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A POINT OF VIEW ON MEASURES
OF NONCOMPACTNESS

1. Introduction

The concept of noncompactness measure is one of the most useful con-
cepts of the general topology. The first measures of noncompactness has
been defined by Kuratowski [13] in 1930. Other measures were introduced
in 3], [8] and [11]. The use of these measures is discussed for example in
[2] and [6]. Bana$ and Goebel in their monograph [2] give a review of those
measures and characterize the measures of noncompactness in an axiomatic
way.

It is of our interest to know whether one can define a measure in such
a way that the previous definitions will be contained and advantages of the
axiomatic approach will not be wasted. In section 2 we shall give a general
scheme of construction of measures of noncompactness in a useful way. This
construction was motivated partially by [10]. We shall show the properties
of measures and we shall briefly present a discussion for known measures.
Section 3 contains an example of application of our measures in the theory of
nonlinear differential equations, generalizing the results with the Kuratowski
measure of noncompactness [5], [16]. We refer the reader to [3], [7], [9] and
(2], [6] with references given there.

2. Measures and their properties
Let (E,|-||) denote a Banach space and let B° denote a unit ball of E.
Fix some further notation for the families of sets that will be used in the
sequel: )
MEg — the family of all nonempty bounded subsets of F,
Ng — the family of all nonempty and relatively compact subsets of E,
K g — the family of all convex and bounded neighbourhoods of zero of E.
For fixed E we shall write M, M and K instead Mg, N and Kg.
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Let P C N be a family of sets such that:

(Al) XeP=>XeP,

(A2) XeP,Y#0,YCX=>Y€eP,

(A3) XeP=>convX €P,

(A4) The subfamily of all closed sets in P is closed in the family of all
nonempty bounded and closed subsets of E with respect to the
Hausdorff topology.

Following Bana$ and Goebel [2] we introduce the following notation:

DEFINITION 2.1. The function g : M — [0, 00) is said to be a measure
of noncompactness with the kernel P if it is a subject to the following
conditions:

(Bl) wX)=0&XeP,
(B2)  pu(X) = u(X),

(B3) X CY = u(X)<pu(y),
(B4) p(convX) = u(X).

Denote by B a basis of neighbourhoods of zero which is composed of
closed convex sets. Let B' = {rB: B € B, r > 0}.

Now, we introduce some class of functions p : B’ — [0, 00) satisfying the
following conditions: (X,Y € B')

(C1) X CY = p(X)<p(Y),
(C2) p(convX)=p(X),
(C3) Ve>03VveB p(V)<e,
(C4) p(V) > 0 whenever V ¢ P.
A function p satisfying (C1)-(C4) will be called a p-function.

DEFINITION 2.2. The function y : Mg — [0,00) is said to be a (P, B, p)-
measure of noncompactness [(P, B, p) — mnc] iff

pW)=inf{e >0:FHeP WCH+V,VeB, p(V)<e},
where W € Mg.

THEOREM 2.1. Each (P, B,p)—mnc is a measure of noncompactness (in
the sense of Definition 2.1.).

Proof. (B3) X,)Y e M, X CY,let H € P and V € B be such that
YCH+V,p(V)<pu(Y)+e.So X CH+Vand p(X)< pu(Y)+e Ase
is arbitrary we have u(X) < u(Y).

(B4) X C conv X, so by (B3) u(X) < p(convX),if H € Pand V € B
be such that X C H+V, p(V) < u(X)+ € then conv X C conv H + V. But
conv H € P, so p(conv X) < p(V) < p(X) + €. Finally u(X) = p(conv X).

(B2) As abovelet X C H+V, p(V) < p(X) +¢, s0 X CcH+V and
#X) < p(V) < p(X) + €. Consequently p(X) = u(X) (by (B3)).
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B uX)=0=2>puX)=0=>VWeB IHec PX C H+V and by
the closedness of P in the Hausdorff topology X € P. Thus X C X and by
(A2) X e P.

XeP=>XCX+V for each V € B'. Obviously X € P. But for every
€ > 0 there exists V € B’ such that p(V') < ¢, so finally u(X) = 0.

