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ON SOME FIXED POINT THEOREMS IN HILBERT SPACES

Introduction. There are several papers on fixed point theorems for non-
expansive maps in Hilbert space, dealing with different boundary conditions.

The famous Ky Fan [4] states below as Theorem (F) yields as a conse-
quence fixed point theorems under different boundary conditions. The aim
of this paper is to give results of Ky Fan type in Hilbert space and then
derive fixed point theorems for nonexpansive mappings.

For different types of mappings with fixed point theorems one should
refer to a well-known paper of Rhoades [15).

In the end weakly nonexpansive multivalued mappings are considered.

1. THEOREM (F). Let C be a compact, convez subset of a Banach space
X and f : C — X a continuous function. Then there is a y € C such that

ly — fyll = d(fy,C).

In case fy € C then f has a fixed point. Several fixed point theorems
are derived as corollaries from Theorem (F).
We need the following definitions.

Let C be a nonempty subset of a Banach space X. Then C is called
proziminal if each x € X has a best approzimation in C, i.e. if the set

Pe(z)={yeC:llz -yl =inflle - 2| :2€C}

is nonempty for every z € X. The map Pc is called the metric projection
onto C. In case Pc(z) is a singleton for each z € X then C is said to be
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Chebyshev. If C is a closed convez subset of a Hilbert space H then P is a
prozimity map (3] and C is a Chebyshev set.

For a map f: C — X, where C is a nonempty subset of X, one tries to
find an z € C that is closest to f(z), in other words, finds a solution of the
problem
(*) z€C and |z - fz| =d(fz,C).

It is clear that a fixed point of P o f is a solution of ().
The measure of noncompactness of a bounded set A in a Banach space
X denoted by a(A), is defined as

a(A) =inf{e > 0: A can be covered by a finite number of sets
each of diameter < ¢}.

Let f : C — X be a continuous mapping. Then f is said to be densifying
if a(f(A)) < a(A), for each bounded set A with a(A4) > 0.

In case a(f(A)) < a(A), then f is called a 1-set contraction.

A map f: X — X satisfying the condition

Ifz — fyll < ||z — y|| for all z,y € X is called a nonexpansive map.

A contraction map is densifying and a nonexpansive map is a 1-set contrac-
tion, (see for details [13]).
We state the following

THEOREM 1. Let C be a weakly compact subset of a Hilbert space H and
f:C — H a nonezpansive map. Then there is a y € ©(C) = D, such that

ly — Fyll = d(Fy, D)
where F is a nonezpansive ezxtension of f to D.
The following extension result is very useful [9], [19].

Let f : C — H be a nonexpansive map. Then there exists a nonexpansive
map F : @ (C) — H such that F|¢ = f.

Proof of Theorem 1. Let P : H — D be the metric projection.

Then P is a nonexpansive map and therefore P o F is a nonexpansive map.
Let T=PoF :D — D. Then T has a fixed point in D (Browder [1]) say
v =Tu = P o Fu. Then we get
llu — Ful| = d(Fu, D).

Remark1.If C is a closed, bounded, convex subset of H and f : C — H
is a nonexpansive map, then thereis a u € C such that ||u— fu|| = d(fu,C).

In this case we take D = C.

Results given in [2], [5], [11], [12], [16], and [18] can be derived easily.

We give the following to illustrate application of Theorem 1.
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ExAMPLE 1. Let B, be a ball of radius » and center at 0 in a Hilbert
space H. If f: B, — H is a nonexpansive map satis{ying

(++) Ifz = 2| > || fz||* - |l||* for = € 3B,

then f has a fixed point.
In fact, by Remark 1 there is a u € B, such that

lu — full = d(fu, By).
If fu € B, then f has a fixed point. We assume that fu ¢ B, and then seek
a contradiction.
If fu g B, then v = Pfu € 0B, and ||ul]| = =, ||ful]| > r. Since
| fu~ull® 2 | full® - [Jull® gives
£l < 1fu— wll? + lul® < (1fu—ull + llul)? = | Ful?,
a contradiction; so fu € B, and f has a fixed point.

Note. Ifin place of (**) f satisfies f(0B,) C B,, (Rothe type condition)
then f was a fixed point.

