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BVP OF A NON-UNIFORMLY ELLIPTIC SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

It is well-known that many problems of mathematical physics may be
described by the system of partial differential equation of first order. They
are frequently related to Boundary Value Problems for elliptic equations.
One of the basic problems is the Riemann-Hilbert problem.

The methods of complex functions theory have a wide use in many ques-
tions of mathematical analysis and its application. A special statement deals
with the application of these methods in the theory of partial differential
equations and systems. The possibility and importance of employing com-
plex variable methods in PDE is so wide that it presents a real difficulty to
give a survey of them. For a great many special references one may consult
for instance the books of Tutschke, W. [LT] and Wendland, W. [WW1].
For the investigation of differential systems of equations with degeneration
of the ellipticity, we confine ourselves to a particular case of the following
equation

(1.1) wy = H(z,w,w,;)
which is the familiar complex form of the general elliptic nonlinear system
of two first order real equations
(1.2) @i(Zy Yy Uy Uy Ugy Uy, Uny 0y) =0 (§ =1,2)
for the unknown functions u(z,y),v(z,y) of two independent variables z
and y (see for instance [BI] or [LT]), where z = 2 + iy (Z =2 — iy), w =
w(z) = u(z, ) + io(z,y) and

w, = dw/0z = (Ow/dz — i0w/0y)/2,

wz = Ow/0Z = (Ow/9dz + i0w/Dy)/2.
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For the general equation (1.1), ellipticity in the sense of Lavrentiev means
that a Lipschitz constant of the right hand H(z,w,w,) relative to w, is small
enough, i.e.

(1.3) |H(z,w,m) = H(z,w,m2)| £ (2, w)lm - nl,
(1.4) g(z,w)< 1.

Equation (1.2) has been elaborated by Bojarski, B. and Iwaniec, T. (see
[BI] or [LT]). They have shown that the general nonlinear system (1.2),
uniformly elliptic in the sense of Lavrentiev — called by him strong ellipticity
in the geometry sense — can be written in the form (1.1), provided that,
there exists gg such that

(1.5) ¢(z,w)< g <1,

H(z,w,0) = 0. Equation (1.1) fulfilling the inequality (1.5) is uniformly
elliptic in the given domain.

The basic boundary value problem for linear, quasilinear and nonlinear
uniformly elliptic systems of the equation has been developed by Begehr,
H. [BH], Bojarski, B. V. and Iwaniec, T [BI}, Gilbert, R. P. [GR], Hsiao,
G. C. and Wendland, W. [HW], Mamourian, A. [MA1], Tutschke, W. [LT],
Wen, G. C. [WC] and many others. In a short surway as this it is impossible
to bring all features of the uniformly elliptic case. The author apologizes in
advance for not mentioning many important papers and results.

Clearly ¢ in (1.3)-(1.4) is assumed to be a real function of complex
variable z and complex unknown w. Let us assume that ¢ be a real function
of complex variables z, w, m1 (m = (w;)1), 72 (92 = (w;)2) and in view of
this assumption, the function ¢(z, w, m, n2) satisfies a particular case of the
following inequality (see also [IM])

(16) ‘I(Z,wﬂhﬂlz) S 1.

In the next section we shall bring the exact conditions on g such that the
main boundary value problems are well-posed.

2. BVP of a degenerate elliptic system

Let I' = I'y+ 11 +.. .41, be the boundary contours of an m+1-connected
Liapunov region D where Iy contains all contours I';,j > 1. Consider the
equation

(2.1) wy = H(z,w,w,) = H(w,) + A(z)w + F(2)
in D, where the right-hand side of equation (2.1) fulfills the conditions:
(22) IH(Z, w, 771) - H(Z’ w, 772)1 < q(z7 w, M, 7'2)|771 - 172I

(2.3) q(z, w,m, 1) < q(lm —n2l) < 1,
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with the boundary condition
(24) Refa(t)w(t)] = 7(t)
on I';a,7 are given function on I'. In respect to ¢ we assume:

(1) g(a) as a real function of @ = |m — 7| is continuous in [0, co}; if
a € (0,00], then g(a) < 1; the function ag®(«a) is increasing and concave.

Concerning the coefficients of the boundary conditions (2.4), we shall
make the usual assumptions for uniformly elliptic case, i.e.

(II) The complex function A(z), F(z) assumed to be measurable belong-
ing to the class L,(D), for some p > 2, the complex function a(t) and
real function 7(t) are Holder continuous on I’, with respect to 8, where
0< B <1(a,y € Hg(I'), 0 < B < 1). The solution w will be sought in the
Sobolev space W3(D),p > 2.

Similar to the boundary value problems for uniformly elliptic system of

equations, we introduce the following notation. Let
1

ﬂA rARGa(t)
then n will be called the index corresponding to the boundary value problem
(2.1)-(2.4).

The coefficient of ellipticity corresponding to the equation (2.1) is defined
by

n=

@ = lim sup(d(a)) < 1
which is of crucial importance in the studying of the existence and regularity
problem for (2.1)-(2.4).

