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ON STRICTLY n-CONVEX NORMED LINEAR SPACES 

1. Introduction 
One of important spaces in functional analysis is a strictly convex normed 

linear space, by which we mean that each point of the unit surface is an 
extreme point of the unit ball. For example, inner product spaces and lp 

spaces for 1 < p < oo (but ll and l°° spaces are not). Generally speaking 
there are three different types of characterizations of a strictly convex space. 
Firstly by a norm [4], [6]: ||x + j/|| = ||x|| + ||i/|| for x,y ^ 0 implies x = ay for 
some real a > 0, or equivalently, | | | x + j/|| = ||x|| = ||j/|| = 1 implies x = y. 
Secondly by a semi-inner-product [1], [5], [9]: [x,j/] = ||«||||j/|| ^ 0 implies 
x = ay for some real o > 0, where [ , ] denotes a semi-inner-product. 
Thirdly by a duality mapping [2], [5], [8]: A duality mapping J on the 
space is strictly monotone, or equivalently, J(x) D J(y) 0 for x,y ^ 0 
implies x = y. In the case of an inner product space more can be said about 
the norm relation. Indeed, it is known that if x, y ^ 0, then the relation 

+ 2/|| = ||x|| + ||y|| holds if and only if x = ay for some real a > 0. The 
strict convexity has been generalized to the space having Property C[3], by 
which we mean that if ||x + y + z | | /3 = ||x|| = ||j/|| = ||z|| = 1, then x,y and 
z are collinear. A strictly convex space has Property C, but the converse is 
not generally true ([3], Example 1). It is our object in this paper to define a 
strictly n-convex normed linear space which is a generalization of the above 
two types of spaces. This new space will be characterized in terms of a 
norm, a semi-inner-product and a duality mapping. It is shown that there 
is a similarity among these three types of characterizations. Finally we shall 
present relationship between strict (ra — l)-convexity and strict n-convexity. 
Indeed, the former implies the latter. 

2. Characterizations by a norm 
Let X denote a (real or complex) normed linear space throughout this 

note. We first need the following useful lemma which is essential to the 
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formations of our consequent theorems. It is the author's belief that some of 
the statements in the lemma are known, but do not seem to have an explicit 
reference, we include a proof. 

L E M M A 1 . The following conditions are equivalent: 

(1) X is strictly convex; 
(2) i||i + 2/|| = ||x|| = \\y\\ = 1 implies x = y; 
(3) \\\x + y|| = ||a;|| = \\y\\ ? 0 implies x = y; 
(4) ||x + 02/|| = 2||x|| ji 0 for some real a > 0 implies x = ay, and a = 1 

'711*11 = IMI; 
(5) ||x - z\\ = ||x - 2/|| + ||y - for x,y,z £ 0 implies y = (1 - b)x + bz 

for some real b > 0 and 0 < b < 1; 
(6) ||x + 2/|| = ||x - 2/|| = Ikll # 0 implies y = 0; 
(7) ||z + x|| = ||z -f 2/|| ^ 0 for all z € X implies x = y; 
(8) ||z — 2/|| = | ||x|| — ||2/|| | for x,y ^ 0 implies x = cy for some real 

c > 0; 
(1') ||* + 2/11 = Ikll + lli/ll for x,y / 0 implies ||y||x = ||x||y; 
(4') (jar + ay|| = 2||x|| ^ 0 for a = ||x||/||y|| implies x = ay, 
(»') ||® - »11 = |||z|| - ||2/||| for x, y / 0 implies ||y||x = (||x - y|| + ||y||)y. 

Proof . It is a routine matter to show the implications: (1) => (2) =>• 
(3) =» (4') (4) => (2), (1') => (1) =• (5), (1) O (8) and (3) =• (7). Thus 
it remains to show that (4'j =>• (1'), (5) (1), (3) (6), (7) => (3) and 
(1') => (8'). That (8') ( l ' j is clear after we prove (1') => (8'). 

(4') => (1'): Since (3) which implies (4') is symmetric with respect to 
x and y, we may suppose without loss of generality that ||x|| < ||y|| and 
a = ||x||/||2/||, then ||x|| + ||y|| = ||x + y|| < ||» + «y|| + ( l - « ) | | y | | < ||x|| + ||y||, 
or ||x + ay|| = 2||x||. So x = ay by (4'), i.e. ||y||x = ||x||y. 