Remarks. If P = Ng (so-called full measures) then we can replace the
set H € P by the finite set. It is necessary to remark that our viewpoint sheds
some new light on measures of noncompactness. This concept of construction
of mnc gives a general class of noncompactness measures containing the
Kuratowski mnc a

(a(W) = inf (e >0:Wc|JAi, damd; <¢, i= 1n) W e M),
=1

The Hausdorff mne 3(B(W) = inf(¢ > ;W C {z1,...,2n} +¢B%),W €
M) and many others (see [2]). For example: the Kuratowski mnc is the
(VE, K,diam(.) — mnc, the Hausdorff mnc is the (Mg, BY, ||.||) — mnc (B° =
{rB® : r > 0}), the norm of the set is the ({0},K,||.||) = mnc and the
diameter of the set is the (E;, K, diam(.)) — mnc, where Ej is a family of all
one-point sets (singeltons). Choosing P, B and p we can obtain the different
measures.

The special cases:

(i) Let V be a bounded closed neighbourhood of zero of E. So BY =
{rV : 7> 0} = B, is the basis of neighbourhoods of zero of E. If P = N
then by V — mnc we denote the {P,BY,p*} — mnc. Compare: the Hausdorff
mnc is B° — mne.

(ii) Two-steps procedure (cf. [10]).

QW)={BeB:W C H + B for some H € P}
(so-called measure of precompactness)
p(W)=inf{e >0:p(B) <¢e, VB € Q(W)}.
?ﬂ;e; recall that D(V,P) denote the Hausdorff distance between V and P (cf.
2{).

CoOROLLARY 2.1. ([2] th. 3.1.1.): For arbitrary kernel P (P,K,D(.,P)—
mnc is the measure of noncompactness.

For the proof it suffices to check the properties of D(.,P).

Now, we can give the properties of (P, B, p)-measures. Our lemmas are
parallel to those given in [2], [6] and [12]. We omit the proofs on acount of
its clearity.
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LEMMA 2.1. IfE, = {x € E: {z} € P} and for every A€ P andz € E,
we have AU {z} € P then each (P,B,p) — mnc has the following property:
(B6) w(AU{z}) = u(A), ©€E, AeMs.

LEMMA 2.2. Each of the full (P, B, p)—mnc p has the following property:
(B7) IfA,e Mg, A, = As,Ant1 C Ay, n=1,2,... and lim,_, u(Ay)
=0 then Ao = hey An # 0 and A, € P.

LEMMA 2.3. Fach (P, B, p) — mnc satisfies:
(B8)  u(AN B) < min(u(A),u(B)), A,B€ Mg, ANB#£0.

LEMMA 2.4. Assume that:
(A6) A,BeP=AUBE€P,
(C5) VYU,V.eB IW € B W D> V,U and p(W) = p(U) or p(W) = p(V).
Under the above assumptions (P, B,p) — mnc has the mazimum property:
(B9) (AU B) = max(u(A), u(B)).

Remark. Naturally B, B*' and K satisfy (C5) for each p-function p(.).

ExAMPLE 1. Let P = {0}.
Let A={(z,y) €eR?:3z-3<y<3z+3, -3z-3<y< -3z+3}and
letB={(z,y)€R2:%a;—1$y$ %z+1, —%z—lgys —%z+1}. Put
B ={rA,rB :r > 0} = B' and p(rA) = p(rB) = r. Thus (B,p) does not
satisfy (C5) and we see that: u(A) = u(B) = 1(A C {0} + A, B C {0} + B),
but AUB C {0} +3B or AUB C {0} +2A. It is clear that y(AUB) =2 >
max(u(A), u(B)) = 1. This (P, B, p) — mnc not satisfy (B9).

