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Introduction 
In recent years several structures, notably almost contact structure [2], 

[6], [8], almost r-contact structure [4], [15], almost paracontact structure 
[9], almost r-paracontact structure [2], almost contact hyperbolic structure 
[14] and almost r-contact hyperbolic structure [5], have been defined and 
studied on a differentiable manifold by many geometers. Some generalized 
structures, including almost (¿1,£2)-contact structure [10], almost (£1,62) — 

r-contact structure [11], [12] and unified structure [1], [13], have also been 
defined. 

In this paper we define and study a comprehensive structure having all 
structures mentioned above as its special cases. 

1. A comprehensive structure 
We first define a comprehensive structure E on a differentiable manifold 

as follows. 
DEFINITION 1.1. Let M be an M-dimensional differentiable manifold 

admitting a tensor field F of type (1, 1), linearly independent vector fields 
(Tx) and 1-forms (A x) , x = 1 , . . . , r , r < ra, such that 

where e, c take values ±1 and a2 is a (complex) constant. We define the 
structure E = (F,TX,AX) to be a comprehensive structure on M and the 
pair (M, E) or simply M to be a comprehensive structure manifold. 

AGREEMENT 1.1. In the above and in what follows the indices x,y,z,... 
run over ( l , . . . , r ) and the equations containing X,Y,Z,... hold for arbi-
trary vector fields unless otherwise stated. 

(1.1) 
(1.2) 

F(TX) = 0, 
F2X = ea2x + CAX(X)T3 
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THEOREM 1.1. If M is a comprehensive structure manifold, then 

(1.3) Ax-F = 0, 
(1.4) Ax(Ty) = —eca?6y , 
(1.5) rank (F) = m-r, 

6X being Kronecker's symbol. 
Now introduce a metric on M. 

DEFINITION 1.2. On a comprehensive structure manifold (M, E) let a 
metric g be introduced such that 

(1.6) g{FX,FY) = a2g(XtY) + ecAX(X)AX(Y). 
X 

We define (S,g) = ( F , T x , A x , g ) to be a comprehensive metric structure 
and M equipped with such a metric structure to be a comprehensive metric 
structure manifold. The above metric g is said to be a metric associated to 
the comprehensive structure on M. 

Setting X = Tx, an immediate consequence is that Ax is the covariant 
form of Tx, that is 

(1.7) Ax(Y) = g(Tx,Y). 

THEOREM 1.2. On a comprehensive structure manifold (M,S) there al-
ways exists a metric g, given by (1.6). 

P r o o f . Let h' be any Riemannian metric on M and let h be defined by 

a2h(X, Y) d= - e c [h'(F2X, F2Y) + £ ^x(X)Ax(r)] . 
X 

Then h(Tx,Y) = AX(Y) and it is easy to check that h is a metric. Now let 
us define g by 

2a2g(X,Y) d= h(FX, FY) + a2h(X,Y) - ec AX{X)AX{Y). 
X 

Again g is clearly a metric and the relation 

2a2g(FX, FY) = a2h(FX, FY) + h(ea2X + cAx(X)Tx, ea2Y + cAx(Y)Tx) 

= a2h(FX, FY) + a 4 / Y ) + eca2 £ AX(X)AX(Y) 
X 

= 2a4g(X, y) + 2 e c a 2 ^ AX(X)AX{Y) 
X 

implying (1.6). However, the metric g is, of course, not unique. 
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THEOREM 1 .3 . On a comprehensive metric structure manifold (M,E,g) 
the following relations hold good: 

(1.8) g(Tx, FX) = 0 , 
(1.9) g(FX,Y) = eg(X,FY). 

The proof is obvious. 
Using (1.1) and (1.2), it is easy to verify the following result. 

T H E O R E M 1.4 . Let (F,TX,AX) and (F,TX,AX) [resp. (F,TX,AX)] be two 
comprehensive structure on a differentiable manifold M\ then we have Ax = 
T [resp. Tx = f J . 

Thus we see that two comprehensive structures having same F and same 
(Tx) [resp. (A®)] on a differentiable manifold are always identified. However, 
a comprehensive structure on a differentiable manifold M always induces 
another comprehensive structure on M. So we can prove the following the-
orem. 

THEOREM 1.5 . A comprehensive structure on a differentiable manifold 
M is not unique. 

P r o o f . Let H be an arbitrary non-singular tensor field of type (1, 1) on 
M. Defining 

(1.10) F^H^FH, AX=(AX-H, TX = H~\TX), 
it can be easily seen that ( F , T X , A ) is also a comprehensive structure on 
M. Moreover, if g is an associated metric to the structure ( F , T X , A X ) on M, 
then a metric g on M defined by 

(1.11) g(X,Y)d^ g(HX,HY) 
provides an associated metric to the structure (F,TX, A°) on M. 

We can state this fact as follows. 

COROLLARY 1.1 . A comprehensive metric structure on a differentiable 
manifold is not unique. 

2. Existence of a comprehensive structure 
Let A be an eigenvalue of F corresponding to an eigenvector P. We now 

consider the following two possible cases. 

CASE 1. P is linearly independent of ( T X ) . Then (1.2) implies (A2 -
ea2)P = cAx(P)Tx. Hence A = ±\[eai and AX(P) = 0. 

CASE 2. P is a linear combination of (Tx). Then F(P) = 0 that is A = 0. 
Therefore, there are r eivenvalues 0. 
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Since M is of dimension TO and rank(F) = m — r, there are, say, r 
eigenvalues 0, s eigenvalues +Vea2 and m— r — s eigenvalues —y/ea2. Let 
L, K and N denote the distributions corresponding to the eigenvalues 0, 
+Vea2 and —Vea2, respectively. 