(5) => (1): The conclusion of (5) may be rewritten asy = z = ( l — b)(x — 
z). Now in (5) replacing x — y by x, y — z by y, and hence x — z by x + y 
yields y = (1 — 6)(x + y), i.e. x = ay with a = 6/(1 — b). 

(3) O (6): In (3) replacing x by x + y, and y by x — y we arrive at (6), 
and vice versa. 

(7) => (3): Suppose that (3) does not hold, i.e., £ ||x+y|| = ||x|| = ||y|| ± 0 
and x / y, we have to show that ||z + x|| = ||z + y|| ^ 0 for some z's implies 
x ^ y. But this is clear if in the relation \\z + x|| = ||z + y|| we let z = x and 
z — y, respectively. 

(1') => (8'): We may let ||x|| > ||y|| and so ||x|| = ||x - y|| + ||y||. 
||y||(x - y) = ||x - y||y by (1'), or ||y||z = (||x - y|| + ||y||)y, and the proof is 
complete. 



On strictly n-convex normed linear spaces 727 

The next definition is motivated by the definitions of strict convexity 
and the space having Property C, and by the concept of four points being 
coplanar in vector analysis. 

DEFINITION 1. X is said to be strictly n-convex for a positive integer 
n > 2 if for a set {xj}"=1 in X satisfying the relation 

n 

| | E x , ' | | / n = ||xj|| = 1 for j = l , . . . , n , 
t=i 

then the set has Property L, by which we mean that at least two of the 
vectors in the set are equal, or a{X{ = 0 for some nonzero real numbers 
a{ (i = 1 , . . . , n) such that a, = 0. 

It is easily seen from the definition that strict convexity is strictly 2-
convex, and the space having Property C is strictly 3-convex in our sense. 
It may be noted that not every normed linear space is strictly n-convex. For 
example, in the space R n (n > 2) let a norm be defined by | | (x i , . . . , x„)|| = 
L I U |x»|, then the standard basis {ej}"=1 satisfies the relation || ej| |¡n 
= ||ej|| = 1 for j = 1 , . . . , n, but clearly it does not have Property L under 
this norm. 

THEOREM 1. The following conditions are equivalent: 
(1) X is strictly n-convex; 
(2) / / I I E ^ H / n = \\XJW ? 0 for j = l , . . . , n , then the set { x , } ^ 

has Property L\ 
(3) If IKIXi 1 M i ) + *„|| = n||xn | | ^ 0, Xi ^ 0 and b{ = | |xn | |/ | |x,| | for 

i = 1,. . . , n — 1, then the set {£>1X1,...,£>n_ixn_i,xn} has Property L; 
(4) !f II E"=i x«ll = £ ? = i INI , xi i 0 for i = l , . . . , n , then the set 

{61X1,.. . , 6 n _ ix n _ i , x n } has Property L for some real b{ > 0 such that 
IIM.II = Iknll for i = 1 , . . . , n - 1. 

P r o o f . (1) (2): Let || £ , n
= 1 x<||/n = H^H = d ± 0 for j = l , . . . , n , 

then the set {xj/d}"=1 has Property L, i.e., the set {x j}^! has Property L. 
(2) (3): Since I K ^ " 1 bixi)+xn\\/n = ||xn | | = HM.H for i = 1 , . . . , n-

1, the result follows easily. 
(3) =>• (4): There is clearly no loss of generality in taking ||xj|| > ||xn | | 

for i = 1 , . . . , n - 1. Let 6j = | |xn | | / | |xj| | for i = 1 , . . . , n — 1, then 

E i n i = || X > | | < || ( E + « - I + D 1 - 6<)INI * E M ' 
¿=i ¿=i «=i i=i ¿=1 

o r I K E ^ BIXI) + xn | | = n||x„|| and the result follows. 
(4) => (1): If \\EU*i\\/n = ||®i || = 1 f o r i = l , . . . , n then | |E?- i« i l l 

= £?=i ||x,|| and hence the set {&iXi,... , 6 n _ ix n _ i ,x n } has Property L. 
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Next we have to show that the set {x,}"=1 has Property L. This is clear 
since ||6,ar<|| = | |xn | | = 1 for i = 1 , . . . , n — 1, or i»,- = 1 for i = 1 , . . . , n — 1. 