LEMMA 2.5. Assume that:
(A7) AeP,k>0=>kAcP,
(C6) p(kV)=kp(V),VeB, k>0.
Under the above assumptions (P, B,p) — mnc u has the following property:
(B10) p(kA) = ku(A), k>0, A€ Mg.
Replacing (A7) by
(A7) AeP,keR=>kAcP
and (C6) by
(C6) kVeB,pkV)=|klp(V), VeB,keR
we obtain
(B10)"  p(kV) = |k|u(V), V eB',keR.
Now we shall investigate the subadditivity of the (P, B,p) — mnc:

LEMMA 2.6. Assuming:
(A8) A, BeP=>A+BeP,
(C?) V,UeB =V+Uc€B and p(V+U)<p(V)+p(U), we obtain
the (P, B,p) — mnc u satisfying:
(B11)  u(A+ B) < p(A) + pu(B), A, B € Mg.
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CoOROLLARY 2.2. Let {0} € E,. If we assume (A7) and (C6) then:

[(Zn:t.' =T,% 20, Ai€ Mg, i= 1,2,...,n) :p(zn:tiA‘.)
i=1 poe
n

< Z ti.u(Ai)] .

< TZ;—' -p(A;) = Ztil‘(Ai)'

The case when T = 0 is obvious.

CoRroLLARY 2.3. [{0} € E,,(B10)] = (B11).
The proof is obvious.
The most general scheme of construction of measures in [2] which is
described in paragraph 12.2 can be obtained by taking
P ={M € Mg :limsup sup fn(z)=0},
EM

B=Kandp(V)=|V|, VeB.

Here (fn)nen is a sequence of real nonnegative functionals defined on E
which are lower semicontinuous, equibounded on each bounded set, homo-
geneous and subadditive, and which are subject to the following condition:
M € Mg = (limsup sup fn(z)=0=> M € Ng).
n—oo zEM

Certainly, this is well-defined (P,B,p) — mnc. It suffices to verify our as-
sumptions on P, B and p. We see, that this measure has the maximum
property (B9).

The choice of pair (B, p) is ambiguous. For example,let A € K, M € Mg.
Put B; = K and pa(M) = sup,¢p(infr50 2 € TA) and B, = B4, p(r4) = r.

For each fixed kernel P (P,B1,pa) — mnc and (P, B;,p) — mnc are the
same. Clearly this measure is positively homogeneous, but it is homogeneous
only for balanced sets A.

The other properties of (P, B, p) — mnc will be given in the next section.

3. Example of application
An application of (P, B,p) — mnc in the theory of differential equations
is immediate.
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We shall need the several lemmas

LEMMA 3.1. Let L : E — E be a continuous linear mapping from E to
E,V — a bounded balanced neighbourhood of zero of E. So

LV C|L|-V.

Proof. LV is a bounded neighbourhood of zero, so there exists a con-
stant ¢ > 0 such that LV C t-V. We shall show that the constant |L|
satisfies this condition. Fix arbitrary y € LV. Let Z denote a linear span of
{0,y}, A=V NZ B=LA,r=|A4.

If there exists £ € A such that ||z|| = r then by B, we shall understand
a closed ball with center at zero and with radius r, if not then by B, we
shall understand an open ball. Thus A = B, N Z, since V is a balanced set.

But LB, C |L| - By (since ||Lz|| < |L| - ||z]]), and

B=LA=LVNZ)=L(B-NZ)CLB,NLZCI|L|-B,NZ
= |L|-(B-n(Z/IL])) = |L| - (B- N Z)
=|L|-(VnZ)cC|L|-V.
Therefore y € |L| -V and finally LV C |L|- V.

LEMMA 3.2. Denote by p a (P,B,p) — mnc with:
(i) kernel P is closed with respect to continuous linear operations,
(ii) B is composed of balanced sets,
(iii) p satisfies (C6).
Thus for each bounded subset W of E and for each L € L(E) we have:

p(LW) < |L| - p(W).

Proof. Fix arbitrary ¢ > 0. Let H € P and V € B’ be such that
W C H+V with p(V) = p(W)+e. Therefore LW C LM+LV C H'+|L|-V,
where H' = LH € P.

Moreover p(|L|- V) = |L|- p(V) = |L| - (w(W) + €) = |L| - p(W) + | L| - €.
As ¢ is arbitrary we obtain our assertion.

