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1. Introduction 
The theory of cellular automata was started by John von Neumann [7, 

8] and then developed in many fields of study, both theoretical and practical 
(see for example [2,10,11,12,13]). Mathematically we deal with transforma-
tions of configurations by transition rules. A configuration is an assignment 
of elements from certain finite set to each lattice point of n-dimensional grid. 
A transition rule F assigns a new configuration Fui to configuration w in a 
locally and uniformly determined manner. The studies on such structures 
are provided in one-, two-, or n-dimensional cases. 

The main idea of this paper may be introduced as follows. For a fixed 
vector v (its coordinates are integers) we can consider the whole plane of 
cells (i.e. two-dimensional configuration) as a collection of lines (in direc-
tion v) of cells which can be treated as one dimensional configurations. If 
we transform each such configuration using fixed one-dimensional transi-
tion rule F , we actually transform two-dimensional configuration by cer-
tain two-dimensional rule denoted by Fv. In this paper we are interested in 
two-dimensional rules (called decomposable) which are equal to the super-
position of two or more two-dimensional transition rules arising in the above 
described way. Section 3 is devoted to main definitions, basic properties and 
examples concerning this concept. 

In Section 4 we try to give reasons for investigating problems connected 
with such decomposition. One of the first theoretical problem of the cellular 
automata theory was a question whether or not a given transition rule is onto 
(see [4, 5]). It was particularly well examined in one-dimensional case (see 
e.g. [1, 3, 6, 14]). We prove that two-dimensional decomposable transition 
rule is onto if and only if each of one dimensional components are onto. 
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In this manner we transform two-dimensional problem into one-dimensional 
one, with simpler and better developed theory. 

2. Pre l iminar ies and basic definitions 
Throughout this paper we will use the following notations: 

Z — the set of integers, 
Zn — the set of ra-tuples of integers, 
N — the set of positive integers, 
Nk — the set {0 ,1 , . . . , k - 1}, 
N™ — the set of m-tuples of elements of Nk, 

If / : X —*• Y and V C X then f\v denotes the restriction of the function 
/ to the set V, that is a function g : V Y such that g(v) = f{y) for all 
®6 V. 

If / : X —* Y and g : Y Z then g f denotes the superposition of those 
two functions, i.e. ( g f ) { x ) = g ( f ( x ) ) for all x € A. 

Let n and k be fixed positive integers. An n-dimensional configuration 
on k symbols is a mapping u : Zn —* Nk- The set of all such configurations 
will be denoted by Let us define a metric dn on Cjj™̂  as follows. For 
arbitrary € Cjj."' we put dn(u>, 7) = 0 if u = 7; otherwise we put 
dn(u,7) = i , where p is the least positive integer such that there exists 
x = ( x i , x 2 , . . . , x n ) e Zn with maxx<,<n |x,| = p - 1 and w(x) ^ 7(x) . 

2.1. DEFINITION . A function F : C^ is called a transition rule 
if and only if there exist a non-negative integer m, a function / : N™ —» Nk 
and a sequence of vectors (r j , r 2 , . . . , r m ) where rt- G Zn, such that 

(1) / ( 0 , 0 , . . . , 0 ) = 0, 

(2) (fw)(x) = /(w(x + n ) , w(x + r 2 ) , . . . , w(x + r m ) ) 

for all x € Zn, u € C^K 

2.1. R e m a r k . A transition rule with an initial configuration are called 
a cellular automaton. 

2.2. R e m a r k . The assumption (1) assures that if {x G Zn : w(x) ^ 0} 
is finite then {x € Zn : (Fw)(x) ^ 0} is also finite. We will not make use 
o f ( l ) . 

Transition rule on C[n) is also called n-dimensional transition rule on k 
symbols, function / is said to generate F, sequence ( r i , r 2 , . . . , r m ) forms 
the neighbourhood for F. 

It is obvious that we can find different generating functions and neigh-
bourhoods for the same transition rule. But we may choose the generating 
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function and the neighbourhood, so that / depends on each variable. We call 
such neighbourhood minimal. There exists one set of vectors which creates 
minimal neighbourhood for given transition rule. 

