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ON SYSTEMS OF DIFFERENTIAL EQUATIONS
IN BANACH SPACES

There have appeared a lot of papers concerning applications of measures
of noncompactness to the dfferential equation ' = f(¢,z) in Banach spaces
(see for example [1]-[4], [10]). In this paper we shall extend these results
to finite or infinite systems of differential equations in Banach spaces. More
precisely, we shall prove some existence theorems and Aronszajn’s type the-
orems for the systems

22 = f.'(t, 21,2:2,...)

(1) :B,'(O) =z (7' =1,2, )
and
@) gt = fi(t, 21, 1 2m) (i=1,...,m)

z;(0) = z;o
In our proofs an essential role play theorems on systems of differential in-
equalities from the papers [7] and [6] (see also [8], p. 122 and 360).

1. Infinite systems of differential equations

Assume that J = (0,a) is a compact interval and E; is a Banach space
with anorm || - || (:=1,2,...).

We introduce the following denotations:

—-FE = E; x E2 X ... — the Fréchet space of all sequences z = (z.),
z; € E;fori=1,2,..., w1th the quasmorm
1 I-Tz”a :
2' 1+ ”31”1

—C; = C(J, E;) — the Banach space of all continuous function v : J — E;
with the norm [|u||ic = sup{||u(t)||i:t € J};
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—C = C(J, E) — the Fréchet space of all continuous function v : J — F
with the quasinorm |u|c = sup{|u(t)| : t € J};

—a;, a, ac — the measures of noncompactness in E;, F, C, respectively.

Assume that for each positive integer i:

I. (s,z) — fi(s,z) is a continuous function defined on J x E with values
in E;;

II. There exists an integrable function m; : J — R such that

[Ifi(s,2)lli £mi(s) fors€Jandz € E;

II1. There exists a function h = (hq,hs,...) : J X R® — R*® such that:
1°. h is continuous in a sequential sense i.e.: if t, € J, t, — t and
y* = (y}9%,...) € R®, y? — y? when n — oo, then for each j =
1,2,...h;(tn, y7, ¥53,...) = hi(t,9?,93,...) when n — oo.
2°. Uy <wgfork#i(k=1,2,...), then
hi(t, Yiso oy Yi-1Yis Yit1,5 - - ') < hi(t, WiyeooyWis1y Yiy Wig1,.. ') .
3°. There exists a sequence (M) of positive numbers such that
Ihj(t’y17y2a---)| S Mj’ .7 = 172’-'-’ (t’ylsy%"-) €Jx Roo’

4°. For each ¢ (0 < ¢ < d) the function u = 0 is the unique solution on
(0, ¢) of the Cauchy problem:

ui = 2hy(t, u1, ug,...)
w(0)=0 (:=1,2,...).
IV.Foreach X = X; x Xo Xx...CFEFandteJ
a;i(fi(t, X)) < hi(t, 01 (X1),a2(X2),...), ¢=1,2,....

THEOREM 1. Under the above assumptions, the set § of all continuous
solutions of (1) is a compact Rs in C, i.e. S is homeomorphic to the inter-
section of a decreasing sequence of compact absolute retracts.

Proof. Let us notice that (1) is equivalent to the equation z = F(z),
where F(z) = (Fi(z), F2(z),...) and

t
Fi(z)t)=zp + f fi(s,z(s))ds fortelJ, z€C, i=1,2,....
0
Fix a positive integer i. As
t t
IF2)(®) = F@Oll < | [ 1io,2(aDllids] < | [ miCs)df

for each z € C, t,7 € J, F;(C) is an equicontinuous subset of C;. Since J
is compact, this implies that the set F;(C) is equi — uniformly continuous,
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and therefore the numbers
wi(d) = sup{j|u(t) — u(s)||i : v € Fi(C);t,s € J;|t—s| < d} = 0
as d — 04. Assume that z™, z € C and ango |z™ — z|c = 0. Then
nlgxgo fi(s,2™(38)) = fi(s,z(8)) and i
|| fi(3,27™(8)) — fi(s,2(8))||: £ 2mi(s) forse J.

Now, by the Lebesque dominated convergence theorem we get

lim f I fi(s,27(3)) — fi(s,2(s))llids = 0, ie. lim Fi(z")(t) = Fi(2)(t)

n—00

for each t € J. Because F;(C) is equicontinuous, from the above it follows
that lim ||Fi(z™) — Fi(z)]lic = 0. So, F; : C — C; is continuous for any
n—o0

i € N and therefore F : C — C is continuous too. Let w(d) = sup{|u(t) —
u(s)] : u € F(C);t,s € J;|t — s| < d}. Since

ad 1 wk(d) .
w(d) < z % T+ wi(d) and dll’n:owk(d) =0 for each k,
w(d) - 0asd—0.