Again, Remark 1 implies that there is a v € B, with ||u — fu| =
d(fu, B,). The condition f(0B,) C B, guarantees that fu € B, and f
has a fixed point. Now we give a theorem where C or f(C) need not be
bounded.

THEOREM 2. Let C be a closed, convez subset of a Hilbert space H and
f :C — H a nonezpansive map. Let P be the metric projection on C. If
there is an o € C such that {(P o f)"zo} is bounded then Po f has a fized
point say u, i.e., ||u — fu|| = d(fu,C).

Proof.Let T = Po f: C — C. Then T is a nonexpansive map with
{T™z¢} bounded and therefore has a fixed point say u [6]. This gives that

lu = full = d(fu,CI.

We give an example to show that (P o f)"z¢ may be bounded when C
or f(C) is not.

EXAMPLE 2. Let C = [0,00) C R, and f : C — R given by f(z) = —z.
Then C and f(C) both are unbounded. For z¢ € C, {(Po f)"z¢} is bounded.
As an application of Theorem 2 we give the following:

Let all the hypotheses of Theorem 2 be satisfied and assume further,
that, for each z € C with fr # z the line segment [z, fz] contains at least
two points of C. Then f has a fixed point.

In fact, by Theorem 2 there is an z € C such that

le - f17|| = d(f:L‘,C)-
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If  # fz then [z, fz] has at least two elements of Csolet z = Afz +
(1-X)zeCfor0< )< 1. Now,

llz = fzll < llz - 2l = ||z — Az — (1 - A) f=]|
= |AMllz — fz|| < ||z - fz|| since A < 1, a contradiction.

Soz = fz.
*Ray and Cramer [14] proved the following results giving important re-
marks on Leray-Schauder boundary conditions.

THEOREM A. Let H be a Hilbert space and f : D — H a nonezpansive
map, where D is a closed, bounded, convez subset of H. Let g : D — [0,1]
be an arbitrary function.

Suppose for each z € D,

0 d((1 = h)z + hf(z), D)

(R) hl—lg)l+ inf h

Then f has a fized point.
THEOREM B. Let D be a closed, bounded, convex subset of a Hilbert space

H, f: D — H a densifying map and g : D — [0,1] an arbitrary function. If
(R) holds then f has a fized point.

< 9(z)llz - f|-

2. In this section we study the above theorems for 1-set contraction maps
using a well-known theorem due to Lin and Yen [12] stated below. Recall
that a nonexpansive map is a 1-set contraction and so is a densifying map.
This approach unifies several previous results in fixed point theory.

We state the following due to Lin and Yen [12].

THEOREM 3. Let C be a closed, convez subset of a Hilbert space H and
f:C — H be a continuous 1-set contraction mapping with f(C) bounded.
Let P : H — C be a prozimity map with (1 — Po f)(To((P o f)(C)) closed.
Then there is a y € C such that

ly — fyll = d(fy,C).

We include the proof for the sake of completeness.

Proof. Let D =t [(Po f)(C)]. Then Pof: D — D is 1-set contraction
and (1 — Po f)(D)is closed so Po f has a fixed point, say y = (Po f)y [13].
This gives that

ly — fyll = d(fy, C).
In case fy € C then f has a fixed point.

We have the following as corollaries.
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Let C be a closed bounded convex subset of H and f : C — H a nonez-
pansive map. Then there is a y € C such that

ly ~ fyll = d(fy, C).
If further, f(8C) C C then f has a fixed point.
If C = B,, a ball of radius r and center at 0, then f has a fixed point if
the following condition is satisfied

(1) if f(z) = az for z € OB, then a < 1 (Leray-Schauder condition).

Williamson [20] has shown that the boundary condition (R) considered
by Ray and Cramer [14] is equivalent to the Leray-Schauder condition. It,
therefore, follows that f has a fixed point if the boundary condition (R) is
added in the hypotheses of Theorem 3.

3. In this section we would like to give results for multivalued mappings
and fixed points. Several interesting results for multivalued nonexpansive
mappings have been given recently. Recall that a mappings F : C — 2€ is
nonexpansive if

H(Fz,Fy) <d(z,y) forall z,ye€C,

where H stands for the Hausdorff metric.

