€N is a sequence of real nonnegative functional defined on E 
which are lower semicontinuous, equibounded on each bounded set, homo-
geneous and subadditive, and which are subject to the following condition: 

M 6 ME => (limsup sup fN(X) = 0 => M e ME) • 
n-»oo xeM 

Certainly, this is well-defined ( V , B , p ) — mnc. It suffices to verify our as-
sumptions on V,B and p. We see, that this measure has the maximum 
property (B9). 

The choice of pair (B,p) is ambiguous. For example, let A € /C, M € ME-
Put B\ = K. and PA(M) = supxeAf(infr>o x 6 rA) and Bz = BA, p(rA) = r. 

For each fixed kernel V (V,BI,PA) — mnc and ( V , B Z , P ) — mnc are the 
same. Clearly this measure is positively homogeneous, but it is homogeneous 
only for balanced sets A. 

The other properties of ( V , B , p ) — mnc will be given in the next section. 

3. Example of application 
An application of ( V , B , p ) — mnc in the theory of differential equations 

is immediate. 
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We shall need the several lemmas 

LEMMA 3 . 1 . Let L : E E be a continuous linear mapping from E to 
E, V — a bounded balanced neighbourhood of zero of E. So 

LV C \L\ • V. 

P r o o f . LV is a bounded neighbourhood of zero, so there exists a con-
stant f > 0 such that LV C t • V. We shall show that the constant \L\ 
satisfies this condition. Fix arbitrary y € LV. Let Z denote a linear span of 
{0,2/}, A = v n z , B = LA,r = \\A\\. 

If there exists x € A such that ||z|| = r then by Br we shall understand 
a closed ball with center at zero and with radius r , if not then by Br we 
shall understand an open ball. Thus A = Br fl Z, since V is a balanced set. 

But LBr C \L\ • Br (since ||Lx|| < \L\ • ||z||), and 

B = LA = L(V D Z) = L(Br D Z) C LBr n LZ C \L\ • Br n Z 
= \L\ • (Br n (Z/\L\)) = \L\ • (Br n Z) 
= \L\-(VDZ) c \L\-V. 

Therefore y e \L\ • V and finally LV C \L\ • V. 

LEMMA 3 .2 . Denote by n a (V,B,p) — mnc with: 
(i) kernel V is closed with respect to continuous linear operations, 

(ii) B is composed of balanced sets, 
(iii) p satisfies (C6). 

Thus for each bounded subset W of E and for each L G L(E) we have: 

fi(LW)<\L\-fi(W). 

P r o o f . Fix arbitrary e > 0. Let H G V and V G B' be such that 
W C H+V w i t h p ( V ) = n(W)+e. Therefore LW C LM+LV C H'+\L\-V, 
where H' = LH € V. 

Moreover p(\L\-V) = \L\-p(V) = \L\ • (fi(W) + e) = \L\-n(W) + \L\ • e. 
As £ is arbitrary we obtain our assertion. 

R e m a r k . If B is composed of balanced sets then (C6)=(C6)'. Here 
V = Af, V — {0} and V = E\ satisfies (i). It suffices that the basis B 
contains a subbasis Bi composed of balanced sets such that: 
(Dl) Vfc > 0 3W e Bu W e p-^k). 
So Kuratowski measure of noncompactness satisfies the assertion of this 
lemma too. 

LEMMA 3 .3 . Assume the closedness ofV with respect to continuous lin-
ear operations and let V satisfy (A6). Let the basis B contain a subbasis 
composed of balanced neighbourhoods as in (Dl) and let p satisfy (C6). If K 
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is a continuous mapping from a compact interval I of R to L(E) and W is 

a bounded subset of E then 

^ [ ( j K ( t ) w ) <sup|A'(0|-/x(WO-
tei i e / 

P r o o f . As W is bounded there exists b > 0 such that ||W|| < b. Fix 
arbitrary t > 0. Let W C p + V for some P e V and V 6 B', p(V) = fi(W)+e. 

Put U = e • V, so U e B'. Let 6 > 0 be such that B(0,6) C U. Divide the 
interval I := [/o,?1] in such a way that t\ < t-i < . . . < tn — T with 
|A( i j ) — A ' ( i , _ i )| < 6/n (by continuity of K). For t 6 [ i j _ i , i j ] , denoting 
K(t)W 4- K(U)W := (A ' ( i ) - K{U))W = {K(t)w - K{U)w : w 6 W} we 
obtain 

K(t)W C (K(t)W 4 K(ti)W) + K(ti)W. 