IfH=A=0in (2.1), the non-homogeneous boundary value problem
(2.1)-(2.4) will be called problem Py. In the case when A = 0, the boundary
value problem (2.1)-(2.4) is called problem P;.

LEMMA 1. Under hypothesis (I) and (II). If the indez n < 0, then the
necessary and sufficient condition for solvability of the non-homogeneous
boundary value problem Py will be as follows

(2.6) 12y [ at)p(t)r(t)dt - Re{ [ 9(z)F(2)do.} =0,
D

k=0 I}

where 9 is an arbitrary solution of the homogeneous boundary value problem
adjoint to the problem P, (see for instance [LT] pp. 98-101).

Let us recall that in the classical boundary value problems of the type
(2.4), relative to the systems of equations with uniformly ellipticity, the solu-
tion is sought in the space W,}(D), for some p > 2. Regarding equation (2.1),
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with the condition of non-uniformly ellipticity (2.2), we shall not make use
directly from the L,-theory for the proof of existence of the solution. There-
fore the formulation of the problem (2.1)—(2.4) contains the weak boundary
conditions (see also [IM]).

We shall also bring here in example for non-uniformly case of (2.1), which
fulfills the conditions (I):

Let

14 |w,|?

1+ 2|w,| + 4|w,|?
then by some calculations, we can observe that (2.7) satisfies the inequalities
(2.2), (2.3) where

27)  wr=H(zww,) =

+ A(2)w + F(z)

fla) = 1E2
A= 15202
the coefficient of ellipticity corresponding to the equation (2.7) equal to 1/2,
i.e. §o = 1/2, and the function ag?(y/a),a > 0, is concave.
PROPOSITION 1. Let the conditions (1), (II), (2.6) hold. If the indez n = 0

(m-arbitrary finite), then there ezists a solution (in W}; for some p > 2) of
the boundary value problem P;.

The proof will be carried out through the following representation for-
mula for the solution w of the boundary value problem P

(2.8) w = w(z) = T(e) + x(2)
where in the case of unit disc domain, the operator T" has the following form

7(0)= (Toky = -+ [ (ZL+ 28 ) aoy
D

t—z 1-2zt
we shall not bring here the explicit form of T'(p) for the case of multiply-
connected domains (see [BH]), since this would involve extremely lengthy
expressions. Making use of the Green’s function, this operator has been
represented by Begehr, H. [BH], ¢ € L,(D), p > 2 and x(2) is the solution
of the boundary value problem Fp. As it is well-known, problem P, has been
studied by many authors and brought to a rather satisfactory state (see for
instance [LT] pp. 98-101).
The operator T has the following properties

(2.9) Re[a(t)T ()] = 0

on the boundary I'. In other words, when z — t (2 € D, t € I')T(p) sat-
isfies the homogeneous boundary condition (2.4), moreover the generalized
derivatives of T'(g) relative to Z and z are

(2.10) 0T (0)/9Z = o(2)
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and

0T (e)/8z = S(e),
then since the index n = 0, the L;-norm of § is equal to one.

Remark. Actually, in problem (2.1)~(2.4), it is assumed that, the index
n = 0 and m arbitrary finite. In fact, in this case, through an appropriate
transformation, the boundary condition (2.4) can be written in the form
{Rew(t)} = y(t) (see for instance [MA2].

Let us recall that S is a bounded operator from L,(D),p > 1 into itself,
and the well-known Riesz-Thorin convexity theorem assures the continuity
of the norm of §(||5]|,) with respect to p > 1.

Henceforth, in view of (2.9), (2.10), g fulfills the singular integral equa-
tion
(2.11) e=H(S(0)+x),

(x' = 04/0z) which can be solved through a successive approximation

method.
For the proof of the existence; let us assume

(2.12) ors1 = H(S(0k) + X)) (00=0, k=0,1,...).
At first, let us prove the Ly convergence of the sequence g;. According to
(2.3)

(2.13)  lek+1 — ej+1l < q(|S(ex — 25))|S(ex — 25)l, (k,5=0,1,...)
then in view of (2.13), it is clear that

(2.19) lox+1 — ej+1l?* < (1S(ek — 2;))IS(ex — 05)I%.

Note:

1 1/2
llellz.p) = (m f |g(z)|2daz) X
D

By integrating both sides of (2.14), in view of the concavity assumption of
tg*(t), and the familiar Jenssen inequality,

(2.15) llok+1 — i+l < @IS (ex — e5)INNIS(ex — eI

Since § is an isometry in Ly(D), we have

(2.16) llex+1 — ejrall < @lllex — ejll)llex — esll  (k,5=0,1,...).
Now, if we assume that

(2.17) €n = ||on+1 — onllLo(D)s

we obtain

(2.18) ent1 < Glen) - en < €.



740 A. Mamourian

But inequalities (2.18) show that e, is increasing and converges to a
non-negative number. In view of continuity of ¢ and the assumption (I) on
g, we observe that e, converges to zero.

