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1. Introduction

The theory of cellular automata was started by John von Neumann (7,
8] and then developed in many fields of study, both theoretical and practical
(see for example [2, 10, 11,12, 13]). Mathematically we deal with transforma-
tions of configurations by transition rules. A configuration is an assignment
of elements from certain finite set to each lattice point of n-dimensional grid.
A transition rule F assigns a new configuration Fw to configuration w in a
locally and uniformly determined manner. The studies on such structures
are provided in one-, two-, or n-dimensional cases.

The main idea of this paper may be introduced as follows. For a fixed
vector v (its coordinates are integers) we can consider the whole plane of
cells (i.e. two-dimensional configuration) as a collection of lines (in direc-
tion v) of cells which can be treated as one dimensional configurations. If
we transform each such configuration using fixed one-dimensional transi-
tion rule F', we actually transform two-dimensional configuration by cer-
tain two-dimensional rule denoted by F,. In this paper we are interested in
two-dimensional rules (called decomposable) which are equal to the super-
position of two or more two-dimensional transition rules arising in the above
described way. Section 3 is devoted to main definitions, basic properties and
examples concerning this concept.

In Section 4 we try to give reasons for investigating problems connected
with such decomposition. One of the first theoretical problem of the cellular
automata theory was a question whether or not a given transition rule is onto
(see [4, 5]). It was particularly well examined in one-dimensional case (see
e.g. 1, 3, 6, 14]). We prove that two-dimensional decomposable transition
rule is onto if and only if each of one dimensional components are onto.
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In this manner we transform two-dimensional problem into one-dimensional
one, with simpler and better developed theory.

2. Preliminaries and basic definitions
Throughout this paper we will use the following notations:

Z — the set of integers,

Z™ — the set of n-tuples of integers,

N — the set of positive integers,

Ny — theset {0,1,...,k -1},

N* — the set of m-tuples of elements of Ny,

If f: X —>Y and V C X then f|v denotes the restriction of the function
f to the set V, that is a function g : V — Y such that g(v) = f(v) for all
veEV.

Iff:X—>Yandg:Y — Z then gf denotes the superposition of those
two functions, i.e. (gf)(z) = g(f(z)) for all z € A.

Let n and k be fixed positive integers. An n-dimensional configuration
on k symbols is a mapping w : Z™ — N;. The set of all such configurations
will be denoted by C,(cn). Let us define a metric d,, on C,(c") as follows. For
arbitrary w,y € C,(c") we put dp(w,7) = 0 if w = +; otherwise we put
dp(w,7) = -:;, where p is the least positive integer such that there exists
X = (21,%2,...,%a) € Z™ with max;<i<n |Zi| = p — 1 and w(x) # y(x).

2.1. DEFINITION. A function F : C,(c") — C}cn) is called a transition rule
if and only if there exist a non-negative integer m, a function f: N* — N;
and a sequence of vectors (ry,rs,...,ry,) where r; € Z™, such that

(1) f(0,0,...,0)=0,
(2) (F“")(x) = f(w(x + rl)’w(x + r2)a .o -’w(x + r'm))

for all x € Z",wGC,(c").

2.1. Remark. A transition rule with an initial configuration are called
a cellular automaton.

2.2. Remark. The assumption (1) assures that if {x € Z" : w(x) # 0}
is finite then {x € Z™ : (Fw)(x) # 0} is also finite. We will not make use
of (1).

Transition rule on C,(c") is also called n-dimensional transition rule on &
symbols, function f is said to generate F, sequence (ry,rs,...,r,,) forms
the neighbourhood for F.

It is obvious that we can find different generating functions and neigh-
bourhoods for the same transition rule. But we may choose the generating
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function and the neighbourhood, so that f depends on each variable. We call
such neighbourhood minimal. There exists one set of vectors which creates
minimal neighbourhood for given transition rule.

The set of all n-dimensional transition rules on k£ symbols is denoted by
o™,

For v € Z™, oy denotes an operation oy : C,(c") — C,(c") such that for all
X€EZ"we C,(cn) we have (oyw)(x) = w(x—v). It is easy to verify that each
transition rule is continuous (with respect to the metric d,) and commutes
with o, for arbitrary v € Z".

Throughout the remainder of the paper we deal only with two- or one-
dimensional cases. One-dimensional configurations will be denoted by letters
b, ¢ while elements from C,(cz) by w, v, a. (0,0) € Z? will be denoted by 0.