3. Characterizat ions by a semi- inner-product 
Recall from functional analysis that a semi-inner-product is a mapping 

[ , ] on X X X into real or complex numbers satisfying the conditions: 

(i) [bx + y,z] = b[x,z] + [y,z]; 
(ii) [x,x] > 0 for x ^ 0; 

(Hi) |[*,1/]|2 < 
for all x, y and z in X , b any real or complex number, and the norm in X 
is given by ||x|| = [x ,x] i . 

THEOREM 2 . The following conditions are equivalent: 
(1) X is strictly n-convex (in the sense of Theorem 1); 

(2) *<.*»] = (£?="? I M D I M , i # 0 for i = l , . . . , n , then 
the set { 6 i x i , . . . , 6 n _ i x n _ i , x n } has Property L for some real b{ > 0 such 
that |J6jXj|| = | |xn | | for i = 1 , . . . , n - 1; 

(3) 7 / [ x j , x n ] = | |xj| |2 = | |xn | |2 ^ 0 fori = l , . . . , n — 1, then the set 
{x,}p=1 has Property L; 

(4) //[x,-,xn] = Hxill = | |xn | | = I fori = l , . . . , n - l , then the set { x j ? = 1 

has Property L; 
(5) If [bixi,xn] = | |xn | |2 ^ 0, x< ^ 0 and b{ = | |x n | | / | |x t | | for i = 

1 , . . . , n — 1, then the set {b\x±,... , 6 n _ i x n _ i , x n } has Property L. 

P r o o f . The implications that (5) =>• (3) =>• (4) are obvious. 
(1) (2): Let [ £ £ ? x u x n ] = ( E ^ i I M D I M I , then 

( £ I W l ) I M I = [ £ » < , * « ] < || £ Xf || | |xn | | < ( £ | |x, | |) ||xn | | , 
1=1 ¿=1 ¿=1 t=l 

o r II S r = i x t | | = E r = i llz«'ll> a n ( i the result follows from (4) in Theorem 1. 
(2) (3): Let [x<,xn] = ||xi||2 = | |xn | |2 for i = 1, then 

E ? „ i * < , * - 1 = (EiLl1 ll®»ll)ll®n||> a n d h e n c e the s e t { M l , " . , & n - l X n - l , 
x n } has Property L by (2) for some real b{ > 0 such that ||6»Xj|| = | |xn | | for 
i = 1 , . . . , n — 1. It follows that £>j = 1 for i = 1 , . . . , n — 1. 

(4) (1): Given a set {x,}"= 1 such that [xj ,x n ] = ||xj|| = | |xn | | = 1 for 
i = 1 , . . . , n — 1, then 

* \ M \ = ( ¿ I W l ) l M = [ ¿ x , , x n ] < | | £ x < | | | | x n | | < nllx. l l , 
t=l t=l i=l 
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or || S i L i x i \ [ l n = Ikill = 1 for j = l , . . . , n . Therefore, by contrapositive 
we see that if the set {x,}"=1 does not have Property L under the latter 
relation, it does not have Property L under the former relation neither. 

(3) =>• (5): Assumption in (5) implies that [6,if,a;n] = | | 6 , X j | | 2 = ||sn||2 

for i = 1 , . . . , » — 1. 

4. Characterizations by duality mappings 
Let X* denote the conjugate space of X, the two commonly known 

duality mappings are: 

J(x) = { / € * * : / ( * ) = H/HNI, ll/H = \\x\\} (see [2], [5], [8]) 
and 

/ (x ) = { / € X * : / ( x ) = | | / | | | |x| |} (see [5]) 

with duality mappings J, I: X —• 2X*. 
Evidently, with regard to such mappings the following assertions are true: 

(a) J(x) C I(x). (b) x = 0 if and only if 7(x) = X\ (c) / (x ) = I(cx) = 
cl(x) for any real c > 0. (d) 0 ^ / € / (x) for x ^ 0 implies / € J(cx) 
for some real c > 0. (e) If x ^ 0, then there exists an / 6 J(x) such that 
/ ^ 0 (by the Hahn-Banach theorem). 

DEFINITION 2. Let 7 '(x) be the same as I(x) which has an additional 
property that ||x|| > ||y|| if and only if | | / | | > ||ji|| for x,y ± 0, / € 7(x) and 
9 € I{y). 

It follows easily from the definition that / G 7'(x) n I'(y) for x, y ^ 0 if 
and only if / ( x ) = | |/ | | | |x| | , f ( y ) = | | / | | | |v | | and ||x|| = ||j/||. 