Husain and Tarafdar [7] considered a mapping of a different nature de-
fined below.

Let X be a normed linear space and C a nonempty subset of X. A
multivalued mapping F : C — 2 is called weakly nonexpansive map if
given z € C and u; € Fz, for each y € C there is a uy, € Fy such that

llue — uyll < llz - .
If z € Fz then z is called a fixed point of F.
If f, (a € I)is a family of single valued nonexpansive self maps of C,

then Fz = Uae 1 fa, (z € C) is a weakly nonexpansive multivalued map.
We need the following definitions.

A subset C in a normed linear space X is said to be starshaped if there
exists a point p such that all line segments joining p to other points of C lie
in C, i.e if

z€C thenap+(l-a)zeC,0<a<l.
The point p is called a star centre.

Every convex set is star shaped but not conversely.
Let X be a Banach space. X is said to satisfy Opial’s condition if for
each z¢ € X and each sequence {z,} converging weakly to z the inequality

nlin;o inf ||z, — z|| > nlim inf ||z, — z¢/|| holds for all z # zp.
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Every Hilbert space and the spaces £°(1 < p < o0) satisfy Opial’s condi-
tions (see for details [10]).
We state our theorem:

THEOREM 4. Let C be a nonempty weakly compact starshaped subset of
a Banach space satisfying Opial’s condition. Let F : C — 2€ be a compact
valued weakly nonezpansive mapping satisfying the following condition:

(c) For a fizedp € C,0 < r, < 1,7, — 0, there is a uy € Fz for all
z € C such that each single valued map fn(z) = rpuz + (1~ ro)p of C has
a fized point z, € C.

Then F has a fized point.
Proof. Since C is a weakly compact set and z, € C, so z,, has a con-

vergent subsequence z,, — o € C, say, (— stands for weak convergence).
Now (write u, for u,, , for short):

Tn = f'nzn = Thln + (1 - Tn)pa
so we get
lun = zall = |un — ravn = (1 = ra)pll = (1 — 72)llus — p||.

Since C is bounded and u, € Fz, C C, therefore ||u, — pl|| is bounded
and we get that ||u, — z,|| — 0 as n — oo.

Since F is weakly nonexpansive, for each v, € Fz,, thereis a v, € Fzg
such that

lun — vall < ||2n — Zoll-

Since Fzg is compact v, has a subsequence v,;, — v € Fzo. We write
{vn} for {vy,}. So liminf ||u, — v,|| < liminf ||z, — zo|| < 0. Since |Ju, —
Z,|| = 0 and v, — vo we get

liminf ||z, — vo|| < liminf ||z, — zo]]-
Now Opial’s condition implies that ¢ = vy € Fzo.

We derive the following as corollaries:

1. If C is a weakly compact starshaped subset of a Hilbert space H and
F : C — 2€ is weakly nonezpansive multivalued map with compact values
satisfying (c), then F has a fized point.

Note. In a Hilbert space H Opial’s condition is satisfied.

2. If C is a closed, bounded, convez subset of a reflexive Banach space X
with Opial’s condition and F : C — 2€ is a weakly nonerpansive map with
compact values satisfying condition (c), then F has a fized point.

We get results due to Husain and Latig [8] as corollaries to our theorem
since a convex set is always starshaped.
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THEOREM 5. Let C be a compact starshaped subset of a Banach space
X and F : C — 2° a weakly nonezpansive multivalued mapping satisfying
condition (c). Then F has a fized point.

Proof. Since C is compact {z,} has a subsequence {z,,} which con-
verges to zo. Also, we get ||u, —2,|| — 0 as in Theorem 4. Since F is weakly
nonexpansive, for each u, € Fz,, there is a v, € Fzg such that

ftn = vall < llzs = 2ol-

Since Fzg is compact again let {v,,} for {v,, } converge to vg € Fzo. There-
fore ||un — va|| < ||un — Zn|| + [|zn — vn]| gives that zo = v € Fxo.

Note. In case C is a compact, convex subset of a Banach space X and
F : C — 2¢ a weakly nonexpansive map satisfying condition (c). Then F
has a fixed point. It follows since a convex set is starshaped.
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