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ON SOME FIXED POINT THEOREMS IN H U B E R T SPACES 

Introduction. There are several papers on fixed point theorems for non-
expansive maps in Hilbert space, dealing with different boundary conditions. 

The famous Ky Fan [4] states below as Theorem (F) yields as a conse-
quence fixed point theorems under different boundary conditions. The aim 
of this paper is to give results of Ky Fan type in Hilbert space and then 
derive fixed point theorems for nonexpansive mappings. 

For different types of mappings with fixed point theorems one should 
refer to a well-known paper of Rhoades [15]. 

In the end weakly nonexpansive multivalued mappings are considered. 

1. THEOREM (F). Let C be a compact, convex subset of a Banach space 
X and f : C —> X a continuous function. Then there is a y € C such that 
\\y-fy\\ = d(fy,c). 

In case f y 6 C then / has a fixed point. Several fixed point theorems 
are derived as corollaries from Theorem (F). 

We need the following definitions. 

Let C be a nonempty subset of a Banach space X. Then C is called 
proximinal if each x G X has a best approximation in C, i.e. if the set 

Pc(x) = {yeC:\\x- 2/|| = inf ||x - x\\ : z G C} 
is nonempty for every x € X. The map Pc is called the metric projection 
onto C. In case Pc(x) is a singleton for each x 6 X then C is said to be 
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Chebyshev. If C is a closed convex subset of a Hilbert space II then P is a 
proximity map [3] and C is a Chebyshev set. 

For a map / : C —• A", where C is a nonempty subset of X, one tries to 
find an x € C that is closest to / (x) , in other words, finds a solution of the 
problem 
(*) xeC and \\x - fx\\ = d(fx,C). 
It is clear that a fixed point of P o / is a solution of (*). 

The measure of noncompactness of a bounded set A in a Banach space 
X denoted by a(yl), is defined as 

a(yl) = inf {£ > 0 : A can be covered by a finite number of sets 
each of diameter < £}. 

Let / : C —* X be a continuous mapping. Then / is said to be densifying 
if a(f(A)) < a(.A), for each bounded set A with a(^4) > 0. 

In case a(f(A)) < ct(.A), then / is called a 1-set contraction. 
A map / : X —X satisfying the condition 
||fx — fy|| < ||x — 2/H for all x, y € X is called a nonexpansive map. 

A contraction map is densifying and a nonexpansive map is a 1-set contrac-
tion, (see for details [13]). 

We state the following 

T H E O R E M 1. Let C be a weakly compact subset of a Hilbert space H and 
f :C -* H a nonexpansive map. Then there is a y € co(C) = D, such that 

\\y-Fy\\=d(Fy,D) 
where F is a nonexpansive extension of f to D. 

The following extension result is very useful [9], [19]. 
Let / : C —• H be a nonexpansive map. Then there exists a nonexpansive 

map F : co(C) —> H such that F\c = / . 
P r o o f of T h e o r e m 1. Let P : II —• D be the metric projection. 

Then P is a nonexpansive map and therefore P o F is a nonexpansive map. 
Let T = P o F : D D. Then T has a fixed point in D (Browder [1]) say 
u = Tu = P o Fu. Then we get 

\\u-Fu\\ = d(Fu,D). 
R e m a r k l . I f C i s a closed, bounded, convex subset of II and f : C H 

is a nonexpansive map, then there is a « € C such that ||u —/u|| = d(fu, C). 
In this case we take D = C. 
Results given in [2], [5], [11], [12], [16], and [18] can be derived easily. 
We give the following to illustrate application of Theorem 1. 
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E X A M P L E 1. Let Br be a ball of radius r and center at 0 in a Hilbert 
space H. If / : Br —• H is a nonexpansive map satisfying 

(**) I I f x - x||2 > | |/x| |2 - ||x||2 for x e dBr, 
then / has a fixed point. 

In fact, by Remark 1 there is a u 6 Br such that 

| | u - / i t | | = d( / t i ,5 r ) . 
If fu G Br then / has a fixed point. We assume that fu BT and then seek 
a contradiction. 

If fu £ Br then u = Pfu G dBr and ||u|| = r, | | /u| | > r. Since 
II/« - «||2 > | |/u| |2 - IMI2 gives 

||/«||a < || fu - u||2 + |M|2 < (|| fu - tt|| + |M|)2 = ||/«ii2, 
a contradiction; so fu € Br and / has a fixed point. 

N o t e. If in place of (**) / satisfies f{dBr) C Br, (Rothe type condition) 
then / was a fixed point. 