LEMMA 2. 7 / 0 ^ / G 7 '(x) and 0 / I'{y) for x,y ± 0, then 

(1) Re( / — g)(x — j/) > 0; 
(2) Re( / - g)(x - y) = 0 if and only if f ( y ) = | |/ | | | |y| | , g(x) = | |P | | | |x|| 

and ||x|| = Hi/ll; 
(3) Re( / - g)(x - y) = 0 if and only if f,g€ / ' («) n J'(y). 

P r o o f . The proof of (1) and (2) appeared as part of the proof in [5, 
Corollary 8] except for an obvious change in there. Indeed, it can be shown 
that Re( / - g){x - y) = [(| |/ | | - | |5 | |)(||x|| - ||y||)] + [||/| | | |y|| - Ref(y)) + 
[||<7||||x|| -Re( / (x)] > 0. Also Re / (y ) = \\f\\\\y\\ if and only if f ( y ) = \\f\\\\y\\, 
and similarly Re j (x ) = ||ff||||x|| if and only if g(x) = ||<7||||x||. (3) is conse-
quences of assumptions, (2) and a remark above. 

T H E O R E M 3. The following conditions are equivalent: 

(1) X is strictly n-convex (in the sense of Theorem 1); 
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(2) 7 / n r = 1 / ( x 0 ^ 0, x,- ^ 0 for i = l , . . . , n , then the set {&1X1,..., 
bn-ixn-i,xn} has Property L for some real b> 0 such that ||6tx»|| = ||®n|| 
for i = 1,..., n — 1. 

(3) If n i U I'{*i) / 0 ond x{ ± 0 for i = 1 , . . . , n, then the set {x,}J>=1 

has Property L; 
(4 ) If f ) r=i J(xi) / 0 and xi i1 0 f o r t = 1 , . •., n, then the set { £ » } ? = i 

has Property L\ 
(5 ) If 0 ^ fi € I'{xi) and n ^ 0 for i = 1 , . . . , n and the set { x , } " = i 

does not have Property L, then Re(/j — fk){x% — Xk) > 0 for i = 1 , . . . , n and 
i ^ k e {l,...,n}. 

(6) If 0 ^ fi G and x,- ^ 0 / o r i = l , . . . , n and the set { x » } ? = i 
does not have Property L, then Re(/,- — /jt)(x< - x*) > 0 for i = 1 , . . . , n and 

P r o o f . It is trivial that (3) => (4) , and (6 ) is a special case of (5) . 

(1 ) (2 ) : Let 0 / / G |X=i = ( f l f e i W i * i ) ) n / ( « » ) for = 
llxn||/||a;i||, * = 1 , . . . , n - 1, then 

+ ®n) = «11/11 Iknll 
i=l t=l 

> i i / i i | | ( X > « < ) + x n | | , 
»=i 

o r I K E S h x i ) + xn|| = n||x„||, and we may apply (3) in Theorem 1. 
(2 ) (3) : Obvious, as (3 ) implies ||xj|| = ||xn|| for i = 1 , . . . , n — 1, and 

so bi = 1 for i = 1 , . . . , n — 1. 
(4 ) =>• (1) : Given a set { x , } ^ = 1 such that 0 / / 6 fii=iJ(xi) (hence 

11*1 II = llx«ll for » = 2 , . . . , n ) , then 

» l l / I I I M > l l / l l | | E » i | | > / ( E * i ) 
t=i ¿=1 

= I I / I I ( E i w i ) = »ii/ii n«iii. 
¿=i 

or || Xi\[/n = ||xj|| for j = 1 , . . . , n. This is precisely the condition (2 ) 
in Theorem 1. Thus, by contrapositive the rest of the proof is the same as 
(4) =>• (1 ) in Theorem 2. 

(3 ) (5) : If 0 fi e I'(xi) for i = 1 , . . . , n, and the set { x J J L j does not 
have Property L, and suppose that 0 = Re(/,- — /fc)(x,- — x * ) for i = 1 , . . . , n 
and i ^ k 6 { l , . . . , n } , i.e., the negation of (5) , then / * € p|"= 1 /'(a:,-) by 
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Lemma 2. Hence f )" = 1 / ' (x j ) ^ 0 and the set {£¿1?=! does not have Property 
L. In other words, (3) does not hold. 

