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BVP OF A NON-UNIFORMLY ELLIPTIC SYSTEM 
OF PARTIAL DIFFERENTIAL EQUATIONS 

1. Introduction 
It is well-known that many problems of mathematical physics may be 

described by the system of partial differential equation of first order. They 
are frequently related to Boundary Value Problems for elliptic equations. 
One of the basic problems is the Riemann-Hilbert problem. 

The methods of complex functions theory have a wide use in many ques-
tions of mathematical analysis and its application. A special statement deals 
with the application of these methods in the theory of partial differential 
equations and systems. The possibility and importance of employing com-
plex variable methods in PDE is so wide that it presents a real difficulty to 
give a survey of them. For a great many special references one may consult 
for instance the books of Tutschke, W. [LT] and Wendland, W. [WW1]. 
For the investigation of differential systems of equations with degeneration 
of the ellipticity, we confine ourselves to a particular case of the following 
equation 

(1.1) wT=H(z,w,wz) 

which is the familiar complex form of the general elliptic nonlinear system 
of two first order real equations 
(1.2) <pj(x,y,u,v,ux,uy,vn,vy) = 0 (¿ = 1 , 2 ) 

for the unknown functions u(x,y),v(x,y) of two independent variables x 
and y (see for instance [BI] or [LT]), where z = x + iy (z = x — iy), w = 
w(z) = u(x, y) + iv(x, y) and 

wz = dw/dz = (dw/dx - idw/dy)/2, 

wj = dw/dz = (dw/dx + idw/dy)/2. 
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For the general equation (1.1), ellipticity in the sense of Lavrentiev means 
that a Lipschitz constant of the right hand H(z, w, wz) relative to wz is small 
enough, i.e. 

(1.3) \H(Z,W,TH)~ H{Z,W,TJ2)\ < q(z,w)|?7x - T}21, 

(1.4) q(z,w)<l. 

Equation (1.2) has been elaborated by Bojarski, B. and Iwaniec, T. (see 
[BI] or [LT]). They have shown that the general nonlinear system (1.2), 
uniformly elliptic in the sense of Lavrentiev — called by him strong ellipticity 
in the geometry sense — can be written in the form (1.1), provided that, 
there exists qo such that 

(1.5) q(z,w)<q0 < 1, 

H(z,w,0) = 0. Equation (1.1) fulfilling the inequality (1.5) is uniformly 
elliptic in the given domain. 

The basic boundary value problem for linear, quasilinear and nonlinear 
uniformly elliptic systems of the equation has been developed by Begehr, 
H. [BH], Bojarski, B. V. and Iwaniec, T [BI], Gilbert, R. P. [GR], Hsiao, 
G. C. and Wendland, W. [HW], Mamourian, A. [MAI], Tutschke, W. [LT], 
Wen, G. C. [WC] and many others. In a short surway as this it is impossible 
to bring all features of the uniformly elliptic case. The author apologizes in 
advance for not mentioning many important papers and results. 

Clearly q in (1.3)—(1.4) is assumed to be a real function of complex 
variable z and complex unknown w. Let us assume that q be a real function 
of complex variables z, w, rji (rji = (wz)i), 772 (% = (1^2)2) and in view of 
this assumption, the function q(z, w, rji, 772) satisfies a particular case of the 
following inequality (see also [IM]) 

(1.6) q(z,w,i}i,T]2) < 1. 

In the next section we shall bring the exact conditions on q such that the 
main boundary value problems are well-posed. 

2. B V P of a degenerate elliptic system 
Let r = r 0 + A + . • - + r m be the boundary contours of an m+l-connected 

Liapunov region D where To contains all contours / j , j > 1. Consider the 
equation 

(2.1) W, = H{z, w, w2) = H(wz) + A(z)w + F(z) 

in D, where the right-hand side of equation (2.1) fulfills the conditions: 

(2.2) \H(z,w,rji) - H(z,w,rj2)\ < Q(z,w,rn,Ti2)\TH - T}2\ 
(2.3) q(z,w,TfL,r)2) < q{\r)\ — %!) < 1, 
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with the boundary condition 

(2.4) Re[rtt)w(t)] = 7(i) 

on J"; a, 7 are given function on r . In respect to q we assume: 

(I) q(a) as a real function of a = 1771 — 7721 is continuous in [0,oo]; if 
a G (0,oo], then q(a) < 1; the function aq2^) is increasing and concave. 