The set of all n-dimensional transition rules on k symbols is denoted by 

For v € Zn, av denotes an operation <rv : C^ —> Cjj™' such that for all 
x € Zn, u e C[n) we have (avw)(x) = w(x —v). It is easy to verify that each 
transition rule is continuous (with respect to the metric dn) and commutes 
with <rv for arbitrary v € Zn. 

Throughout the remainder of the paper we deal only with two- or one-
dimensional cases. One-dimensional configurations will be denoted by letters 
b, c while elements from C^ by u, 7, a . (0,0) 6 Z2 will be denoted by 0. 

3. The decomposition of two-dimensional rules 
In this section we introduce the concept of the decomposition of two-

dimensional rules into one-dimensional ones. We give some examples and we 
prove that each transition rule can be extended to the decomposable one. 

3 . 1 . D E F I N I T I O N . Let F be a one-dimensional transition rule on k symbols 
with the generating function f and the neighbourhood (ri , . . . , rm), rt- £ 
Z. Let v £ Z2. Two-dimensional transition rule Fv is defined by the equality 

(Fvw)(x) = / (w(x + r iv) ,w(x + r 2 v ) , . . . , w(x + r m v ) ) 

for each w € C[2), x € Z2 . 

Assume that v = (p, q) where p and q are relatively prime. We see that 
activity of Fv on the whole plane of cells is equal to the parallel activity 
of F on each line x + iv, (t £ Z) for every x € Z2, treated as cells of 
one-dimensional configuration. It can also be noticed that if F 6 is 
defined by neighbourhood (ri , r 2 , . . . , rm) and the generating function / 
then Fv is obtained by the same generating function with the neighbourhood 
( r i v , r 2 v , . . . , r m v ) . 

3 . 1 . P R O P O S I T I O N . Let F be a one-dimensional transition rule on k sym-
bols and let v be an element of Z2. For each u> £ x G Z2 we define 
bx 6 C ^ by equality bx(i) = CJ(X + iv). Then 

(Fvu;)(x) = (f7>x)(0). 

P r o o f . Let / be the generating function for F and let ( r i , r 2 , . . . , r m ) 
be the neighbourhood for F. We have 
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(F6X)(0) = /(6x(n), bx(r2),..., bx(rm)) = 

/(w(x + r i v ) ,w (x + r 2 v ) , . . . ,w(x + rTOv)) 

and by Definition 3.1 we have (F6X)(0) = (Fvw)(x) . • 
Now we specify the idea which is the core of this paper. 

3 . 2 . DEFINITION. Let F be two-dimensional transition rule on k symbols. 
We say that F is decomposable into one-dimensional rules if and only if there 
exist G *(fc1) and Vi, v 2 , . . . , vp € Z2 such that 

F = 

We also say that F is composed of one-dimensional rules . . . 
. . . with vectors v i , V2 , . . . , vp . 

3.1. EXAMPLE. Let GW and G ^ (from fc^) be given by equalities 

(G{1)b)(i) = b(i) + b(i + 1) (mod 2) 

(G*2>6)(i) = &(»')•&(« + 2) , 

for all b e C^ and i € Z. If F is composed of G^ and G^ with certain 
vectors v i and v2 then for all x £ Z2 and w, 7 € C22^ we have 

(GtV7)(x) = (G ( 1 )bx)(0) where b x ( i ) = 7 ( x + ¿v i ) and 

( G g w ) ( x ) = (G^b x ) (0 ) where b'x(i) = w(x + ¿v x ) . 

Therefore 

( G ^ 7 ) ( X ) = 6 , (0) + 6X(1) (mod2) = 7 ( x ) + 7 ( x + VI) (mod2) 

and 
(Gt22)u;)(x) = £ ( 0 ) • b'x(2) = W (x ) • u ( x + 2v 2 ) . 

Finally 

(F W ) (x ) = (<^>Gg w ) ( x ) = ( G t V ( ^ u ; ) ) ( x ) = 

( G i 2 M ( x ) + ( G l 2 » ( x + V l ) (mod2) = 

w(x) • w(x + 2V2) + w(x + VI) • w(x + VL + 2V2) (mod2). 