(5) =>• (3): If 0 ^ / € n"=i a n d suppose that the set {x,}f=1 does 
not have Property L, then 0 = Re(/ - / ) (x j - x*) > 0 by (5) yielding a 
contradiction. 

In view of the definition of a duality mapping (see [2], [5], [8]) and state-
ments (5) and (6) in Theorem 3, we may say that X is strictly n-convex if 
and only if I' or J is strictly monotone. 

5. Strict (n - l)-convexity and n-convexity 
In this final section we shall present relationship between strict (n — 1)-

convexity and n-convexity. 

THEOREM 4. For n > 3 a strictly (n — 1 )-convex space X is strictly 
n-convex. 

P r o of. If xi,..., xn € X are nonzero vectors, A' is strictly (n—l)-convex 
and if nr=i J ( x i ) 0> then the set A consisting of any n — 1 vectors from 
the set {xi}"=1 has Property L by (4) in Theorem 3. We want to show that 
the set {x,}"=1 has Property L. If at least two vectors in A are equal, we 
are finished. Otherwise we may pick up two series «¿Xj and b{Xi 
such that 

n n 
^ ^ a.iXij — a,jXj = 0 with ^ ^ ^ a i j — a j = 0 , 

»=i i=i 
n n (b{Xi) ~bhXh with (&«) ~bh ~0 

«=1 <=i 
for some j h, 1 < j,h < n, some nonzero real numbers a{ (i ^ j) and 
bi(i # h). 

Multiply a suitable constant c ^ 0 to if necessary, to make sure that 
a,- + cbi ^ 0 for i / j, h, and then by adding the above two series we have 

71 71 

[^(ai+c6i)«i]-(oi®i+c6fcXfc) = 0 with [^ (a i +c6j ) | - (a J - | - c6 / l ) = 0. 
i=l 

This shows that {xj}"=1 has Property L and hence X is strictly n-convex. 
Although we do not expect the converse of Theorem 4 to be true (a 

strictly 3-convex space is not necessarily 2-convex [3, Example 1]), we have 
the following result. 

T h e o r e m 5 . If X is strictly n-convex for n > 6, { x « } ? ^ 1 1 5 a °f 
nonzero vectors in X such that Hi^i i1 ® an^ ll1*!! = \\^xk — ®m|| 



732 C.-S. Lin 

for some k ^ m, I < k,m < n — 1. Then at least one of the following five 
statements is fulfilled. 

(1) The set {x,}^1 has Property L; 

(2 ) The set { x , } ^ 1 \ { x * } has Property L; 

( 3 ) The set { x j " ^ 1 \ { x m } has Property L\ 

(4 ) The set {xj}£l ' 1
1 \ { x j t , x m } has Property L\ 

(5) The set {xfc ,x m ,x a } has Pwperty L, where s / k,m and 1 < s 
< n- 1. 

P r o o f . Consider the set { x , } " ^ 1 U {2x f c - x m } , and let / € fl"^]1 A x > ) 
(hence | |x f e | | = | | x m | | = | | / | | ) . T h e n f(2xk - xm) = 2 f ( x k ) - f ( x m ) = 

l l / I I I M = Il/ | | | |2xfe - x^H, a n d thus / € f | ? = i n J(2xk - xm). It 
fo l lows tha t the set { x , } " . ] 1 U { 2 x j t — x m } has Property L by (4 ) in T h e o r e m 3 
as A" is s tr ict ly n -convex . If any t w o vectors in the set { x , } " ^ 1 are equal , 
or 2 x k — xm = Xfc, or 2X* - xm — x m , t h e n we have (1 ) . If 2x^ — xm — xa 

for s ^ k,m a n d 1 < s < n — 1, t h e n we have (5 ) . Otherwise we m a y 
let ( ^ J i 1 m x i ) + a(2xfc — x m ) = 0 w i t h (521=1 a«') + a = 0 for s o m e real 
o , aj ^ 0, i = 1 , . . . , n - 1, t h e n 

n—1 n—1 
bixi = o w i t h b i = 0 ' 

¿=i ¿=i 
where b{ = at- if i ^ k, m , bk = ak + 2 a and bm = am — a. Therefore , if 
bk,bm ^ 0, t h e n ( 1 ) holds. bk = 0 and bm ^ 0 imply (2 ) . bk ^ 0 and bm = 0 
i m p l y (3 ) . If bk = bm = 0, t h e n (4 ) holds and the proof is comple te . 