Remark. If B is composed of balanced sets then (C6)=(C6)'. Here
P =N, P = {0} and P = E; satisfies (i). It suffices that the basis B
contains a subbasis B; composed of balanced sets such that:
(D1) Vk>0 3IW € By, W € p~1(k).
So Kuratowski measure of noncompactness satisfies the assertion of this
lemma too.

LEMMA 3.3. Assume the closedness of P with respect to continuous lin-
ear operations and let P satisfy (A6). Let the basis B contain a subbasis
composed of balanced neighbourhoods as in (D1) and let p satisfy (C6). If K
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is a continuous mapping from a compact interval I of R to L(E) and W is
a bounded subset of E then

s(UE@W) < sup |K(0)] - (W),
tel tel

Proof. As W is bounded there exists b > 0 such that |W| < b. Fix
arbitrary £ > 0. Let W C p+V forsome P € P and VB, p(V)=pu(W)+e.
Put U=¢-V,s0U € B'. Let § > 0 be such that B(0,6) C U. Divide the
interval I := [tp,T] in such a way that t; < t; < ... < t, = T with
|K(ti) — K(ti—1)| < é/n (by continuity of K'). For ¢t € [t;—-1,t;], denoting
K@W + K(t)W = (K(t) - K@t))W = {K()w — K(t;)w : w € W} we
obtain

E@W C (KW + K(t:)W) + K(t:)W.

But |[K(tH)W -+ K(t;)W| < (6/b)-b= 8,50 K(t)W + K(t;)W C B(0,6) C U.
Since W C P + W thus by lemma 3.2. K(t;)W C K(t;)P + K(t;)V C
K(t;)P + sup,f |K(2)] - V.

Now

Urow=J U k&w

tel i=1 te[i.'_l,t.']

C 0[(11'(t)W + K(t)W) + K(t;)W]

i=1

c UIb + K()P +sup KO- V]

i=1

CU+sup|KQ)|-V+|JE()P
tel i=1

=P’ + (¢ +sup|K(¢)])-V (by convexity of V),
tel

where P' = |J]_, K(t;)P.

We have p((e + sup,e | K(8)]) - V) = (& + sup,er [K(D)]) - p(V) = (e +
supyer |K(t)]) - (W(W) + €) and since ¢ is arbitrary u(U,¢; K(1)W) <
sup;er | K (2)] - p(W).

LEMMA 3.4. Denote by C(R, E) the space of all continuous functions
from R to E equipped with the topology of almost uniform convergence. Let
u be a full (P,B,p) — mnc on E and let W be a bounded equicontinuous
subset of C(R, E). For any subset X of W put

7(X) = sup p(X(2)).
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Then the indez vy has the following properties:
(i) X CY = 1(X) <1(Y),
(ii) 7(convX) = 7(X), X € Mg,
(iii) y(Xu{z}) =9(X), X e Mg,z € E,
(iv) if 7(X) = 0 then X is relatively compact in C(R, E).

Proof. In view of corresponding properties of p (i), (ii) and (iii) are
obvious. Since C(R, E) is taken with the topology of almost uniform con-
vergence then Ascoli’s theorem proves that for any subset X of W we have:

¥(X) =0 & u(X(t)) = 0 for every t € R = X(t) is relatively compact
in E for every t € R & X is relatively compact in C(R, E).

Now, we need a fixed point theorem of Schauder type.

LEMMA 3.5. Let W be a bounded closed and convez subset of C(R, E).
Let v : 2% — [0, 00) satisfies the conditions (i)-(iv) of Lemma 3.4. Assume
F:W — W is a continuous mapping salisfying

1(F(X)) < v(X)
for arbitrary X C W with v(X) > 0. Then F has a fized point in W.

Let A : R — L(E) be strongly measurable and Bochner integrable on
every finite subinterval of R. Suppose that linear differential equation z'(t) =
A(t)z(t) admits a regular exponential dichotomy ([4], [15]). Denote by G the
main Green function for this equation.