In our considerations the following result is very useful. 

3 . 2 . PROPOSITION. Let F E and let (RI>r2> • • • >RM ) be its minimal 
neighbourhood. If F is decomposable into two one-dimensional rules then 
there exist P, Q C Z and vectors u, v G Z2 such that 

{ri , r 2 , . . . , r m } = {¿u + jv : i e P and j € Q} . 

P r o o f . Let us assume that F is decomposable into two one dimensional 

transition rules, thus F = GUHV for certain G,H € $21} and u, v 6 Z2. Let 
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P, Q C Z be the sets of all minimal neighbourhood elements for G and H, 

respectively. Obviously 

{ r i , r 2 , . . . , r m } C {iu + jv : i G P and j G Q} 

(for (Gu//Vw)(x) does not depend on values other than w(x-f i u + j v ) where 
i G P and j G Q). We will prove that 

{ r i , r 2 , . . . , r m } D { iu + jv : i € P and j G Q] . 

We shall assume that P ^ 0, Q ^ 0 and u, v are linearly independent 
(otherwise the proposition is obvious). Let us fix i G P and j G Q. There 
exist b, b' G such that b(k) = b'(k) for k ji i, b(i) = 1 + &'(») (mod 2) 
and (Gb)(0) ^ (<J&')(0) (because P is the set of all minimal neighbourhood 
elements for G). For the similar reasons, there exist configurations c, c' € C ^ 
such that c(k) = c'(k) for k ^ j, c(j) = 1 + c'(j) (mod 2) for which we have 
(Hc)(0) = 0, (Hc')(0) = 1. Let us define u G in the following way: 

a j . i \ / c ( 0 if ft(fc) = 0 
u(ku + /v) = | . f ^ = J 

and w(x ) = 0 if x / ku + Iv for k,l G Z. We also define u>' G C^ by equali-
ties w' (x ) = w(x ) for x ^ iu + jv and a;'(m + j v ) = w(iu + j v ) + 1 (mod 2). 
One can easily check that (Fw)(0) = (Gb)(0) and (Fu')(0) = (G6')(0) 
therefore (Fu)(0) ± (Fu/)(0). That means iu + jv G {r1? r 2 , . . . , r m } . • 

The following example shows that the above proposition is not true if 
/->\ ¡2) 

$2 is replaced by ; for k > 2. 

3.2. EXAMPLE. Let G and H G have generating functions g,h : 

—> JV3, respectively, such that 

' 0 i f (® 1 , x 2 ) = ( l , 0 ) o r ( ® i , a 2 ) = ( l , l ) 
9 { x u x 2 ) = 1 if ( x i , x 2 ) = (1,2) 

2 otherwise, 

r 0 if (x1 ?x2 ) = (1,0) or ( x ! , x 2 ) = (1,1) 
h(x ! , x 2 ) = l i i f ( X i , x 2 ) = ( 1 , 2 ) 

I. 2 otherwise 

and the neighbourhood is (0,1) for both. Given two linearly independent 
vectors u, v one can easily check that the minimal vectors for F = GnHw 

are 0, u and v only. The set {0, u , v } is not equal to {¿wi + jw2 : i G 
P and j G Q] for any P,Q C Z, w1} w2 G Z2. 

The next example explains why we consider decomposition into (possi-
bly) more than two factors. 
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3 . 3 . EXAMPLE. Let G G b e 6 i v e n b y equality (Gb){ i ) = b(i) + 
b(i + 1) (mod 2). Let u = (1,0), v = (0,1), w = (1,1) and let F 6 
be composed of G with vectors u, v, w. After the computations similar to 
those in Example 3.1 we obtain 

(Fw)(x) = (GuGvG„u>)(x) = w(x) + w(x + u) + u ( x + v ) + 
+ w(x + w) + w(x + u + v ) + w(x + u + w) + u(x + V + w ) + 

+ w ( x + U + v + w) (mod2). 