3. The decomposition of two-dimensional rules

In this section we introduce the concept of the decomposition of two-
dimensional rules into one-dimensional ones. We give some examples and we
prove that each transition rule can be extended to the decomposable one.

3.1. DEFINITION. Let F be a one-dimensional transition rule on & symbols
with the generating function f and the neighbourhood (r1,7,...,7m), i €
Z.Let v € Z%. Two-dimensional transition rule F, is defined by the equality

(Fyw)(x) = flw(x+ riv),w(x+ rav),...,w(x + rpVv))
for each w € Cfcz), x€ Z2.

Assume that v = (p, q) where p and g are relatively prime. We see that
activity of F, on the whole plane of cells is equal to the parallel activity
of F on each line x + tv,(t € Z) for every x € Z?, treated as cells of
one-dimensional configuration. It can also be noticed that if F € <I>$c1) is
defined by neighbourhood (ry,73,...,7y,) and the generating function f
then F\ is obtained by the same generating function with the neighbourhood
(r1v,rav,. ..., TpV).

3.1. PROPOSITION. Let F be a one-dimensional transition rule on k sym-
bols and let v be an element of Z2. For each w € Cf‘z), X € Z? we define
bx € C,(cl) by equality bx(i) = w(x + iv). Then

(Fvw)(x) = (Fbx)(0).

Proof. Let f be the generating function for F' and let (r1,72,...,7m)
be the neighbourhood for . We have
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(Fbx)(0) = f(bx(r1),bx(T2),. .., bx(Tm)) =
flw(x+ rv),w(x+ rov),...,w(x + rpyv))

and by Definition 3.1 we have (Fbx)(0) = (Fyw)(x). =
Now we specify the idea which is the core of this paper.

3.2. DEFINITION. Let F be two-dimensional transition rule on & symbols.
We say that F is decomposable into one-dimensional rules if and only if there

exist G,G®), ... ,GP) ¢ <I>§‘1) and vq,V2,...,Vp € Z2 such that
F=G0)G?...cP.

We also say that F is composed of one-dimensional rules G(1) G, ...
.,G® with vectors vq,Va,... » Vpe

3.1. ExaMPLE. Let G(V) and G (from le’) be given by equalities
(GMb)(i) = b(i) + b(3 + 1) (mod 2)
(GPB)(3) = b(i) - b(i +2),
for all b € C{" and i € Z. If F is composed of G() and G(® with certain
vectors v; and v, then for all x € Z2 and w,vy € ng) we have
(G(l)'y)(x) (GMby)(0)  where by(i) = 7(x + iv;) and
(GPw)(x) = (GPB)(0)  where bl (i) = w(x + ivy).
Therefore
(GO7)(x) = bx(0) + bx(1) (mod2) = 7(x) + (X + V1) (mod 2)
and
(GPw)(x) = bl (0) - be(2) = w(x) - w(x + 2v3).
Finally
(Fw)(x) = (GRGRw)(x) = (GL)(GT)w))(x) =
(G(z)w)(x) + (G(z)w)(x +vi) (mod2) =
w(x) w(x+2ve) +w(x+ v1) - w(x+ vi + 2v3) (mod2).
In our considerations the following result is very useful.

3.2. PROPOSITION. Let F € ng) and let (rq,r2,...,ry) be its minimal
neighbourhood. If F is decomposable into two one-dimensional rules then
there ezxist P,Q C Z and vectors u,v € Z?* such that

{r1,r2,...,rn} ={iu+jv:i€ Pandj€ Q}.
Proof. Let us assume that F' is decomposable into two one dimensional
transition rules, thus F' = G H,, for certain G, H € le) and u,v € Z2. Let
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P,Q C Z be the sets of all minimal neighbourhood elements for G and H,
respectively. Obviously

{r1,r2,...,rn} C {iu+jv:i€ Pand j€ Q}

(for (G Hyw)(x) does not depend on values other than w(x+iu+jv) where
i€ P and j € Q). We will prove that

{r1,r2,...,en} D {iu+jv:ie Pand j€ Q}.