Making use of the above results, the Cauchy condition for sequence g,
in the topology of Ly(D) can be proved.

Let £ be an arbitrary positive number, then it is clear that §(¢) = ¢(1 -
g(¢)) is positive, and for sufficiently large M, we have

(2.19) leiv1 — oill < é(e), i>M
by induction (with respect to ¢ > M), we can prove that
(2.20) lox — Qj” <e, k,j>M.

Clearly, inequality (2.20) holds, when k = j. In view of (2.16) and (2.20)
and the following triangle inequality

ler+1 — o5l < llek+1 — @j41llll@j+1 — 0ills
we obtain

llox+1 — o5l < q(llex — o;l)llex — ejll + 8(e) < e.

Since H is continuous with respect to S (0)+x', the function g = limg_, o 0k
fulfills the equation (2.12), and the existence of the solution has been proved.

Now we can prove the existence of the solution of the boundary value
problem in the Sobolev space W}}(D), for some p > 2. Let p satisfy the
following inequality

(221) BlSl <1,

where g is the coefficient of ellipticity corresponding to the problem P,
then there exists p belonging to L,(D), and the solution w of the problem
Py belongs to the space Wy (D), p > 2. For the proof is similar to the
previous work jointed with T. Iwaniec (see [IM]).

PRrROPOSITION 2. Let the conditions (I), (II), and (2.6) hold, the index
n = 0 (m-arbitrary finite), then if there ezists a solution in Wy(D),p > 2
for the boundary value problem (2.1)—(2.4), then it is unique.

Let g; and g, be the solutions of singular integral equation corresponding
to the boundary value problem (2.1)—(2.4), then from concavity property of
the function ¢g%(t) and the familiar Jenssen inequality, we have

(2:22) llo1 — o2l < qllles — e2ll)ller — el

which in view of the condition (I) (see assumptions concerning the function
g(t), we conclude that p; = g, almost everywhere.

This method can be extended to the non-uniformly elliptic Boundary
Value Problem with non zero index.



[BH]

(BI)

[GR]

[HW]

(IM]

[LT)

[MA]]

[MA2]

[MA3)

(wa

[WW1)
[WW2]

BVP of a non-uniformly elliptic system 741

References

H. Begehr, G. C. Hsiao, The Hilbert Boundary Value Problem for Nonlinear
Elliptic Systems, Proc. of the Royal Society of Edinburgh, 94A, (1983), 97-112.
B. V. Bojarski, T. Iwaniec, Topics in Quasiconformal Theory in Several
Variables, in: Lawrynowicz, J. and O. Lehto (Eds.): Proc. of the First Finish-
Polish Summer School in Complex Analysis at Podlesice 11, Uniwersytet Ldzki,
Lédz, (1978), 21-44.

R. P. Gilbert, Verallgemeinerte Hyperanalytische functionentheorie, in: Tut-
schke, W. (Ed.): Komplexe Analysis und ihre Anwendungen auf Partielle Dif-
ferentialgleichungen, Vol. 2 Martin-Luther-Univ. Halle-Wittenberg, (1980), 124-
145.

G. C. Hsiao, W. L. Wendland, The Aubin-Nitsche Lemma for Integral Equa-
tions, J. Integr. Equat. No. 3 (1981), 299-315.

T.Iwaniec, A. Mamourian, On the first order nonlinear differential systems
with degeneration of ellipticity, Proc. of Sec. Finish-Polish Summer School in
Complex Analysis Jyviskyla, edited by J. Lawrynowicz and O. Martio, (1984)
40-52.

E. Lanckau, W. Tutschke, Complex Analysis, Methods, Trends and Appli-
cations, North Oxf. Acad. (1985).

A. Mamourian, Boundary Value Problems and general systems of nonlinear
equations elliptic in the sense of Lavrentiev, Demonstratio Math. 17, (1984),
633-645.

A.Mamourian, On a mized boundary values problem for Lavrentiev type equa-
tions, Ann. Polon. Math. Vol., 45, (1985), 149-156.

A. Mamourian, First-order nonlinear system of Lavrentiev type equations and
Hilbert BVP, in: Proc. of Asia Vibr. Conf. Edited by W. Bangchun and T.
Iwatsubo, Shenzhen, Northeast Univ. of Tech. (1989), 735-738.

G. C. Wen, The first Boundary Value Problem for nonlinear elliptic equations
of second order in the plane, Hebei Huagong Xueynan Xuebao, Shuxue Zhuanji,
(1980), 84-103.

W. Wendland, Elliptic systems in the plane, Pitman (1978).

W. Wendland, On Galerkin collocation methods for integral equations of ellip-
tic Boundary Value Problems, in: Albrecht, J. and Collatz, L. (Eds.); Numerical
treatment of integral equations. Internat. Ser. Num. Math., Vol. 53, Birkhauser,
Basel (1980), 244-275.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TEHERAN
TEHERAN, IRAN

Received June 6, 1991.