We shall prove that

3) fu"€C(n=12,..)and lim |u"— Fu")|c =0,
n—oo

then (u™) has a convergent subsequence. Suppose that u™ € C (n = 1,2,...)
and

(4) ﬂlinéol u" — F(u")|c =0.

PutV={u":n=12.}V={:n=12.}V(E)={u*{@):n=
2,...} and Vi(t) = {ul(t) : n = 1,2,...} (: = 1,2,...,t € J). By (4) we
infer that (I — F)(V') is an equiuniformly continuous subset of C. Since
(5) Vc(l-F)V)+ FV)
and F(V) is equiuniformly continuous, the set V' is equiuniformly continuous
too.
Fix 1. :
From (4) we deduce that a;(Z;(t)) = 0, where Z;(t) = {ul(t)— Fi(v")(t) :
n = 1,2,...}. Since Vi(t) C Z;(t) + Fi(V)(t) and F;(V)(t) C Vi(t) — Zi(2),

we have

(6) vi(t) = ai(Vi(t)) = a(Fi(V)(t)) forteJ.
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Next, for any t,7 € J

i) — vi(7)| = lei(Fi(V)(2)) — as( F(V)(7))|
< a,-({ f fi(s,u"(s))ds:n € N}) < 2sup " f fi(s,u™(3)) dle

t
52' fm,-(s)dsl.
T

Thus, the function ¢ — v;(t) is absolutely continuous on J. Moreover v;(0) =
a;(Fi(V)(0)) = ai({zi}) = 0. Let W; = {w]} = fi(-,u") : n € N}. It is clear
that w? € C; and ||w?(t)|]; £ mi(t) for n € N and t € J. Next, let us take
anyt € J and r > 0 such that t +r € J. As
t4r
Fu™)(t+7) = B+ [ fis,u™(s)ds forneN,
t

we have
t+r
Fi(V)(t+71)C F(V)(®)+ { [ fi(s,u™(s)ds:ne N} .

Since W; satisfies the assumptions of Heinz’s Theorem [5], by condition IV
we infer that

t+r

ai(F(V)(t + 1)) < es(FA(V)(8)) + a;({ [ fi(s,u™(s))ds :ne N})

t4r

< ai(F(V)®) +2 [ ai(fils,V(s)))ds
t

t4r
<ai( F(V)(t) + 2 f hi(s,v(s))ds, where v(s) = (vi(8),v2(8),...).

From the above and (6) we get

t+r
2 [ h;i(s,v(s))ds
v;(t-l-r)—v;(t) < ‘! '( ( ))
r - T
By the continuity of the function s — h;(s,v(s)), this implies
Dtu(t) < 2hi(t,v(t)) forteJ,
where D% v; is a right upper Dini’s derivative (i = 1,2,...). Applying now
the following theorem on infinite systems of differential inequalities:
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“Assume that a function h : J X R® — R satisfies the conditions III
1°-3°. Suppose also that there exists a continuous function ¥ = (1, %2,...) :
J — R* such that Dty(t) < h;(t,¥(¢)) for z € J and ¢ = 1,2,.... Then
there exists a solution y = (y1,¥2,...) : J — R of the equation y’' = h(t,y)
such that y(0) = ¥(0) and ¥;(t) < yi(t) for t € J, i = 1,2,...”. (cf. [6] or
(8], p. 360), we conclude that v;(t) = 0 for ¢t € J and ¢ = 1,2,.... On the
other hand

a(Alegx...)SE

for any sequence of bounded sets A; C E; (i = 1,2,...). (For the proof see
([9], p. 191). Therefore

a(V(t))SZ2—1 1+.v.~(t) =0 fortelJ.

i=1

By Ascoli’s theorem this proves that the set V is relatively compact in C.
Hence the sequence (u") has a convergent subsequence. Let

n _J=o for0<t<a,

Fi(2)®) = {F(z)(t —a,) fora,<t<a,

for each z € C, n = 1,2,..., where 7o = (210, %20,...) and a, = £. Obvi-
ously, F™ is a continuous mapping C — C and

|F*(z) — F(z)|c <w(a,) forzeC.
PutT=I-F and T* = I - F"™. Then T, T" are continuous mappings
C — C and lim | T"(z) — T(z)]¢c = 0 uniformly on C. Fix n and assume

n—oo

that y € C.
We define a finite sequence (z*), k = 1,2,...,n, of continuous functions
in the following way

z'(t) =z +y(t) forteJ,

2EH () = z*(t) for 0 <t < ka,
| y(t) + F(z*)(t — an) for ka, <t < a.