Again, Remark 1 implies that there is a u E BT with ||u — /u | | = 
d(fu,Br). The condition f(dBr) C Br guarantees that fu £ Br and / 
has a fixed point. Now we give a theorem where C or f{C) need not be 
bounded. 

T H E O R E M 2 . Let C be a closed, convex subset of a Hilbert space H and 
f : C —* II a nonexpansive map. Let P be the metric projection on C. If 
there is an XQ EC such that {(P o / ) n x 0 } is bounded then P o / has a fixed 
point say u, i.e., ||w — /u|| = d(fu,C). 

P r o o f . Let T = P o f \ C-+C. Then T is a nonexpansive map with 
{Tnxo} bounded and therefore has a fixed point say u [6]. This gives that 

\\u-fu\\ = d(fu,C\. 

We give an example to show that (P o f)nxo may be bounded when C 
or / (C) is not. 

E X A M P L E 2 . Let C = [0, OO) C R, and / : C R given by f(x) = -x. 
Then C and f(C) both are unbounded. For £o € C, {(Po f)nxo} is bounded. 
As an application of Theorem 2 we give the following: 

Let all the hypotheses of Theorem 2 be satisfied and assume further, 
that, for each x £ C with f x ji x the line segment [x,/x] contains at least 
two points of C. Then / has a fixed point. 

In fact, by Theorem 2 there is an x (E C such that 

| | x - / x | | = d( /x ,C) . 
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If x ji f x then [x, fx] has at least two elements of C so let z = A/x + 
(1 - A)x € C for 0 < A < 1. Now, 

Ik - fx|| < ||x - z|| = ||x - Ax - (1 - A)/x|| 
= |A|||x — / x | | < ||x — / x | | since A < 1, a contradiction. 

So x = f x . 
Ray and Cramer [14] proved the following results giving important re-

marks on Leray-Schauder boundary conditions. 

T H E O R E M A . Let H be a Hilbert space and f : D H a nonexpansive 
map, where D is a closed, bounded, convex subset of H. Let g : D —» [0,1] 
be an arbitrary function. 

Suppose for each x € D, 

( R ) J j m M ^ ' - ^ + W ^ ) ^ , ) | | . - / x | | . 

Then f has a fixed point. 

T H E O R E M B . Let D be a closed, bounded, convex subset of a Ililbert space 
H, f : D —• H a densifying map and g : D —* [0,1] an arbitrary function. If 
(R) holds then f has a fixed point. 

2. In this section we study the above theorems for 1-set contraction maps 
using a well-known theorem due to Lin and Yen [12] stated below. Recall 
that a nonexpansive map is a 1-set contraction and so is a densifying map. 
This approach unifies several previous results in fixed point theory. 

We state the following due to Lin and Yen [12]. 

THEOREM 3. Let C be a closed, convex subset of a Hilbert space H and 
f : C —• H be a continuous 1 -set contraction mapping with f(C) bounded. 
Let P : H C be a proximity map with (1 — P o / ) ( c o ( ( P o / ) (C) ) closed. 
Then there is a y e C such that 

\\y-fy\\ = d(fy,C). 

We include the proof for the sake of completeness. 

P r o o f . Let D = co[(Po f)(C)]. Then Pof:D-*D\s 1-set contraction 
and (1 — P o f)(D) is closed so P o / has a fixed point, say y = (P o f ) y [13]. 
This gives that 

\\y-fy\\ = d(fy,C). 
In case f y G C then / has a fixed point. 

We have the following as corollaries. 
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Let C be a closed bounded convex subset of H and f : C —> H a nonex-
pansive map. Then there is a y € C such that 

\\y-fy\\ = d(fy,C). 
If further, }{dC) C C then / has a fixed point. 
If C = Br, a ball of radius r and center at 0, then / has a fixed point if 

the following condition is satisfied 
(1) if / ( x ) = ax for x € dBr then a < 1 (Leray-Schauder condition). 

Williamson [20] has shown that the boundary condition (R) considered 
by Ray and Cramer [14] is equivalent to the Leray-Schauder condition. It, 
therefore, follows that / has a fixed point if the boundary condition (R) is 
added in the hypotheses of Theorem 3. 

3. In this section we would like to give results for multivalued mappings 
and fixed points. Several interesting results for multivalued nonexpansive 
mappings have been given recently. Recall that a mappings F : C 2C is 
nonexpansive if 

H(Fx, Fy) < d(x, y) for all x, y e C, 
where H stands for the Ilausdorff metric. 

