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ON STRICTLY n-CONVEX NORMED LINEAR SPACES

1. Introduction

One of important spaces in functional analysis is a strictly convex normed
linear space, by which we mean that each point of the unit surface is an
extreme point of the unit ball. For example, inner product spaces and I
spaces for 1 < p < oo (but /! and [*® spaces are not). Generally speaking
there are three different types of characterizations of a strictly convex space.
Firstly by a norm [4], [6]: ||z + || = ||z|| + ||| for z,y # 0 implies z = ay for
some real a > 0, or equivalently, 1|z + y|| = ||z|| = ||y|| = 1 implies z = y.
Secondly by a semi-inner-product [1], [5], [9]: [z,%] = ||z|l||y]| # O implies
z = ay for some real a > 0, where [ , ] denotes a semi-inner-product.
Thirdly by a duality mapping [2], [5], [8]: A duality mapping J on the
space is strictly monotone, or equivalently, J(z) N J(y) # @ for z,y # 0
implies ¢ = y. In the case of an inner product space more can be said about
the norm relation. Indeed, it is known that if z,y # 0, then the relation
Iz + yll = ||zl + ||ly]| holds if and only if z = ay for some real a > 0. The
strict convexity has been generalized to the space having Property C[3], by
which we mean that if ||z + y + z||/3 = ||z|| = ||ly]| = ||2]| = 1, then z,y and
z are collinear. A strictly convex space has Property C, but the converse is
not generally true ([3], Example 1). It is our object in this paper to define a
strictly n-convex normed linear space which is a generalization of the above
two types of spaces. This new space will be characterized in terms of a
norm, a semi-inner-product and a duality mapping. It is shown that there
is a similarity among these three types of characterizations. Finally we shall
present relationship between strict (n — 1)-convexity and strict n-convexity.
Indeed, the former implies the latter.

2. Characterizations by a norm
Let X denote a (real or complex) normed linear space throughout this
note. We first need the following useful lemma which is essential to the
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formations of our consequent theorems. It is the author’s belief that some of
the statements in the lemma are known, but do not seem to have an explicit
reference, we include a proof.

LEMMA 1. The following conditions are equivalent:

(1) X is strictly convez;

(2) 2llz +yll = lizll = llyll = 1 implies z = y;

(3) 2llz + yll = =]l = llyll # O implies z = y;.

(4) ||z + ay|] = 2||z|| # O for some real a > 0 implies = ay, and a = 1
if ||l = llyll;

(8) ll2 = 2l = ll2 — yll + lly = 21| for 2,4, # 0 implies y = (1~ b)z + bz
for some realb > 0 and 0 < b < 1;

(6) llz + yll = ||z — y|| = [lz]| # O implies y = 0;

(M llz+ =zl = ||z+ yl| # 0 for all z € X implies z = y;

() ls = 9ll = lllzll = lyll] for 2,y # 0 implies z = ey for some real
c > 0; i

(V) Iz + 9ll = llzll + llgl for 2,y # O implies |ly]lz = Jzlly;

(@) ll2 + ay]| = 2ljz]| # 0 for a = ||2]|/|ly]| implies z = ay;

(&) llz = oll = lllzll — lglll for 2,y # O implies |jgl}z = I}z - vl + [1s1)3-

Proof. It is a routine matter to show the implications: (1) = (2) =
B)=22M4)=>M4W=(2),10)=Q1Q)=(5),(1) & (8) and (3) = (7). Thus
it remains to show that (4') = (1), (5) = (1), (3) & (6), (7) = (3) and
(1) = (8'). That (8') = (1') is clear after we prove (1') = (8').

(4') = (1'): Since (3) which implies (4’) is symmetric with respect to
z and y, we may suppose without loss of generality that ||z|| < |ly}| and
a = |lall/llgl, then [lz]|+ lgll = llz + 3]l < Iz +agll+(1—a)llgll < lell+ Il
or 1z + ayl| = 2|zll- So & = ay by (4'), ie. lyllz = [lz]y-

(5) = (1): The conclusion of (5) may be rewritten as y = z = (1 —b)(z —
z). Now in (5) replacing ¢ — y by z,y — 2z by y, and hence z — 2 by z + y
yields y = (1 - b)(z + y), i.e. z = ay with a = b/(1 - b).

(3) ¢ (6): In (3) replacing z by z + y, and y by z — y we arrive at (6),
and vice versa.

(7) = (3): Suppose that (3) does not hold, i.e., 3||z+y| = ||z|| = l|y|l # 0
and z # y, we have to show that ||z + z|| = ||z + y|| # O for some 2’s implies
z # y. But this is clear if in the relation |}z + z|| = ||2 + y|| we let z = z and
z = y, respectively.