We shall assume that P # @, @ # 0 and u, v are linearly independent
(otherwise the proposition is obvious). Let us fix ¢ € P and j € Q. There
exist b, € C{!) such that b(k) = b'(k) for k # 4,b() = 1 + b'(i) (mod 2)
and (Gb)(0) # (Gb')(0) (because P is the set of all minimal neighbourhood
elements for G). For the similar reasons, there exist configurations ¢, ¢’ € Cgl)
such that ¢(k) = ¢/(k) for k # 7, ¢(j) = 1+ ¢'(j) (mod 2) for which we have
(He)(0) =0, (Hc')(0) = 1. Let us define w € cf” in the following way:

e(l) ifb(k)=0
“’(k“”"):{c'((z)) ifb%:l

and w(x) = 0 if x # ku+ v for k,! € Z. We also define w' € Cz(,z) by equali-
ties w'(x) = w(x) for x # tu+jv and w'(tu+jv) = w(iu+jv)+1 (mod2).
One can easily check that (Fw)(0) = (Gb)(0) and (Fuw')(0) = (Gb')(0)
therefore (Fw)(0) # (Fw')(0). That means tu + jv € {r;,rz,...,rp}. n

The following example shows that the above proposition is not true if
ng) is replaced by <I>§c2) for & > 2.

3.2. EXAMPLE. Let G and H € le) have generating functions g, h :
N2 — N3, respectively, such that

0 if (z1,22) =(1,0) or (z1,22) =(1,1)
g(z1,z2)=¢ 1 if (z1,22) =(1,2)
2 otherwise,
0 if (z1,22) =(1,0) or (z1,22) = (1,1)
h(z1,22) = { 1 if (z9,22) = (1,2)
2 otherwise
and the neighbourhood is (0,1) for both. Given two linearly independent
vectors u, v one can easily check that the minimal vectors for F = G, Hy
are 0, u and v only. The set {0,u,v} is not equal to {iw; + jw2 : 7 €
P and j€ @} forany P,Q C Z,w;,w, € Z2.
The next example explains why we consider decomposition into (possi-
bly) more than two factors.
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3.3. EXAMPLE. Let G € @gl) be given by equality (Gb)(:) = b() +
b(i + 1) (mod2). Let u = (1,0),v = (0,1), w = (1,1) and let F ¢ &
be composed of G with vectors u, v, w. After the computations similar to
those in Example 3.1 we obtain

(Fw)(x) = (GuGvGww)(z) = w(x) + w(x + u) + w(x + v)+
twx+wltwxtut+v)twx+u+w)twx+v+w)t
+w(x+u+v+w)(mod2). '

But w(x+u+v)+w(x+w) (mod2) =0 so

(Fw)(x)=wx)twx+u)twx+v)+wxt+u+w)twx+v+w)t
+w(x+u+v+w)(mod2),

and finally {0,u,v,u+ v,v+w,u+ v+ w} is the set of all minimal neigh-
bourhood vectors. By dint of Proposition 3.2 we infer that F is not decom-
posable into two one-dimensional transition rules; but it is clear that F s
decomposable.

Throughout the remainder of this section we concentrate on the decom-
position into two one-dimensional transition rules.

3.4. EXAMPLE. Let F € t1>g2) be given by neighbourhood ((1,0) , (0,1),
(1,1)) and the generating function f: N3 — N, such that
1 if (z1,22,23) = (1,1,1
f(z1,23,33) = {0 ot1(1e;wi:<;. )= :
Applying Proposition 3.2 we can prove that F is not decomposable into two
one-dimensional transition rules. Let H € le) be given by the neighbour-
hood (0,1) and the generating function h : N2 — N3 such that

0 if (z1,22) =(0,1) or (21,22) = (2,1)
h(z1,22) = < 1 if (z,22) = (1,1)

2 otherwise
and let G € (Dgl) be given by neighbourhood (0,1) and the generating func-
tion g : N2 — N3 such that

_[1 if(zg=0o0rzy=1)andz; =1
9(21,22) = {0 otherwise.
Let u = (1,0),v = (0,1). If w € C;z) then it is easy to check that Fw =
GuHyw. Thus F can be extended to transition rule from (I>g3) which is de-
composable into two one-dimensional transition rules.
The property suggested in the above example is true in all cases. This

fact is expressed in Theorem 3.2. But first we have to prove the following
theorem.
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3.1. THEOREM. Let F be the two-dimensional transition rule on k symbols
with minimal neighbourhood (ry,r2,...,rp). Let u,v € Z2%. The following
statements are equivalent:

(a) A{ri,r2,...,rn} C {iu+jv:i,je Z},
(b)  there exist positive inleger p, one-dimensional transition rules on p
symbols G and H such that if F' = GyH, then Fl]c,(f) =F.