But w(x + u + v ) + w(x + w) (mod 2) = 0 so 

(Fu)(x) = u(x) + w(x + u) + w(x + v) + w(x + u + w) + w(x + v + w ) + 

+ w(x + u + v + w) (mod 2) , 

and finally {0, u, v, u + v, v + w, u + v + w } is the set of all minimal neigh-
bourhood vectors. By dint of Proposition 3.2 we infer that F is not decom-
posable into two one-dimensional transition rules; but it is clear that F is 
decomposable. 

Throughout the remainder of this section we concentrate on the decom-
position into two one-dimensional transition rules. 

3 . 4 . EXAMPLE. Let F G ^ be given by neighbourhood ( ( 1 , 0 ) , ( 0 , 1 ) , 
(1,1)) and the generating function / : —• such that 

« - . - . - M i : f
l £ ; r 3 ) = ( 1 , 1 ' 1 ) 

Applying Proposition 3.2 we can prove that F is not decomposable into two 
one-dimensional transition rules. Let H 6 given by the neighbour-
hood (0,1) and the generating function h : —>• N3 such that 

r 0 if (*!, x2) = (0,1) or (*!, x2) = (2,1) 
M ® I » ® 2 ) = < 1 if ( X I , X 2 ) = ( 1 , 1 ) 

v 2 otherwise 

and let G € be given by neighbourhood (0,1) and the generating func-
tion g : —• such that 

/ \ _ f 1 if (xi = 0 or x\ = 1) and x2 = 1 
' 10 otherwise. 

Let u = (1,0), v = (0,1). If a; € C ^ then it is easy to check that F u = 
(3) 

GuHvu. Thus F can be extended to transition rule from $2 which is de-
composable into two one-dimensional transition rules. 

The property suggested in the above example is true in all cases. This 
fact is expressed in Theorem 3.2. But first we have to prove the following 
theorem. 
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3.1. T H E O R E M . Let F be the two-dimensional transition rule on k symbols 

with minimal neighbourhood ( r i , r 2 , . . . , r m ) . Let u , v G Z2. The following 

statements are equivalent: 

(a) { r ! , r 2 , . . . , r m } C {iu + j v : i,j G Z}, 
( b ) there exist positive integer p, one-dimensional transition rules on p 

symbols G and H such that if F' = Gaily then F'.rm = F. 
I Lk 

P r o o f . Suppose that (a) holds. If u and v are linearly dependent then 
F = Gw for some G G and the proof is completed. Thus we can assume 
u and v are linearly independent. Let q be the least non-negative integer 
such that { r i , r 2 , . . . , r m } C {tu + j'v : |t| < gand|,7'| < q} and let p = k2q+1. 

We define a function d : —• Np by equality 

d(x-q,x_g+i,...,xq) = x + • k + • • • + xq • k2q. 

It is obvious that d is injective and onto, thus function d - 1 exists and trans-
forms Np onto If d_1(y) = (a;-,, £ - g + i , . . . , xq) then by d~Jl(y) we 

denote xj for — q < j < q. For each b G Cp1^ and each i G Z we define 

H G ^ by 

(Hb){i) = 
d(b(i - q , b{l - q + 1 , . . . , b t + q)) KJ> . . . . 

0 otherwise. 

G G is defined as follows. Let b G Cp\t G Z. Let ub>t G C[2) be a 
configuration such that for all x € Z2 

{ d - i ( b ( t .vv if * = »u + ¿v for some i, j G Z 

> 1 ( l ) ) such that \i\ < q and |j| < q 

0 otherwise. 

We put (Gb)(t) = (Fu>b,t)(0)- Direct calculation shows that GnHvu> = Fui 

for u G C<2). Thus (b) holds. 
Now we assume that (a) does not hold . Our task is to prove that (b) does 

not hold either. Without the loss of generality we may assume that ri / 
i ' u + j v for all i,j G Z. As (ri, r 2 , . . . , r m ) is the minimal neighbourhood, we 
infer that there exist two configurations u> and u ' such that u>(x) = u/(x) for 
all x G Z2 except x = rx and (Fu;)(0) ± (Fu')(0). Let p G N , and let G, H 
be one-dimensional rules on p symbols with neighbourhoods (¿1, ¿2, • • •, ir), 
( j i , j '2 , . . . , respectively. It is obvious that (GuHvijj)(0) may depend only 
on values w(t'u + j v ) where i G {¿1, »2, • • •, ir) and j G {ji,j2, • • •,js}, thus 
(GuHvu)(0) does not depend on w(ri). That means (Fw)(0) = (Fu)')(0). 
Since p, G, H are arbitrary, (b) does not hold. • 
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As a conclusion we obtain the following theorem. 