COROLLARY 1. Assumptions as in Theorem 5 and let the relation ||x^|| = 
||2xjt - x m | | be replaced by | | x s | | = | |cx f c + (1 - c ) x m | | for s ^ k, m, 1 < s < 
n — 1 and some real c ^ 0,1, then the same conclusions in Theorem 5 hold. 

P r o o f . Let / € Pj^Tj1 J(xi), then we can easi ly show tha t f(cxk + (1 — 

c ) « m ) = ll/llllcxjfc + (1 - c ) x m | | , i .e . , / € n r J i 1 n J(cxk + (1 - c)xm). 
Hence the set {xjJJLj1 U {cxk + (1 — c ) x m } has P r o p e r t y L, and the desired 
result fo l lows by a s imilar discuss ion as in T h e o r e m 5. 

COROLLARY 2. Let n = 5 in Theorem 5 , then at least one of the four 
statements (1), (2), (3) and (5) in Theorem 5 is fulfilled. 

P r o o f . Consider the set { x , } J = 1 in T h e o r e m 5, t h e n the se t , say, { x i , X 2 , 
x 3 , x 4 , 2 x i — X 2 } has P r o p e r t y L by the proof of T h e o r e m 5. Let 01X1+02X2 + 
03X3 + 04X4 + 05(2x1 — X2) = 0 w i t h 01 + 02 + 03 + 04 + 05 = 0 for s o m e 
real a,- ^ 0, i = 1 , . . . , 5 . T h e n ( a i + 2 a 5 ) x i + (02 — 05)12 + 0 3 X 3 + 04X4 = 0. 
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If ai + 2as = fl2 — <15 = 0, then X3 = X4, i.e., (1) holds. All other cases are 
similar as in Theorem 5. 

COROLLARY 3. Let n = 5 in Theorem 5 and replace the relation ||xfc|| = 
\\2xk - xm | | by ||xa|| = ||cxfc + (1 - c)xm | | for s ^ k,m, 1 < s < n - 1 and 
some real c ^ 0,1, then at least one of the four statements (1), (2), (3) and 
(5) m Theorem 5 is fulfilled. 

P r o o f . Similar to the proof in Corollary 2. 

THEOREM 6. The following conditions are equivalent: 

(1) X is strictly 3-convex; 
(2 ) X is strictly 4-convex, and if f ) i = i J(xi) / 0 for nonzero vectors Xj, 

i = 1,2,3, then ||xfc|| = ||2xfc — x m | | for some k ± m, 1 < k,m < 3, or 
||11 = ||cxi + (1 — c)x2|| for some real c ^ 0,1. 

P r o o f . (1) (2): A special case of Theorem 4 says that a strictly 3-
convex space is strictly 4-convex. If fli=i J ( x i ) i1 0» then the set {xi, X2, X3} 
has Property L by (4) in Theorem 3. If any two of them are equal, say, x^ = 
x m , t hen ||x*|| = ||2xfc —xm||. Otherwise we have aixx+02X2+03X3 = 0 with 
ai + «2 + 03 = 0 for some real a\ ^ 0, i = 1,2,3. Thus, X3 = cx 1 + (1 — c)x2, 
where c = —01/03. 

(2) =>• (1): Consider the first case first, i.e., f)"=1 J(xi) ^ 0 and, say, 
||xi|| = ||2xi — X2||. Then as in the proof of Theorem 5 a simple calculation 
shows that the set {xi,x2, x3,2xi — X2} has Property L. Therefore, at least 
two of the vectors in the set {xi, X2, X3} are equal, or 2xi — X2 — X3 = 0, or 
biii + 62^2 + &3X3 = 0 for some real 6,- ^ 0, i = 1,2,3 and 61 + 62 + 63 = 0. 
In any way X is strictly 3-convex. 

In the second case we have ||x3|| = ||cxi + (1 — c)x21| and Hi=i J(xi) i1 0-
Then as in Corollary 1 we have the same conclusions as the first case, except 
that the relation 2xi —X2 —X3 = 0 should be replaced by cxi+(l—c)i2 —X3 = 
0 and the proof is complete. 

Remark that Theorem 6 indicates the relationship between "three points 
being collinear" and "four points being coplanar" for certain points in the 
space. We may similarly discuss strict 2 and 3-convexity. 
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