Proof. Suppose that (a) holds. If u and v are linearly dependent then
F =G, for some G € <I>£1) and the proof is completed. Thus we can assume
u and v are linearly independent. Let ¢ be the least non-negative integer
such that {r;,rs,...,r,} C {iu+jv:|i| < gand|j| < ¢} and let p = k29+1,
We define a function d: N ,3‘”’1 — N, by equality

d(TogyTogily--erTq) = Tog+ Togp1 k4 ...+ 24k,
It is obvious that d is injective and onto, thus function d~! exists and trans-
forms N, onto N29*1. If d~1(y) = (€—q,Z—g41,---,%,) then by d;l(y) we
denote z; for —¢ < j < g. For each b € C,(,l) and each ¢ € Z we define
H e oV by
(b)) = d(b(i - g),b(i — g +1),...,b(i + q)) ff(;);]??ﬂr .
0 otherwise.

G € " is defined as follows. Let b € CV,t € Z. Let wy; € C®) be a
configuration such that for all x € Z?2

ifx=1tu+jv forsomei,j€ Z
such that |i| < g and |j] < ¢
0 otherwise.

We put (Gb)(t) = (Fws,:)(0). Direct calculation shows that Gy Hyw = Fw

for w € C®). Thus (b) holds.

Now we assume that (a) does not hold . Our task is to prove that (b) does
not hold either. Without the loss of generality we may assume that r; #
tu+jvforalli,j € Z. As (ry,ry,...,ry) is the minimal neighbourhood, we
infer that there exist two configurations w and w’ such that w(x) = w'(x) for
all x € Z? except x = r; and (Fw)(0) # (Fw')(0). Let p€ N ,and let G, H
be one-dimensional rules on p symbols with neighbourhoods (i3,1,,...,t,),
(j1,J25+-+»Js), Tespectively. It is obvious that (G, Hyw)(0) may depend only
on values w(iu + jv) where ¢ € {iy,12,...,i,} and j € {J1,J2,-..,s}, thus
(GuHyw)(0) does not depend on w(ry). That means (Fw)(0) = (Fw')(0).
Since p, G, H are arbitrary, (b) does not hold. =

di'(b(t +9))

wb,t(x) =
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As a conclusion we obtain the following theorem.

3.2. THEOREM. For every two-dimensional transition rule F' € <I>Sc2) there
ezist p € N and F' € & such that F’Ic
into two one-dimensional transition rules.

Proof. If we take u = (1,0), v = (0,1) then (a) in Theorem 3.1 is true
thus (b) holds. =

@ = F and F' is decomposable
k

4. Properties of decomposable transition rules

In this section we show some motivations for searching for the decompo-
sition defined in the previous section. The main result is Theorem 4.2 and
the general idea of its proof is due to [3]. First some lemmas and theorems
should be presented.

We will deal with configurations on & symbols, for certain fixed positive
integer k. Let p, q be fixed positive integers and let M, ; denote the set of
all matrices with p rows and ¢ columns and of entries from N;. We say that
A = (aij) € M, 4 appears in matrix B = (b;;) € M, , if and only if there
exist g,h € Z such that a;; = byyipsyjfor 1 < i < p, 1 <5 < q. Similarly,
ifwe C,(f) then A appears in w if and only if for some g,h € Z we have
aij =w(g+i,h+7). f C = (cij) € Mpq and D = (di;) € M, then CD
denotes the matrix E = (e;;) € My q4r such that e;; = ¢ij ,1 < j<pand
eij =dijp,p<j<qtr.

4.1. LEMMA. Letp € N, A € M, . For q > p let N(A,q) denote the

number of matrices from M, , in which A appears. Then lim,_ o Nk‘f,’q

=1.

Proof. Let ¢(q) = Mk#l. It is obvious that ¢(g) < 1. If A appears in
B € M, 4 then A appears in BC for each C € My ;. card(M, 1) = kP thus

N(A,q+ 1) > N(q)k? and hence ¢(q + 1) > ¢. Therefore
(1) lim ¢(q) = a, where 0 < a < 1.

g—o0
Now let t € N and let us define the sets
B; = {A1A2 DAL E Mp,tp : Aj € Mp,p for1<j< t,A]‘ 75 A
forj<i, A; = A}
fori=1,2,...,t. Of course A appears in every member of B;, and B;NB; =