Concerning the coefficients of the boundary conditions (2.4), we shall 
make the usual assumptions for uniformly elliptic case, i.e. 

(II) The complex function A(z)y F(z) assumed to be measurable belong-
ing to the class LP(D), for some p > 2, the complex function a(t) and 
real function 7 ( t ) are Holder continuous on r, with respect to (3, where 
0 < ¡3 < 1 (0 ,7 € Hp(r), 0 < ¡3 < 1). The solution w will be sought in the 
Sobolev space Wp(D),p > 2. 

Similar to the boundary value problems for uniformly elliptic system of 
equations, we introduce the following notation. Let 

n = -!-ArARGa{t) 
Z7T 

then n will be called the index corresponding to the boundary value problem 
(2.1)-(2.4). 

The coefficient of ellipticity corresponding to the equation (2.1) is defined 
by 

90 = lim sup(g(a)) < 1 a—>oo 
which is of crucial importance in the studying of the existence and regularity 
problem for (2.1)-(2.4). 

If H = A = 0 in (2.1), the non-homogeneous boundary value problem 
(2.1)-(2.4) will be called problem PQ. In the case when A = 0, the boundary 
value problem (2.1)-(2.4) is called problem Pi . 

LEMMA 1. Under hypothesis ( I ) and ( II) . If the index n < 0 , then the 
necessary and sufficient condition for solvability of the non-homogeneous 
boundary value problem PQ will be as follows 

m 

(2.6) 1 / 2 i ] T J a{t)ij){t)i{t)dt- Re{ f t/>(z)F(z)do2J = 0, 
k=0 rk D 

where 1]} is an arbitrary solution of the homogeneous boundary value problem 
adjoint to the problem PQ (see for instance [LT] pp. 98-101). 

Let us recall that in the classical boundary value problems of the type 
(2.4), relative to the systems of equations with uniformly ellipticity, the solu-
tion is sought in the space for somep > 2. Regarding equation (2.1), 
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with the condition of non-uniformly ellipticity (2.2), we shall not make use 
directly from the Xp-theory for the proof of existence of the solution. There-
fore the formulation of the problem (2.1)-(2.4) contains the weak boundary 
conditions (see also [IM]). 

We shall also bring here in example for non-uniformly case of (2.1), which 
fulfills the conditions (I): 

Let 
1 4- \w I2 

(2.7) , , . . ) - 1 + 2 | ; j ; ! , K p 

then by some calculations, we can observe that (2.7) satisfies the inequalities 
(2.2), (2.3) where 

9 ( A ) = I W 
the coefficient of ellipticity corresponding to the equation (2.7) equal to 1/2, 
i.e. qo = 1/2, and the function > 0, is concave. 

PROPOSITION 1. Let the conditions ( I ) , ( I I ) , ( 2 . 6 ) hold. If the index n = 0 
(m-arbitrary finite), then there exists a solution (in for some p > 2) of 
the boundary value problem Pi. 

The proof will be carried out through the following representation for-
mula for the solution w of the boundary value problem Pi 
( 2 . 8 ) w = w(z) = T(g) + X(z) 

where in the case of unit disc domain, the operator T has the following form 

D v 7 

we shall not bring here the explicit form of T(g) for the case of multiply-
connected domains (see [BH]), since this would involve extremely lengthy 
expressions. Making use of the Green's function, this operator has been 
represented by Begehr, H. [BH], g 6 LP(D), p > 2 and x(z) is the solution 
of the boundary value problem Pq. AS it is well-known, problem Pq has been 
studied by many authors and brought to a rather satisfactory state (see for 
instance [LT] pp. 98-101). 

The operator T has the following properties 
(2.9) Re\dj)T(e)\ = 0 
on the boundary T. In other words, when z t (z G D, t 6 r)T(g) sat-
isfies the homogeneous boundary condition (2.4), moreover the generalized 
derivatives of T(g) relative to J and z are 

( 2 . 1 0 ) dT(g)/9z = g(z) 
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and 
dT(e)/dz = S ( 6 ) , 

then since the index n = 0, the ¿2-norm of S is equal to one. 