(1) = (8'): We may let [lz]l 2 [ly|| and so ||z|| = [l= - y|| + [Iy]l.
lyll(z = y) = llz - ylly by (1'), or [lyllz = (1= - yll + llyll)y, and the proof is
complete.
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The next definition is motivated by the definitions of strict convexity
and the space having Property C, and by the concept of four points being
coplanar in vector analysis.

DEFINITION 1. X is said to be strictly n-convex for a positive integer
n > 2 if for a set {z;}"; in X satisfying the relation

n
”Zz;”/n: lz;l=1 forj=1,...,n,
i=1

then the set has Property L, by which we mean that at least two of the
vectors in the set are equal, or 2:;1 a;z; = 0 for some nonzero real numbers
a; (i=1,...,n) such that }°_, a; = 0.

It is easily seen from the definition that strict convexity is strictly 2-
convex, and the space having Property C is strictly 3-convex in our sense.
It may be noted that not every normed linear space is strictly n-convex. For
example, in the space R™(n > 2) let a norm be defined by ||(z1,...,2,)|| =
Y i1 |zil, then the standard basis {e;}7., satisfies the relation || Y"1, ei||/n
= |lej|l = 1 for j = 1,...,n, but clearly it does not have Property L under
this norm.

THEOREM 1. The following conditions are equivalent:

(1) X is strictly n-convez;

@) If | X, zill/n = llzjll # 0 for j = 1,...,n, then the set {z;},
has Property L; .

(3) I X5y bizi) + zall = nllzall # 0, i # 0 and b; = ||zall/||z:]| for
t=1,...,n—1, then the set {byz1,...,bp—_1Zpn-1,2,} has Property L;

@) Xzl = T llzill, zi # 0 for i = 1,...,n, then the set
{br1z1,...,bp_1Zn—1,%5} has Property L for some real b; > 0 such that
lbizil| = ||za|l fori=1,...,n~1.

Proof. (1) = (2): Let || Xl zill/n = ||zj|l = d # 0 for j = 1,...,n,
then the set {z;/d}, has Property L, i.e., the set {z;}", has Property L.

(2) = (3): Since ||(X17} bizi)+zall/n = ||znl] = [|bizi] fori=1,...,n-
1, the result follows easily.

(3) = (4): There is clearly no loss of generality in taking ||z;|| > ||zx]|
fori=1,...,n—1. Let b = ||za||/llzi|| for i = 1,...,n— 1, then

Sl = | Sm] < [ (3 62 +.2a] + S0 - b0l < S s,
i=1 i=1 i=1 =1 =1

or (S biz:) + zn|| = n||z.|| and the result follows.

(4) = (): M | X, 2ill/n = ||zl = 1 for j =1,...,n then || 3.2, =il
= Y i llzill and hence the set {byz1,...,bn—1Zn-1,2Zx} has Property L.
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Next we have to show that the set {z;}" , has Property L. This is clear
since ||b;zi|| = ||zn]| =1fori=1,...,n-1,0rb;=1fori=1,...,n— 1.

3. Characterizations by a semi-inner-product
Recall from functional analysis that a semi-inner-product is a mapping
[, ]on X x X into real or complex numbers satisfying the conditions:

(i) [bz + y, 2] = blz, 2] + [y, 2];
(i) [z,z] > 0 for z # 0;
(iif) |z, 9]l < [z, ][y, 3]
for all z, y and 2z in X, b any real or complex number, and the norm in X
is given by ||z|| = [z, z]3.

THEOREM 2. The following conditions are equivalent:
(1) X is strictly n-conver (in the sense of Theorem 1);

() If [Zs—l i, Tn] = (21_1 lzil)llznll, i # 0 for i = 1,...,n, then

the set {b1z1,...,bn-1Zn-1,Z,} has Property L for some real b > 0 such
that ||b;z;|| = ||zn|| fori=1,...,n—1;

3) If [zi,zn) = ll@ill* = ||lzall* # 0 for i = 1,...,n — 1, then the set
{z:}?%, has Property L;

(4) If [ziyzn) = ||lzill = ||lznll = 1 fori = 1,...,n—1, then the set {z;},
has Property L;

(5) If [bizirza] = llzall® # 0, i # 0 and b; = ||lzall/|z:|| for i =
1,...,n—1, then the set {b1z1,...,bp—1Zn—1,%n} has Property L.