@ for i # j. Thus
t

N(A,tp) > Z card(B;) = i(k”2 - 1)’."1(k:”2)t“1 =
i=1

i=1
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k?* — 1)t — (k*°)t
- : (k** _)1) —(kpz) =kt - ("’p2 - 1)t

ktP® — (kP* = 1)t 1\*
¢(tp) Z ktp2 =1- (1 - "I;p—,)

therefore

and we have
lim $(tp) =1.
Because of (1) the proof is complete. m

4.2. LEMMA. Let p and q be the positive integers and let A € Mp ;.
Assume that for each r > q there is defined a partition

{Dgr)’ Dgr)’ teey Di:)(,_,)}
of M, . into disjoint non-empty sets. Then there exists an integer R > g,
such that some DgR) has the property that A appears in every its member.
Proof. Let us suppose that the lemma is false. Let N(A,r) denote the
number of elements of M, , in which A appears. Then for all 7 > ¢ we have

N(A,r) < card(M,, ;) — kP79 = Pr — fP(r=9)

hence ﬂk#l <1- leq what contradicts Lemma 4.1. m

4.1. DEFINITION. A configuration w € C,(f) is transitive if and only if for
all p € N, each A € M, , appears in w.
4.1. Remark. The existence of such configuration is obvious.

42. Remark. We infer that for all p,qg € N each A € M, , appears in
a given transitive configuration.

4.3. LEMMA. Let F be a one-dimensional transition rule on k symbols
and let F be onto. Let v = (0,1) and let w be a transitive two-dimensional
configuration on k symbols. If F\,(y) = w then v is also transitive.

Proof. Assume that Fy(y) = w. Let A € M, , for certain p € N.
We will show that A appears in . Since A is arbitrary, the proof will be
complete.

We may assume that the neighbourhood for F is the sequence (—m, —m+
1,...,m) and that f is the generating function. Let ¢ = 2m. For each s > 1
we may define function f, : NJ¥? — N} by equality

fs(zla T2y ’zs+q) = (f(zla L25..- ,$1+q), ceey f(zs, RS PR ,:L',+q)) g
F is onto hence (see [3]) we know that

(2) card(f;(z)) = k7 for every z € N}
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Now for every r > ¢ define a partition of the set M, , in the following way.
B and C from M, , belong to the same class if and only if

Sreq(biysbigs o ybi,) = freg(Ciy,Cigy.onrci,) foralll1 <i<p.

Thus for each r > g we have established a partition of M, . into disjoint
non-empty sets. Moreover, from (2) we see that such a partition contains
',::: = kP(3-7) gets. Applying Lemma 4.2 we infer that there exists R > ¢ and
matrix B € M g, such that for every C € M, g satisfying the condition

FR—q(biyybigy . ooy big) = fR—q(CiyyCigy .- sCip) forall1 < i< p.

A appears in C. Since w is transitive, every B € M, r—_, appears in w. Thus
because of Definition 3.1 A appearsin 7. ® )

In order to prove Theorem 4.1 which is almost the same as Lemma 4.3
but allows v to be an arbitrary element from Z2%, we will introduce the
following notation.

Notation. Let v,w € Z2. By L, . we denote an operation Ly w :
C,(f) — C,(cz) such that for all x = (21,2;) € Z*,w € Cfcz) we have (Ly ww)(x)
= w(z1v + z3w).

Direct calculation shows that for every F' € &
we have
(3) ACv.va = F(l,o)['v,w

The next important property of L, w demands detail proof.

(1)
k

and every v,w € Z2

4.4. LEMMA. Let v = (v1,v3),w = (w1, w;) € Z%,vw; — vow; = 1 and
Ly ww = 7 for some w,v € C,(f). w s transitive if and only if v is transitive.

Proof. First we will prove that if w is transitive then 7 also is. To do it,
suppose w is transitive, let A = (a;j) € My, for some p and we will show
that A appears in 7.

As w is transitive, there exist y € Z2 such that w(y +iv + jw) = a;; for
1<4,j<p.Lety =(y,,%;) where§, = yrwr—yw1 and J, = —y1v2+4201.
We have v

Y@ + 4,79+ 7)) = w((F + v + (7, + )W)
and after some calculations we obtain
(@ + 4,72 + 7)) = w((n(nwz — vawi) + ivy + jwi, y2(viwe — vawi )+
+ iv2 + ]wl)) .

But vwy; — vaw; = 1, so finally we have

7((?1'{'17?2 +J))=w(y+lv+.7w)=au fOflSi,]SP
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hence A appears in 4. As A is an arbitrary matrix we infer that 4 is transi-
tive.