It is easy to show that
zk(t) = y(t) + F"(z*)(t) for0<t<ka, k=1,2,...,n,
and consequently T"(z") = y. Conversely, if T"(z) = y and z € C then
z(t) = z*(t) for 0 < t < kan, k = 1,...,n, and therefore z = z". This
proves that T™ is a bijection C — C.
Now, assume that lim | 7"(w/) — T"(u)|c = 0, where u", u € C. Since
j—+oo

ui(t) = T™(u?)(t)+zo and u(t) = T™(u)(t) + 2o for 0 < t < ay, Jlin;o uwi(t) =
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u(t) uniformly on (0, a,). Further
w(t) = T"(w)(t) + F(u?)(t - a,) and u(t) = T™(u)(t) + F(u)(t — a,)
for a, <t < 2a,, and

JILII;O F(u?)(t — an) = F(u)(t — a,) uniformly on (a,,2a,).

Thus lim u/(t) = u(t) uniformly on (0,2a,). Repeating this argument we
j—o0
get lim w/(t) = u(t) uniformly on (0, ka,) for k = 1,...,n,i.e., lim v/ = u
j—o0 j—oo
in C. This shows the continuity of (7")~!. So, T™ is a homeomorphism
cC-C.
Now, by Th. 2.4 from [11], we conclude that the set T~1(0) is a compact
Rgs. It is clear that § = T'~1(0). This ends the proof.

2. Finite systems of differential equations

Assume that J = (0,a) and E; is a Banach space with anorm || - ||;: (¢ =
1,...,m). In this section we study the existence of a solution of the problem
(2).Let B;={z € E;:||z||li<b}fori=1,...,m,and B=B; X...X By,.
In contrast to Section 1, now we assume that functions f; satisfy only the
Caratheodory conditions: .

1° for each z € B the function t — f;(t,z) is strongly measurable on J;

2° for each t € J the function z — f;(t,z) is continuous on B;

3° there exists an integrable function p; : J — R such that

1fi(t,2)|l: < pi(t) for (t,z) € J x B.

t
Let Pi(t) = [pi(s)dsfort€ J (i=1,...,m)and I = (0,d), where 0 < d <

0
aand Pi(d)<bfori=1,...,m.
Let us recall some definitions from [8].
A function h = (hy,...,hp) : IX R — R7 is said to have the property
W, if for each (t,7), (t,7) € I x R} the following implication holds:

r é ¥ = hi(t,r) < hi(t,7) fori=1,...,m, where
r<Fe (<7 fork=1,..,m and r=7].
A nonnegative function b = (hy,...,hn) : I X R} — RT, which is

measurable in ¢ € I, continuous in r € R} and satisfies the property W,
is said to have:

1) a property Wy (h € W), if for each ¢ (0 < ¢ < d) the function u = 0
is the only absolutely continuous function on (0,c) which satisfies almost
everywhere the equality «' = h(t,u) and such that u(0) = 0;
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2) a property W (h € W), if for every bounded subset Z of I X R there
exists a function wz = (w),...,w%) : (0,d) — RT such that h(t,r) < wz(t)
for (t,7) € Z and for every small ¢ > 0 wz is integrable on (¢, d); for each
¢ € (0,d) the function u = 0 is the only absolutely continuous function
on (0, c) which satisfies everywhere the equality v’ = h(t,u) and such that
D4;u(0) = 0 and u(0) = 0.

The following theorem is well known (cf. [7] or [8], p. 122):

Assume that

—h:Ix R} — RT satisfies the Caratheodory conditions and the prop-
erty Wy,

-y :I — RY is a maximal solution of the Cauchy problem y' = h(t,y)
and y(0) = 0.

If ¥ : I — RT is an absolutely continuous function such that ¢(0) < 0
and ¥'(t) < h(t,9(t)) for almost every t € J, then ¥(t) < y(t) for t € I.

Let E = E; X...x E, and C = C(J, E) be the Banach space of contin-
uous functions J — E. Using this theorem and applying similar method of
provinf as in Theorem 1, we get the following

THEOREM 2. If there ezists a function h = (hy,...,hy) such that 2h €
Wi and for eachi=1,...,m

oi(fi(t, X1, X ... X X)) S hi(t, a1(X1)y oy (X))

for almost everyt € I and for each X; x ... X X,, C B, then there ezists at
least one solution of (2) defined on I. Moreover, the set of all such solutions
is a compact Rs in C.

To complete our considerations, let us notice that combining the proofs
of Theorem 1 and Theorems 2, 3 from [10], we can prove the next existence
theorems for (2):

THEOREM 3. Assume that there exists a function h € Wy such that for
anye >0 and X; X ... X X C B there exists a closed subset I, C I such
that mes(I — I.) < € and

a;(filT x X1 X...x X)) < sugh;(s,al(Xl), vy om(Xim))
s€E

for each compact subset T C I, andi=1,...,m.

Then there exists at least one solution of (2) defined on I and the set of
all such solutions is a compact R; in C.

THEOREM 4. Assume that the functions f; are bounded and continuous
fori=1,...,m. Then Theorem 3 is true also for h € Ws.
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