R e m a r k . Actually, in problem (2.1)-(2.4),it is assumed that, the index 
n = 0 and m arbitrary finite. In fact, in this case, through an appropriate 
transformation, the boundary condition (2.4) can be written in the form 
{Rew(t)} = 7 ( t ) (see for instance [MA2]. 

Let us recall that 5 is a bounded operator from Lp(D),p > 1 into itself, 
and the well-known Riesz-Thorin convexity theorem assures the continuity 
of the norm of 5(| |5| |p) with respect to p > 1. 

Henceforth, in view of (2.9), (2.10), q fulfills the singular integral equa-
tion 

(2.11) e = H(S(0) + x ' ) , 

= d x / d z ) which can be solved through a successive approximation 
method. 

For the proof of the existence; let us assume 
(2.12) Qk+i = H(S(Qk) + X ' ) (Qo = 0, k = 0,1, . . . ) . 
At first, let us prove the L2 convergence of the sequence Qk- According to 
(2.3) 

(2.13) (* , j = 0 , l , . . . ) 

then in view of (2.13), it is clear that 
(2.14) \ e k + 1 - 0 j + i \ 2 < ^ ( I S ^ - i?i)|)|S(i?fc - 0j)\2. 
Note: 

/ 1 \ 1 / 2 

WeWw) = ( i ^ j / • 

By integrating both sides of (2.14), in view of the concavity assumption of 
tq2(t), and the familiar Jenssen inequality, 

(2.15) \\ek+i ~ <?;+i||2 < f m Q k - *i)ll)l|S(tt - i?i)ll2-
Since 5 is an isometry in ¿2(D), we have 

(2.16) ||eiH.i - 0j+i\\ < «(lie* - eM\Qk ~ wll ( k J = 0 , 1 , . . . ) . 

Now, if we assume that 

(2.17) en = | |gn + 1 - 0n\\L2(D), 

we obtain 

(2.18) e n + i < q(en) • en < en . 
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But inequalities (2.18) show that en is increasing and converges to a 
non-negative number. In view of continuity of q and the assumption (I) on 
q, we observe that en converges to zero. 

Making use of the above results, the Cauchy condition for sequence Qk 
in the topology of L<i(D) can be proved. 

Let e be an arbitrary positive number, then it is clear that 6(e) = e(l — 
q(£)) is positive, and for sufficiently large M, we have 

(2.19) <«(*). i > M 
by induction (with respect to i > M), we can prove that 
(2.20) | | 0 f c - 0 j | | < e , k,j>M. 
Clearly, inequality (2 .20) holds, when k = j. In view of (2 .16) and (2 .20) 
and the following triangle inequality 

||e*+i - 0>|| < llfffc+i - ffi+illllej+i - Qj\l 
we obtain 

\\Qk+i ~ Qj\\ < q(\\8k ~ fiilDII^ " Qi\\ + He) < e. 
Since H is continuous with respect to 5(f>) + x', the function g = limfc_+oo Qk 
fulfills the equation (2.12), and the existence of the solution has been proved. 

Now we can prove the existence of the solution of the boundary value 
problem in the Sobolev space for some p > 2. Let p satisfy the 
following inequality 

(2.21) ®||S||P < 1, 
where qo is the coefficient of ellipticity corresponding to the problem Pi, 
then there exists g belonging to LP(D), and the solution w of the problem 
Pi belongs to the space Wp(D), p > 2. For the proof is similar to the 
previous work jointed with T. Iwaniec (see [IM]). 

PROPOSITION 2. Let the conditions ( I ) , ( I I ) , and (2 .6) hold, the index 
n = 0 (m-arbitrary finite), then if there exists a solution in W'p(D),p > 2 
for the boundary value problem ( 2 . 1 ) - ( 2 . 4 ) , then it is unique. 

Let g{ and Q2 be the solutions of singular integral equation corresponding 
to the boundary value problem (2.1)-(2.4), then from concavity property of 
the function tq2 (t) and the familiar Jenssen inequality, we have 

(2.22) I l e i - f f 2 | | < i ( | | e i - f t | | ) | | c i - f f a | | 
which in view of the condition (I) (see assumptions concerning the function 
q(t), we conclude that g\ = gi almost everywhere. 

This method can be extended to the non-uniformly elliptic Boundary 
Value Problem with non zero index. 
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