3.2 . THEOREM. For every two-dimensional transition rule F € there 
exist p € N and F' € such that F'.-(2) = F and F' is decomposable 

' * into two one-dimensional transition rules. 

P r o o f . If we take u = (1,0), v = (0,1) then (a) in Theorem 3.1 is true 
thus (b) holds. • 

4. Properties of decomposable transition rules 
In this section we show some motivations for searching for the decompo-

sition defined in the previous section. The main result is Theorem 4.2 and 
the general idea of its proof is due to [3]. First some lemmas and theorems 
should be presented. 

We will deal with configurations on k symbols, for certain fixed positive 
integer k. Let p, q be fixed positive integers and let Mp,q denote the set of 
all matrices with p rows and q columns and of entries from We say that 
A = (a t J) 6 -Mptq appears in matrix B — (bij) € Mr>s if and only if there 
exist g,h 6 Z such that a{j = bg+ith+j for 1 < i < p, 1 < j < q. Similarly, ¡2) 
if w € Ck then A appears in ui if and only if for some g,h € Z we have 
aij = u(9 + i,h + j). If C = (C(j) e MPig and D = (dij) € Mp>r then CD 
denotes the matrix E = (e t J) € MPiq+r such that e,j = Cij , 1 < j < p and 
en = dij-p ,p<j <q + r. 

4 .1 . LEMMA. Let p € N, A e MPtP. For q > p let N(A,q) denote the 
number of matrices from Mp,q in which A •appears. Then limg_>oo 
= 1. 

P r o o f . Let <f>(q) = . It is obvious that <f>(q) < 1. If A appears in 
B G Mp>q then A appears in BC for each C € Mp,\. card(A/ip,i) = kp thus 
N(A,q+ 1) > N(q)kp and hence <j>(q+ 1) > q. Therefore 

(1) lim (¡>{q) = a, where 0 < a < 1. q—^00 
Now let t € N and let us define the sets 

B{ = {A!A2 ... At € Mpitp : Aj £ MPlP for 1 < j < t, Aj ± A 
for j < i, Ai = A} 

for i = 1 , 2 , . . . , t. Of course A appears in every member of Bi, and B{ fl Bj = 
0 for i ± j. Thus 

t t 
N(A,tp) > J>ard(i?.-) = - l)'"-1^2)1"1 = 

1=1 i=i 



therefore 

and we have 
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_ — l ) * — (kp2y _ t p 2 _ , _ t 

- (jfcP* _ i ) _ ¿fcP> ^ L> 

lim (f>(tp) = 1 . i—* oo 
Because of (1) the proof is complete. • 

4 . 2 . LEMMA. Let p and q be the positive integers and let A € MPtP. 
Assume that for each r > q there is defined a partition 

fD{r) D(r) d ( t ) -, 

of Afp,r into disjoint non-empty sets. Then there exists an integer R > q, 
such that some has the property that A appears in every its member. 

P r o o f . Let us suppose that the lemma is false. Let N(A,r) denote the 
number of elements of Mp,r in which A appears. Then for all r > q we have 

N(A,r) < c a r d ( M p , r ) - F ( r - , ) = kpr -

hence < 1 — what contradicts Lemma 4.1. • 

4 . 1 . DEFINITION. A c o n f i g u r a t i o n 
u e is transitive if and only if for 

all p G N, each A G MPtP appears in u. 4.1. R e m a r k . The existence of such configuration is obvious. 

4.2. R e m a r k . We infer that for all p, q € N each A € Mp>g appears in 
a given transitive configuration. 

4 . 3 . LEMMA. Let F be a one-dimensional transition rule on k symbols 
and let F be onto. Let v = (0,1) and let u be a transitive two-dimensional 
configuration on k symbols. If F v ( 7 ) = u> then 7 is also transitive. 