Proof. The implications that (5) = (3) => (4) are obvious.
(1) = (2): Let [S1] 4, 2a] = (T157 llzill)ll2all, then

(S 1et)leal = [ mien] < [ Sl < (St tnl

or | ¥, zill = Xk llzill, and the result follows from (4) in Theorem 1.
(2) = (3): Let [:c,,:cn] = ||lzill? = ||znl?® for ¢ = 1,...,n ~ 1, then

[E::ll T Tp] = (2‘_1 llz:]))l|znll, and hence the set {blzl, ey bn_1Zn_1,
z,} has Property L by (2) for some real b; > 0 such that ||b; z.|| = ||zn|| for
t=1,...,n— 1.1t follows that b; = 1 for¢=1,...,n— 1.

(4) = (1): Given a set {z;}".; such that [z,,a:,,] = ||zl = ||zall = 1 for
t=1,...,n—1, then

ol = (S lledleall = [ oo < |3

lzall < nliza|l,
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or | X5, zill/n = |lzj|| = 1 for j = 1,...,n. Therefore, by contrapositive
we see that if the set {z;}7, does not have Property L under the latter
relation, it does not have Property L under the former relation neither.

(3) = (5): Assumption in (5) implies that [b;z;,z.] = ||biz:i[> = ||zall?
fori=1,...,n-1.

4. Characterizations by duality mappings
Let X* denote the conjugate space of X, the two commonly known
duality mappings are:

J@)={f € X"+ 1) = Ifllal, 151 = lell} ~ (see (2] 5], 8]
and '

I(z)={f e X*: f(=) =|Iflll=ll} (see [5])
with duality mappings J, I : X — 2X",

Evidently, with regard to such mappings the following assertions are true:

(a) J(=) € I(z). (b)z =0if and only if I(z) = X*. (c) I(z) = I(cz) =
cI(z) for any real ¢ > 0. (d) 0 # f € I(z) for z # 0 implies f € J(cz)
for some real ¢ > 0. (e) If z # 0, then there exists an f € J(z) such that
f # 0 (by the Hahn-Banach theorem).

DEFINITION 2. Let I'(z) be the same as I(z) which has an additional
property that |[z]| > |lyl if and only if [ > [lg]l for 2,y # 0, f € I(z) and

9 € I(y).
It follows easily from the definition that f € I'(z) N I'(y) for z,y # 0 if
and only if f(z) = ||f|lll=]l, f(¥) = [Ifllllyli and [|z}| = ||y|.

LEMMA 2. If0# f € I'(z) and 0 # g € I'(y) for z,y # 0, then

(1) Re(f—g)(z—9) 2 0;
d(ﬁ) Ifie(ﬁ ﬂ g)(z —y) = 0 if and only if f(y) = ||fllllvll, 9(=) = ||gllll=||
and ||z|| = lly|l;

(3) Re(f — g)(= — y) = 0 if and only if f,g € I'(z) N I'(y).

Proof. The proof of (1) and (2) appeared as part of the proof in [5,
Corollary 8] except for an obvious change in there. Indeed, it can be shown

that Re(f — g)(z —y) = [(Il/Il — llglDCll=ll - liy[DI + (I F1llly]l — Re f(3)] +
[glllizll - Re g(z)] > 0. Also Re f(y) = || fl|llyl} if and only if f(y) = ||f]lll¥ll,
and similarly Re g(z) = ||g]|||=| if and only if g(z) = ||g||||z||- (3) is conse-
quences of assumptions, (2) and a remark above.

THEOREM 3. The following conditions are equivalent:

(1) X is strictly n-convez (in the sense of Theorem 1);
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2) If Nz I(zi) # 0, = # 0 for i = 1,...,n, then the set {b1z1,...,
bp—1Zn-1,2n} has Property L for some real b; > 0 such that ||b;z;|| = ||za||
fori=1,...,n-1.

3) If N, I'(zi) # 0 and z; # 0 for i = 1,...,n, then the set {z;}%,
has Property L;

4) Nz, J(zi) # 0 and z; # 0 for i = 1,...,n, then the set {z;}%,
has Property L;

(5) If0 # fi € I'(z;) and z; # 0 for i = 1,...,n and the set {z;}7,
does not have Property L, then Re(f; - fx)(zi—zx) > 0 fori=1,...,n and
i£ke{l,...,n}.

(6) If 0 # f; € J(z;) and z; # 0 for i = 1,...,n and the set {z;},
does not have Property L, then Re(f; — fi)(zi—zk) > 0 fori=1,...,n and
i£ke{l,...,n}.

Proof. It is trivial that (3) => (4), and (6) is a special case of (5).