Let f: R- E — E be continuous with ||f(¢,z)|| < m(t) for t € R and
z € E, where m is a locally integrable function on R with

sup 7lm(s) ds < M < oo (cf. [15], [16]) .

Let g : Ry — R, be a continuous function with
L = sup f |G(t,8)|g(s)ds < o0
teR B

and let A : Ry — R, be a nondecreasing such that L - h(t) < ¢t for t > 0.

If in addition we assume that p(f(I x X)) < sup,;g(t)-h(u(X)) for any
compact subset I of R, for each X € Mg and for the full (P,B,p) — mncp
such that p satisfies (C6).

THEOREM 3.1. Under the conditions stated above, the differential equa-
tion z'(t) = A(t)z(t) + f(t,z(t)) has a bounded solution on R.
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Proof. We begin by defining a mapping F : C(R,EF) —» C(R,E) as
follows

F(z)(t)= [ G(t,9)f(s,2(s))ds.
R

We see that is suffices to find a fixed point of F.

By properties of G [4] there exists a constant N > 1 and a constant
k > 0 such that |G(t,s)| < N - e *lt-3| for each t,s € R.

Let W be a subset of C(R, E) such that z € W iff

|lz(2)|| € K = 2NM(1 —e~%)"! and . .
le@) -2 < K- [1A@s)ds+ [ m(s)ds

fort,7 € Randt < 7. So W is a bounded closed equicontinuous and convex
subset of C(R, E). It remains to prove that F is a continuous mapping from
W into W. Let £ € W. We can estimate: ||F(z)(¢)|| £ K. Therefore the
function F(z) is a solution of the differential equation y'(t) = A(t)z(t) +
f(t,z(t)) on R (see [4]). Hence ||F(z)(t) — F(z)(7)| £ K - ftTIA(s)Ids +
J, m(s)ds whenever t < 7. Thus F(z) € W whenever z € W. If f is
continuous then the operator z(.) — f(.,z(.)) is continuous from C(R, E)
into itself.

Fix arbitrary ¢ > 0. Let z,y € W,t € R and a > 0 be such that
K. e % <,

|F(=)(t) - {' (y)t(i)ll

<N-(f f [)e =t 1f(s,a(s)) - f(s, )l ds

—00 t—a t+a

t+a
SN- sup |f(s,2(5)— Ss,u(l- [ eHolds
t—a<Ls<t+a o
t—a 00
+2N-( f + f )e""""m(s)ds

— 00 t+a

< 2Nk“1(1 - e“ka) . sup 1£(s,2(s)) = f(s,9(s))|| + K - e~k
t—a<ls<t+a

Thus F is continuous. Fix arbitrary € > 0. By (C4) there exists V € B’ such
that p(V') < €. Let us denote by é a positive constant such that B(0,6) C V
and by [ such a constant that K -e~* < §. So

”{_Z'G(tas)f(S,z(s))ds 1z € x}” <K-eM<§

and W C {0} + B(0,6) C {0} + V.
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By definition of p we have p({f_:: G(t,s)f(s,z(s)},ds : z € V) <
P(V) < €. Analogously u({f::l G(t,8)f(s,z(s))ds : ¢ € X} < e. It suf-
fices to show that p({f:jl G(t,s)f(s,z(s))ds : € X} < h(u(X([t - 1,
t+1])) - [ 1G(t, s)lg(s) ds.

For arbitrary £ > 0, by continuity of g and G(¢,.) we can find a § > 0
such that |8’ — §"| < § = |g(s') — 9(s")| < € and |G(¢,¢') — G(t,s")| < ¢
with ¢/,8" € [t — 1,tjor s',s" € [t,t+ 1]. Lett— I =t <t < ...<lpy =
t<tmtr1 <...<tem =t+ 1 with t;_; —t; < é. Let I; denote an interval
[ti-1,ti] (1 =1,2,...,2m) and I an interval [t — 1,t+ 1]. Let a;,b; € I; be
such that [G(t,a;)] = sup,ey, |G(t, )|, 9(bi) = sup,¢;, 9(s) and let ¢y, c; are
equal respectively sup,c;|G(t,s)| and sup,¢; g(s).