P r o o f . Assume that Fv(7) = u. Let A G MPtP for certain p 6 N. 
We will show that A appears in 7. Since A is arbitrary, the proof will be 
complete. 

We may assume that the neighbourhood for F is the sequence (—m, —m+ 
1 , . . . , m) and that / is the generating function. Let q = 2m. For each s > 1 
we may define function fs : N£+q —• by equality 

fs(x i , x 2 , x 3 + q ) = ( f ( x !,X2, . . . , x i + q ) , . . . , f ( x s , z 4 + i , . . . , x s + g ) ) . 

F is onto hence (see [3]) we know that 

(2) card( /~ 1 (x) ) = kq for every x G . 
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Now for every r > q define a partition of the set Mp,r in the following way. 
B and C from Mp,r belong to the same class if and only if 

/r-g(&i„ &ia> • . . , b i r ) = f r - q ( c i l t C i a , c i r ) for all 1 < i < p . 

Thus for each r > q we have established a partition of MP}T into disjoint 
non-empty sets. Moreover, from (2) we see that such a partition contains 

= kp(q~r) sets. Applying Lemma 4.2 we infer that there exists R > q and 
matrix B G M P i r ~ q such that for every C € M P ) r satisfying the condition 

f R - q { b h , bi2, . . . , b i R ) = }R-q{cix, c,-2,..., ciR) for all 1 < i < p . 

A appears in C. Since u> is transitive, every B 6 M p , R - q appears in to. Thus 
because of Definition 3.1 A appears in 7. • 

In order to prove Theorem 4.1 which is almost the same as Lemma 4.3 
but allows v to be an arbitrary element from Z2, we will introduce the 
following notation. 

Nota t ion . Let v , w € Z2. By £v ,w we denote an operation £v ,w : 
C^ -* C^ such that for all x = (xi ,x 2) € Z2,u € Cj.2^ we have (£V i Wu)(x) 
= w(xiV + X2W). 

Direct calculation shows that for every F € and every v , w € Z2 

we have 

(3) £v ,w^v = -F(i,o)£v,w 

The next important property of £v ,w demands detail proof. 

4 . 4 . L E M M A . Letv = ( v i , v 2 ) > w = (wi,w2) € Z2,v\W2 — V2W1 = 1 and 

Cv<v/u> = 7 for some w , 7 € u> is transitive if and only i f f is transitive. 

P r o o f . First we will prove that if u is transitive then 7 also is. To do it, 
suppose u is transitive, let A = (a,j) € MP)P for some p and we will show 
that A appears in 7. 

As u is transitive, there exist y £ Z2 such that u (y + iv + j w ) = aij for 
1 < hi < P- Let y = (2/1,2/2) where y1 - 2/1^2-2/2^1 and y2 = -t/i«2+2/2^1. 
We have 

7((i/i + hV2 + j)) = w((i/i + 0 V + (2/2 + J ')w) 
and after some calculations we obtain 

7((i/i + hVi +j)) = u{(yi{vxW2 - v 2 w l ) + iv 1 + jwi,y2(viw2 - v2wi)+ 

+ iv2 + jw1)) . 

But V1W2 — v2Wi = 1, so finally we have 

liiVi + hV2 + i ) ) = w ( y + i v + J w ) = aH f o r 1 <hJ <P 
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hence A appears in 7 . As A is an arbitrary matrix we infer that 7 is transi-
tive. 

Now suppose 7 is transitive and let us prove that u> is transitive also. 
Let v ' = («[,«2) and w ' = (u^, w'2) be given by equalities 

v[ = w2, v2 = —v%, w[ = -Wi, w'2 = Vi . 

Then for all x = (xi ,x2) we have 

(^v',w'7)(x) = 7 (* iv ' + ®2w') 
and after simplifications we obtain 

( ^ v ' , w ' 7 ) ( X ) = w ( x ) 

therefore £ v ' ,w '7 = u and we also have v[w'2 — v2w'1 = 1 so we can prove that 
u> is transitive in the way shown in the first part of the proof (exchanging 
7 and w, and replacing v, «2, w, w 1, w2 by v ' , t>{, v2, w' , w[, w2, 
respectively). • 

4.1 . THEOREM. Let F be a one-dimensional transition rule on k symbols 
and let F be onto. Let v G Z2, u,7 G C^ and let Fv(-y) = w. If u is 
transitive then 7 also is. 