Husain and Tarafdar [7] considered a mapping of a different nature de-
fined below. 

Let X be a normed linear space and C a nonempty subset of X. A 
multivalued mapping F : C —> 2C is called weakly nonexpansive map if 
given x € C and ux 6 Fx, for each y G C there is a uy € Fy such that 

< | | * - y | | . 
If x € Fx then x is called a fixed point of F. 
If fa (<* € I) is a family of single valued nonexpansive self maps of C, 

then Fx = \Ja&Ifax, (x EC) is a weakly nonexpansive multivalued map. 
We need the following definitions. 
A subset C in a normed linear space X is said to be starshaped if there 

exists a point p such that all line segments joining p to other points of C lie 
in C, i.e. if 

x e C then ap + (1 - a)x £ C, 0 < a < 1. 
The point p is called a star centre. 

Every convex set is star shaped but not conversely. 
Let A" be a Banach space. X is said to satisfy Opial's condition if for 

each xo € X and each sequence {z n} converging weakly to x the inequality 
lim inf ||xn — x|| > lim inf ||xn — xq|| holds for all x ^ xq. 
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Every Hilbert space and the spaces lv{\ < p < oo) satisfy Opial's condi-
tions (see for details [10]). 

We state our theorem: 
T H E O R E M 4 . Let C be a nonempty weakly compact starshaped subset of 

a Banach space satisfying Opial's condition. Let F : C —• 2C be a compact 
valued weakly nonexpansive mapping satisfying the following condition: 

(c) For a fixed p 6 C,0 < rn < l , r n —• 0, there is a ux € Fx for all 
x G C such that each single valued map fn(x) = rnux + (1 — rn)p of C has 
a fixed point xn £ C. 

Then F has a fixed point. 
P r o o f . Since C is a weakly compact set and xn 6 C, so xn has a con-

vergent subsequence xni xo £ C, say, (—- stands for weak convergence). 
Now (write un for uXn., for short): 

Xn = fnXn = TnUn + ( 1 - Tn)p, 

so we get 
||«n - Znll = ||u„ - rnun - (1 - rn)p| | = (1 - rn) | |un - p||. 

Since C is bounded and un € Fxn C C, therefore ||un — p|| is bounded 
and we get that ||un — xn | | —• 0 as n —* oo. 

Since F is weakly nonexpansive, for each un 6 Fxn, there is a vn € Fxo 
such that 

||«n - t>n|| < ||®n ~ «o||-
Since FXQ is compact vn has a subsequence vni VQ E FXo. We write 

{un} for {vni}- So liminf ||un - vn | | < liminf | | i„ — x0 | | < oo. Since ||un — 
x„|| —»• 0 and vn —*• VQ we get 

liminf ||ar„ - vo|| < liminf ||xn - x0 | |. 
Now Opial's condition implies that XO = VQ G FXO . 

We derive the following as corollaries: 
1. If C is a weakly compact starshaped subset of a Hilbert space H and 

F : C 2C is weakly nonexpansive multivalued map with compact values 
satisfying (c), then F has a fixed point. 

N o t e. In a Hilbert space H Opial's condition is satisfied. 
2. If C is a closed, bounded, convex subset of a reflexive Banach space X 

with Opial's condition and F : C 2C is a weakly nonexpansive map with 
compact values satisfying condition (c), then F has a fixed point. 

We get results due to Husain and Latig [8] as corollaries to our theorem 
since a convex set is always starshaped. 
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THEOREM 5. Let C be a compact starshaped subset of a Banach space 
X and F : C —* 2C a weakly nonexpansive multivalued mapping satisfying 
condition (c). Then F has a fixed point. 

P r o o f . Since C is compact {a;n} has a subsequence { i n ; } which con-
verges to XQ. Also, we get | |un — xn\\ —• 0 as in Theorem 4. Since F is weakly 
nonexpansive, for each un 6 Fxn, there is a vn £ Fxo such that 

| | «n - »n | | < ||®n ~ ®o||-

Since Fxo is compact again let { v n } for {vn , } converge to VQ € Fxo. There-
fore ||un - t;n|| < ||«n - «nil + ||x„ - vn | | gives that x 0 = v0 G Fx0. 

N o t e . In case C is a compact, convex subset of a Banach space X and 
F : C —* 2C a weakly nonexpansive map satisfying condition (c). Then F 
has a fixed point. It follows since a convex set is starshaped. 
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