Now suppose v is transitive and let us prove that w is transitive also.
Let v/ = (v{,v}) and w' = (w}, w)) be given by equalities

v} = wy, vy=-—-v2, W =-w, wW;=U.
Then for all x = (z1,2;) we have
(Lvwy)(x) = 7(z1V' + 22 W)
and after simplifications we obtain
(Lyr, w7 )(x) = w(x)
therefore Ly oy = w and we also have vjwj —vjw] = 1 so we can prove that
w is transitive in the way shown in the first part of the proof (exchanging
v and w, and replacing v, vy, vy, W, wy, wy by v/, v}, v}, W', w}, wh,
respectively). m

4.1. THEOREM. Let F be a one-dimensional transition rule on k symbols
and let F be onto. Let v € Z%, w,y € C¥) and let Fy(7) = w. Ifw is
transitive then v also ts.

Proof. Let v = (v;,v;). Choose w = (wy,w;) € 22 so that vyw, —
vawy = 1 (such w exists, see [9]). Fyy = w thus Ly wFyy = Ly ww and due
to (3) we have
(4) F(I,O)Ev,w')' = ‘Cv,ww .

w is transitive, hence (Lemma 4.4) £, ww is transitive, hence (Lemma 4.3
and (4)) Ly w7 is transitive, and finally (Lemma 4.4) v is transitive. m

4.5. LEMMA. Let G be a one-dimensional transition rule on k symbols
and let v € Z%. Then G is onto if and only if Gy is onto.

Proof. If Gy is onto then let b € C,(cl). Define w € C,(cz) by equality
w(iv) = b(i) and w(x) = 0 for x # iv, (i € Z). Let v € G;!(w) then
c€ C,(cl) given by ¢(i) = 4(iv) belongs to G~1(b). Thus G is onto.

Now assume that G is onto. Let w € C,(cz). We will find 4, such that
Gv(7) = w. Let X C Z? satisfy two conditions

Z'c{x+tv:xe X,teR,} ifx,yecXtheny—-x#tvfortcR.

It is obvious that such set exists. Let [ be the greatest common divisor of
p and ¢, where v = (p, q). For ¢ € X we define configurations b&o),bscl), ..
ceey bg_l) € Cﬁl) by means of the following formula

b§j>(j)=w(x+ (%+j)v) for1<i<l-1.



684 P. Wlaz

We choose configuration cg ) 50 that G’(cs )) = bg) (such configuration exists
because G is onto). The configuration 7, such that y(x+ ({ + j)v) = ¥ )( 7)
for all x € X, ¢ € Ny and j € Z is well defined and satisfies equality

Gi(7)=w. m

4.2. THEOREM. Let F € ), G, G®,...,GP € 8, vy, v,,...,v,
€2Z%and F = G’s,ll)Gs,zz) .. .G’g,’;). F is onto if and only if each function G()
is onto.

Proof. Of course if G),G(3) ... G are onto then (applying Lem-
ma 4.5) GS,?, Gg,) yeoos Gﬁ,’;) are onto and hence F is onto.

Now assume that F' is onto. Denote H = G’%)G%) . ..Gs,’;). Thus F =
GS,II)H . Obviously Gs,ll) is onto. We will show that H is onto.

Let w € C,(,Z) be transitive. F' is onto, therefore we can find v and a so
that H(a) = v and G{!) (7) = w. Since G(!) is onto, 7 is also transitive (see
Theorem 4.1).

Let 8 € C,(cz) be an arbitrary chosen configuration. One can easily note
that for any € > 0, there exists v € Z? so that dy(8,0v(7)) < €. This
is implied by the fact that v is transitive. Since oy(y) = H(ov(a)) (H
commutes with o), we infer that H (C,(f) ) is dense in C,(cz). For H (Cfcz)) is
closed (H is continuous, C,(f) is compact so H (Cf)) is compact) we see that
H(C,(ez)) = Cf), what means H is onto.

Applying the same considerations for F' = GS,?GS? .. .Gs’;), we see that

G® is onto and H' = G’S,ss) .. .GS,’:,) is onto. After p — 1 such steps we obtain
the thesis. m

Final remarks. Results of this paper may be generalized by dealing with
decomposition of n-dimensional transition rules. It would be interesting to
find convenient method for determining the possibility of a decomposition.
In my opinion it is important to find more properties of two-dimensional
transition rules which are equivalent to some properties of one-dimensional
components of the decomposition.
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