P r o o f . Let v = (vi,v2). Choose w = (t»i,W2) G Z2 so that V1W2 — 
V2W1 = 1 (such w exists, see [9]). Fv7 = u> thus £ v ,w^v7 = and due 
to (3) we have 

(4) f ( i , 0)>Cv,w7 = -Cv.wW • 
a; is transitive, hence (Lemma 4.4) CViVfu> is transitive, hence (Lemma 4.3 
and (4)) £ v ) W7 is transitive, and finally (Lemma 4.4) 7 is transitive. • 

4.5 . LEMMA. Let G be a one-dimensional transition rule on k symbols 
and let v G Z2. Then G is onto if and only if Gv is onto. 

P r o o f . If Gv is onto then let b G Cj^ . Define u> G C^ by equality 
w(i'v) = b(i) and w(x) = 0 for x ^ iv, (i G Z). Let 7 G G~l{J) then 
c G C^ given by c(i) = 7 ( i v ) belongs to G - 1 (6 ) . Thus G is onto. 

Now assume that G is onto. Let oj G cj.2K We will find 7 , such that 
G v (7 ) = <*>. Let X C Z2 satisfy two conditions 

Z2 C {x + iv : x G X,t G R,} if x , y G X then y - x ^ tv for t G R. 

It is obvious that such set exists. Let I be the greatest common divisor of 
p and q, where v = (p, q). For x G X we define configurations b*\bx\. • • 
. . . , G C ^ by means of the following formula 

WU) = w(x + (7 + j ) v ) for 1 < t < / - 1. 
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We choose configuration c*^ so that G ( c x ' ) = b ^ (such configuration exists 

because G is onto). The configuration 7 , such that 7 ( x + (7 + j)v) = c*\j) 

for all x 6 X , i G Ni and j G Z is well defined and satisfies equality 
G v ( 7 ) = w. • 

4 .2 . THEOREM. Let F G G ^ G * 2 * , . . . , ^ G $ (
f c

1 }, v i , v 2 , . . . , v p 

€ Z 2 and F = G I V G I ? . . . G ' i^. F t's onto if and only if each function G^ 
is onto. 

P r o o f . Of course if G ^ 2 \ . . . , G ^ are onto then (applying Lem-

ma 4 . 5 ) GLV, G^l,..., G^vp are onto and hence F is onto. 

Now assume that F is onto. Denote H = .. .G^}. Thus F = 

G^H. Obviously G l V is onto. We will show that II is onto. 

Let u) G C^ be transitive. F is onto, therefore we can find 7 and a so 

that H ( a ) = 7 and 7 ) = u . Since G^ 1) is onto, 7 is also transitive (see 

Theorem 4 . 1 ) . 

Let p G 4 2 ) be an arbitrary chosen configuration. One can easily note 

that for any e > 0, there exists v G Z2 so that ¿ 2 ( ^ , ^ ( 7 ) ) < This 

is implied by the fact that 7 is transitive. Since « ^ ( 7 ) = II(ov(a)) (II 

commutes with <rv), we infer that H(C^) is dense in Cj.2K For II (C^) is 

closed ( H is continuous, C ^ is compact so H ( C ^ ) is compact) we see that 

H(C^) = Cf.2\ what means H is onto. 

Applying the same considerations for F' = G ^ G ^ . . . G ^ , we see that 

is onto and H1 = G v ^ • • • G v ^ is onto. After p — 1 such steps we obtain 
the thesis. • 

F i n a l r e m a r k s . Results of this paper may be generalized by dealing with 
decomposition of n-dimensional transition rules. It would be interesting to 
find convenient method for determining the possibility of a decomposition. 
In my opinion it is important to find more properties of two-dimensional 
transition rules which are equivalent to some properties of one-dimensional 
components of the decomposition. 
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