(1) = (2): Let 0 # f € (i, I(=:) = (Ni5; 1(bizs)) N I(zn) for b; =
llzall/|lz:ll, i = 1,...,n — 1, then

LA bize) + 2a] 2 (3 bies) +2a) = nll el
=1 =1
> ||f||||('§b;zi) + 2
i=1

or [|(Xr) bizi) + 2ol = n||z,||, and we may apply (3) in Theorem 1.

(2) = (3): Obvious, as (3) implies ||z;|| = ||zq|| for i =1,...,n -1, and
sobj=1fori=1,...,n-1.

(4) = (1): Given a set {z;}", such that 0 # f € M, J(z:) (hence
|z}l = ||zi]| for ¢ = 2,...,n), then

el 2 1) 3 2] 2 7( 3 =)

i=1

’

= A1 tzal) = mil Sl 2l
=1

or || 30, zil|l/n = ||z|| for j = 1,...,n. This is precisely the condition (2)
in Theorem 1. Thus, by contrapositive the rest of the proof is the same as
(4) = (1) in Theorem 2.

3)= (5):If0 # f; € I'(z;)fori =1,...,n,and the set {z;}}; does not
have Property L, and suppose that 0 = Re(f; — fi)(zi—zx) fori=1,...,n
and ¢ # k € {1,...,n}, i.e., the negation of (5), then fx € (., I'(z:) by
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Lemma 2. Hence ()=, I'(z:) # 0 and the set {z;}7; does not have Property
L. In other words, (3) does not hold.

(5) = (8): If 0 # f € Ni=, I'(z:) and suppose that the set {z;}%,; does
not have Property L, then 0 = Re(f — f)(z: — zx) > 0 by (5) yielding a
contradiction.

In view of the definition of a duality mapping (see [2], [5], [8]) and state-
ments (5) and (6) in Theorem 3, we may say that X is strictly n-convex if
and only if I’ or J is strictly monotone.

5. Strict (n — 1)-convexity and n-convexity
In this final section we shall present relationship between strict (n — 1)-
convexity and n-convexity.

THEOREM 4. For n > 3 a strictly (n ~ 1)-convez space X is strictly
n-convez.

Proof. lfz,,...,2, € X are nonzero vectors, X is strictly (n—1)-convex
and if -, J(z:) # 0, then the set A consisting of any n — 1 vectors from
the set {z;}, has Property L by (4) in Theorem 3. We want to show that
the set {z;}™, has Property L. If at least two vectors in A are equal, we
are finished. Otherwise we may pick up two series Y., a;z; and Y |, b;z;

such that
(iz:;ail‘i) —ajr; =0 with (ia‘) -a;=0,

i=1

(;b;zi) —bpz,  with (Zb) —ba=0

=

for some j # h, 1 < j,h < n, some nonzero real numbers a; (i # j) and
bi(i # h).

Multiply a suitable constant ¢ # 0 to b;, if necessary, to make sure that
a; + ¢b; # 0 for © # j, h, and then by adding the above two series we have

[Zn:(aﬁcb,')z,-] ~(ajzj+cbpzp) =0 with [zn:(a,-+cb.-)] —(aj+cbr) =0.
i=1 i=1

This shows that {z;}", has Property L and hence X is strictly n-convex.

Although we do not expect the converse of Theorem 4 to be true (a
strictly 3-convex space is not necessarily 2-convex [3, Example 1]), we have
the following result.

THEOREM 5. If X is strictly n-convez for n > 6, {z;}75]' is a set of

nonzero vectors in X such that (\}=} J(z:) # 0 and ||zi|| = ||22k — z ]|
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for some k # m, 1 < k,m < n— 1. Then at least one of the following five
statements is fulfilled.

(1) The set {z;}7-} has Property L;

(2) The set {z;}7-} \ {zx} has Property L;

(3) The set {z;}7- \ {zm} has Property L;
(4) The set {z;}7-! \ {zk,Zm} has Property L;

(5) The set {zk,zm,zs} has Property L, where s # k,m and 1 < s
<n-1.