By the mean value theorem we have

t+41

{ J G(t.9)f(s,2(s))ds:z € X}
t—1

2m
C Yot = tiamomv( | Gt ) f (L x X(I)))
i=1 sel;
and by our Lemma 3.3. and the corresponding properties of x4 from this we
obtain

t41
,u{ f G(t,8)f(s,z(s))ds:z € X}
-1
2m
< u(Z(t,- _ t,-_l)m( U G, 8)f(L: X(I)))
i=1 s€l;
2m
< D (4 — tim1) - sup{|G(t, 9)| : s € L} - sup{g(s) : s € I;} - h(u(X(I)))
=1

2m
< h(p(X (1)) - D (ti — ti-1)|G(2, as)| - 9(b:)
i=1

t+l
< h(XD)- (21(ex + e)e+ [ 1G(t,9)lg(s)ds) .

t—1

As ¢ is arbitrary then the above inequality proves our claim.

Let 7 be as in Lemma 3.4. So u(X(I)) < v(X) and p(F(X)(t)) <
2¢ + h(u(X (1)) - 3 |G(2,5)|g(s)ds. By our assumptions u(F(X)(t)) < L -
h(v(X)) < v(X) (7(X) > 0). Consequently v(F(X)) < 7(X) whenever
7(X) > 0. Using Lemma 3.5. we obtain a fixed point of F' which ends the
proof.



(1]
(2]
(3]
(4]
(5]
(€]
(7]
(8]

(9]

(10]
(11]
(12]
(13]
(1]
(15]

(16]

Measures of noncompactness 777

References

A. Ambrosetti, Una teorema di esistenza per la equazioni differentiali negli spazi
di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.

J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect.
Notes Pure Applied Math. 60, Marcel Dekker, New York-Basel, 1980.

F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math.
Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.

J. L. Daleckii and M. G. Krein, Stability of solution of differential equations in
Banach spaces, Amer. Math. Soc. Transl. 43 (1974).

M.Dawidowskiand B. Rzepecki, On bounded solutions of nonlinear differential
equations in Banach spaces, Demonstratio Math. 18 (1985), 91-102.

K. Deimling, Ordinary Differential Equations in Banach Spaces, Lect. Notes
Math. 596, Springer-Verlag, Berlin—-Heidelberg-New York, 1977.

M. Furi and A. Vignoli, On a property of the unit sphere in a linear normed
space, Bull. Polish Acad. Sci. Math. 18 (1970}, 333-334.

I. T. Gohberg, L. S. Goldenstein and A. S. Markus, Investigation of some
properties of bounded linear operators in connection with their g-norms, Uéen. Zap.
Kishinevskogo Univ. 29 (1957), 29-36 (in Russian).

H. Heinz, On the behaviour of measures of noncompactness with respect to dif-
Jerentation and integration of vector-valued functions, Nonlinear Analysis 7 (1983),
351-371.

C.J. Himmelberg, J. R. Porter and F. S. van Vleck, Fired point theorems for
condensing multifunction, Proc. Amer. Math. Soc. 23 (1969), 635-641.

V. L Istratescu, On a measure of noncompactness, Bull. Math. Soc. Sci. Math.
R.S. Roumanie 16 (1972), 195-197.

M. A. Krasnoselskii and B. N. Sadovskii (ed.), Measures of Noncompaciness
and Concentrative Operators, Novosibirsk, 1986 (in Russian).

K. Kuratowskii, Sur les espaces completes, Fund. Math. 15 (1930), 301-309.

K. Kuratowskii, Topologie, PWN, Warszawa, 1958.

J. L. Massera and J. J. Schaffer, Linear differential equations and function
spaces, Academic Press, New York-London, 1966.

S.Szufla, On the existence of bounded solutions of non-linear differential equations
in Banach spaces, Funct. Approximatio 15 (1986), 117-123.

INSTITUTE OF MATHEMATICS
ADAM MICKIEWICZ UNIVERSITY
Matejki 48/49

60-769 POZNAN, POLAND

Received July 8, 1991.