But ||A ,(i)W-rA'(i i)W|| < (6/b)-b=6, so K(t)W + K{U)W C B(0,6) C U. 

Since W C P + W thus by lemma 3.2. K\U)W C K{U)P + K(U)V C 
K{U)P + suVTFII\M\-V. 

Now 

\jK(t)W=\J (J K(t)W 

tei »=ii€[t,--i,<il 

C Q l W O W -5" K(U)W) + K(U)W} 
i=i 
n 

c (j[U + K(ti)P + Sup\K(t)\.V] 
iZi «€/ 

n 

C U + sup I K(t)\ -V+\\ K(ti)P 
*** illi 

= P' + (e + sup I A ( 0 l ) • V (by convexity of V), 
tei 

where P' = ( J L i K(U)P. 

We have p((e + supt€l | A ( i ) l ) • V) = (e + su P t e i |A'(*)I) • P(V) = (e + 

sup teJ |A'(i)|) • {ii(W) -f e) and since e is arbitrary ¿¿ (Utg/K( t )W ) < 

s u p i e i | A ( 0 | - M ^ ) -

LEMMA 3.4. Denote by C (R , E) the space of all continuous functions 

from R to E equipped with the topology of almost uniform convergence. Let 

fi be a full (V,B,p) — mnc on E and let W be a bounded equicontinuous 

subset of C(R, E). For any subset X of W put 

7 ( X ) = su p/ i (X ( i ) ) . 
tel. 
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Then the index 7 has the following properties: 
(i )XCY=> y(X) < 7 ( n 

(ii) y(coñvX) = j ( X ) , X € ME, 
(iii) j(X U {x}) = T ( X ) , X e Me, xe 
(iv) if y(X) = 0 then X is relatively compact in C(R, E). 

P r o o f . In view of corresponding properties of fi (i), (ii) and (iii) are 
obvious. Since C(R , E) is taken with the topology of almost uniform con-
vergence then Ascoli's theorem proves that for any subset X of W we have: 

j ( X ) = 0-0 ' /i(X(t)) = 0 for every í € R=> X ( t ) is relatively compact 
in E for every t € R & X is relatively compact in C(R, E). 

Now, we need a fixed point theorem of Schauder type. 

LEMMA 3 . 5 . Let W be a bounded closed and convex subset O / C ( R , E). 
Let 7 : 2W —> [0,00) satisfies the conditions (i)-(iv) of Lemma 3.4. Assume 
F :W —> W is a continuous mapping satisfying 

7 ( F ( X ) ) < 7 ( X ) 

for arbitrary X C W with l ( X ) > 0. Then F has a fixed point in W. 

Let A : R L(E) be strongly measurable and Bochner integrable on 
every finite subinterval of R. Suppose that linear differential equation x'(t) = 
A(t)x(t) admits a regular exponential dichotomy ([4], [15]). Denote by G the 
main Green function for this equation. 

Let / : R • E —* E be continuous with | | / ( f , x)| | < m{t) for t G R and 
x 6 E, where m i s a locally integrable function on R with 

1+1 
sup J 771(5) ds < M < 00 (cf. [15], [16]). 

t 

Let g : R + —• R + be a continuous function with 

2/ = sup I |Cr(i,s)|jf(s)ds < 00 
i 

and let h : R + —• R + be a nondecreasing such that L • h(t) < t for t > 0. 
If in addition we assume that / i ( / ( / x i ) ) < supteI g(t) • h(fi(X)) for any 

compact subset I of R, for each X € ME and for the full (V,B,p) — mnc /x 
such that p satisfies (C6). 

THEOREM 3 . 1 . Under the conditions stated above, the differential equa-
tion x'(t) = A(t)x(t) + f(t,x(t)) has a bounded solution on R . 
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P r o o f . We begin by defining a mapping F : C(R,.E) —* C(¥L,E) as 
follows 

F(x)(t)= J G(t,s)f(s,x(s))ds. 
K 

We see that is suffices to find a fixed point of F. 
By properties of G [4] there exists a constant N > 1 and a constant 

k > 0 such that \G(t,s)\ < N • e-*l t _al for each t,s£ R. 
Let W be a subset of C(R, E) such that x 6 W iff 

||x(i)|| < K = 2NMil - e~k)~1 and r r 
||x(i) - x(r)| | < K • f |A(s) |ds+ J m(s)ds 

t t 
for i , r 6 R and t < r . So W is a bounded closed equicontinuous and convex 
subset of C(R, E). It remains to prove that F is a continuous mapping from 
W into W. Let x e W. We can estimate: ||F(®)(t)|| < K. Therefore the 
function F(x) is a solution of the differential equation y'(t) = A(t)x(t) + 
f(t,x(t)) on R (see [4]). Hence ||F(z)(t) - F(x)(r) | | < K • + 
Ji m(s)ds whenever t < r . Thus F(x) € W whenever x € W. If / is 
continuous then the operator x(.) —• /(. ,x(.)) is continuous from C(R, E) 
into itself. 