Proof. Consider the set {z;}7} U{2zx — 2.}, and let f € (77} J(z:)
(hence flzill = llemll = (I£)- Then f(22x — zp) = 2f(2i) = f(5m) =
I7Mzell = 171122k — 2mll, and thus £ € (V57 J(2:) N I(2ok = 2m). Tt
follows that the set {z;}""' U{2zs—2y,} has Property L by (4) in Theorem 3
as X is strictly n-convex. If any two vectors in the set {z; :‘___11 are equal,
or 2Ty — Ty, = Tk, OF 2Lf — Ty = Tpy, then we have (1). If 224 — z,, = z,
for s # k mand 1 < s < n—1, then we ha.ve (5). Otherwise we may
let (207 aizi) + a(22x — ) = 0 with (X7 @;) + @ = 0 for some real
a,a; #0,1=1,...,n—1, then

n-1 n-1
Zb.-a:.-:O with Eb,-:o,
=1 i=1

where b; = a; if ¢ # k,m, by = ax + 2a and b,, = a,, — a. Therefore, if
bk, bm # 0, then (1) holds. bx = 0 and b,, # 0 imply (2). by # 0 and b,,, =0
imply (3). If by = b,, = 0, then (4) holds and the proof is complete.

COROLLARY 1. Assumptions as in Theorem 5 and let the relation ||zx|| =
122k — 2ml| be replaced by ||z, || = l|lczk + (1 — c)zm|l for s # kym, 1< s <
n — 1 and some real ¢ # 0,1, then the same conclusions in Theorem 5 hold.

Proof. Let f € N; ! J(z;), then we can ea,sﬂy show that f(czx + (1 -
©)zm) = || fllllezx + (1 - C)zmll, ie., f € iy J(zi) NI (i + (1= €)zm).
Hence the set {z;}7!' U {czs + (1 - c)zm} has Property L, and the desired
result follows by a similar discussion as in Theorem 5.

COROLLARY 2. Let n = 5 in Theorem 5, then at least one of the four
statements (1), (2), (3) and (5) in Theorem 5 is fulfilled.

Proof. Consider the set {z;}!_, in Theorem 5, then the set, say, {z1, z2,
Z3,%4,221—x3} has Property L by the proof of Theorem 5. Let a;z; +azz2+
aszs + asz4 + a5(2z1 — z2) = 0 with a; + a2 + a3 + a4 + a5 = 0 for some
real a; #0,i=1,...,5. Then (a; + 2a5)z1 + (az —as)z2 + azz3 + ayz4 = 0.
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If @) + 2a5 = a3 — a5 = 0, then z3 = z4, i.e., (1) holds. All other cases are
similar as in Theorem 5.

COROLLARY 3. Let n = 5 in Theorem 5 and replace the relation ||zk|| =
1225 = zm]|| by ||zs]| = llczk + (1 = ¢)2m]|| for s # k,m,1 < s<n—1 and
some real ¢ # 0,1, then at least one of the four statements (1), (2), (3) and
(5) in Theorem 5 is fulfilled.

Proof. Similar to the proof in Corollary 2.
THEOREM 6. The following conditions are equivalent:

(1) X is strictly 3-convez;

(2) X is strictly 4-convez, and if (You, J(z:) # O for nonzero vectors z;,
t = 1,2,3, then ||zk|| = |22k — zwm|| for some k # m, 1 < k,m < 3, or
llzs]| = llez1 + (1 = c)z2l| for some real ¢ # 0,1.

Proof. (1) = (2): A special case of Theorem 4 says that a strictly 3-
convex space is strictly 4-convex. If n?=1 J(z;) # 0, then the set {z1, 2,23}
has Property L by (4) in Theorem 3. If any two of them are equal, say, zx =
Zm,then ||zk|| = ||22k—z |- Otherwise we have ayz;+a222+a3z3 = 0 with
a; + az + a3 = 0 for some real a; # 0,7 = 1,2,3. Thus, z3 = cz; + (1 — ¢)z,,
where ¢ = —a, /a3.

(2) = (1): Consider the first case first, i.e., iz, J(z;) # 0 and, say,
flz1]| = l|2z1 — z2||. Then as in the proof of Theorem 5 a simple calculation
shows that the set {z,z2, 23,221 — 22} has Property L. Therefore, at least
two of the vectors in the set {z,, 23,23} are equal, or 2z; — 22 — 23 = 0, or
bi1z1 + bazy + byzs = 0 for some real b; # 0,7 =1,2,3 and by + by + b3 = 0.
In any way X is strictly 3-convex.

In the second case we have ||z3[| = [|cz1 + (1 —c)z,|| and (2, J(z:) # 0.
Then as in Corollary 1 we have the same conclusions as the first case, except
that the relation 2z, —z2 —z3 = 0 should be replaced by cz1+(1—-c)ze—z3 =
0 and the proof is complete.

Remark that Theorem 6 indicates the relationship between “three points
being collinear” and “four points being coplanar” for certain points in the
space. We may similarly discuss strict 2 and 3-convexity.
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