Fix arbitrary £ > 0. Let x,y £ W, t € R and a > 0 be such that 
K • e~ka < e. 

| |F(x)(i) - F(y)(t)\\ 

* * . ( 7 T f ) e~k,t~31 • | | / ( s ' x ( s ) ) - i , ) ) | 1 ds 
— oo t—a t+a 

<N. sup ||/(5, x(s)) - f(s, y(i))H • Te-^-'l ds 
t-a<s<t+a . — — t—a 

t—a oo 
+ 2iV-( f + / ) e " f c l < - s lm(s )d5 

— oo t+a 

< 2Nk~\l - e~ka) • sup | | / ( a , x(s)) - f(s, y(a))|| + K • e" fca . 
t-a<s<t+a 

Thus F is continuous. Fix arbitrary e > 0. By (C4) there exists V G B' such 
that p(V) < e. Let us denote by 6 a positive constant such that 5 (0 ,6) C V 
and by I such a constant that K • e~kl < 6. So 

" <K- e~kl < 6 J G(t,s)f(s,x(s))ds : x £ X j 
—oo 

and W C {0} + 5 (0 ,6) C {0} + V. 
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By definition of ¡i we have MÍÍ/l^ G(t, s)f(s, x(s)},d.s : x € V) < 
piY) < Analogously n({J^¡G(t,s)f(s,x(s))ds : x € X } < e. It suf-
fices to show that G(t, s)f(s,x(s))ds : x 6 X } < h(fi(X([t — 1, 

* +1]))) • L\gM\B{»)*>-
For arbitrary e > 0, by continuity of g and G(t,.) we can find a 6 > 0 

such that I«' - < S => |g(s ' ) - g(s")\ < e and \G(t,s') - G(i ,a") | < £ 
with s',s" £ [ t - l,t] or s',s" G [t,t + 1]. Let t - 1 = t0 < h < ... < tm = 
t < fTO+i < ... < ¿2m = t + 1 with f¿_i — ti < S. Let Ii denote an interval 
[ í j _ i , ( i = 1 , 2 , . . . , 2 m ) and I an interval [t — 1, t + Í]. Let a¿, 6¡ G Ii be 
such that \G{t, a,)| = sup s € / . |G(f, s)| , g(b{) = sup s ej . g(s) and let ci ,c2 are 
equal respectively sup a 6 / s) | and supa6/<7(5). 

By the mean value theorem we have 
r t + l 1 
I f G(t,s)/(s,x(s))ds:xeXj 

t-i 
2m 

c - í ¿ - i c o ñ v ( ( J G(t,s)f(Ii x * ( / ) ) ) 
¿=1 

and by our Lemma 3.3. and the corresponding properties of /i from this we 
obtain 

r t + l \ 
/z{ J G(t,s)f(s,x(s))ds:x e X j 

t-i 
2m 

< - <i-i)25fi7( ( J G f r ' W i x * ( 7 ) ) ) 

2 m 

< - U-1) • sup{ |G(i ,s ) | : 5 e / , } • sup{ 5 (s) : 5 G / J • h(fi(X(I))) 
i=1 

2 m 

< h(ft(X(I)))' - <i-i)|G(i,ot-)| -g(bi) 
i=1 

< h(^X(I))) • [21 (ci + C2)e + J \G(t,s)\g(s)ds) . 
t-i 

As e is arbitrary then the above inequality proves our claim. 
Let 7 be as in Lemma 3.4. So n(X(I)) < j(X) and fi(F(X)(t)) < 

2e + h(n(X(I))) • \G(t,s)\g(s)ds. By our assumptions n(F(X)(t)) < L • 
h(i(X)) < 7(A') ( y ( X ) > 0). Consequently j ( F ( X ) ) < j ( X ) whenever 
y ( X ) > 0. Using Lemma 3.5. we obtain a fixed point of F which ends the 
proof. 
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