LEMMA 2.1 . The distributions L, K and N are complementary distribu-
tions generated by the complementary projection operators /, k and n, defined 
by 

(2.1) / d=f (a 2 / — eF2)a~2 , 

(2.2) 2k d= (eF2 + dF)a~2 , 
and 

(2.3) 2 n=i(eF2-dF)a~2, 

respectively, where I is the identity tensor field and d = eVea2. 
P r o o f . We see that / + k + n = I. We also have 
I2 = {a41 + F4 - 2ea2F2)a~4 = (a41 + ea2F2 - 2ea2F2)a~4 = / , 

JFC2 = (F4 + d2F2 + 2 edFz)\a~4 = (ea2F2 + ea2 F2 + 2 da2F)\a~4 = k 
and similarly n2 = n. Again, we get 

2Ik = {ea2F2 + da2F-F4- edF3)a~4 

= (ea2F2 + da2F- ea2F2 - da2F)a~4 = 0, 

2In = (ea2F2 - da2F - F4 + edF3)a~4 

= (ea2F2 - da2 F- ea2F2 + da2 F)a~4 = 0 , 

4kn = F4 - d2F2 = ea2F2 - ea2F2 = 0 . 

Consequently I, k, n are complementary projection operators. Moreover 

Fl = (a2F - eF3)a~2 = (a2F - a2F)a~2 = 0, 

Fk = (eF3 + dF2)\a~2 = (a2F + ev^F2)^"2 

= \/ea?(eF2 + dF)\a~2 = kVtifl 
and similarly Fn = —n\fea2. We also get k + n = a~2eF2. 

Now it remains to show that X, K and N are the complementary distribu-
tions generated by the complementary projection operators /, k and n, that is 
L = {IX-, X € X{M)}, K = {kX\X G X(M)}, and N = {nX-,X £ X(M)}. 
Let Z € L. Then, since 0 is the eigenvalue for L, we have FZ = 0. Also, since 
Z = IZ + kZ + nZ, we get 0 = FZ = FIZ + DkZ + FnZ = 0 + y/eaflkZ -
Vea?nZ or kZ - nZ = 0. But k + n = a~2eF2; therefore kZ + nZ = 0. 
Hence, kZ = 0 and nZ - 0 and thus Z = IZ, that is L C {IX; X £ A'(M)}. 
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Conversely, let Z = IX, then FZ = FIX = 0 which shows that Z 6 L, that 
is {IX; X e X(M)} C L. Thus L = {IX; X e X{M)}. 

Again, if Z € A', then since \feafl is the eigenvalue for K we have 
y/ea?Z = FZ = FIZ+FkZ+FnZ = Q+VeaJkZ-y/ed^nZ or Z- kZ-nZ. 
Also kZ + nZ = ea~2F2Z = Z. Thus Z = kZ, that is K C {kX;X € 
X(M)}. On the other hand, let Z = kX, then FZ = FkX = VeatkX = 
Vea?Z. Thus Z 6 A'; that is, {kX;X € X(M)} C A'. Hence K = {kX;X € 
X{M)}. Similarly, we can prove that N = {nX;X 6 X(M)}. 

AGREEMENT 2 . 1 . In what follows the indices i, j [resp. i', j'} run over 
{ 1 , . . . , s } [resp. { 1 , . . . , m - r - a}]. 

Now we are in a position to prove the main theorem of this section. 

THEOREM 2.1. A necessary and sufficient condition for M to admit a 
comprehensive structure is that there exists complementary projection oper-
ators I, k and n which bring together the complementary distributions X, K 
and N of dimensions r, s and m — r — s, respectively, which together span 
the manifold. 

P r o o f . The necessary part follows from Lemma 2.1. For sufficient part, 
let ( T x , Ui, U{i) be a set such that ( T x ) , ( U i ) and (Ui<) are the basis vectors 
in L, K and N, respectively, and let (—eca~2A x , V , V ) be the inverse set. 
Therefore, we get 

f —eca~2 Ax(Ty) = 6X, AX(U{) = 0, Ax(Ui>) = 0 , 
v ' ( t x ) = o, vi(uj) = sijt v^Uj.) = o, 

IF'"(TX) = 0, Vi'(Uj) = 0, Vi'(Ujl) = S^, 
(2.4) 

and 
V\X)Ui + Ve(X)Vv - eca~2Ax(X)Tx = X , 

or 

(2.5) ea2V'(X)Ui + ea2Vi\X)Ui, - cAx(X)Tx = ea2X. 

Putting 

(2.6) FX = y/^V\X)Ui + (X)Ui. 

we have F{TX) = 0 and 

F2X = \iëâfiVi(FX)Ui + V^V*'(X)Ui 

= Ui + s/ëâïv*' (X)Ui>)Uj 

+ {\i7^V\X)Ui + VTtfV*' {X)Ui,)Ui, 

= ea2V\X)Ui + ea2Vi\X)Ui> = ea2X + cAx{X)Tx . 

Thus ( F , T X , A X ) defines a comprehensive structure on M. 
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3. Integrability conditions 
Let us recall some relations of the previous section as follows: 

( 3 . 1 ) Ik — kl = In = nl = kn = nk = 0 , 

( 3 . 2 ) / 2 = Z, k2 =k, n2 = n, 

( 3 . 3 ) Fl = IF = 0 , 

(3 .4) Fk = kF = k\Zea?, 

(3 .5) Fn = nF = —nVea2 , 

(3 .6) F2l = 0, F2k = ea2k, F2n = ea2n. 

LEMMA 3.1. I f [ F , F] is the Nijenhuis tensor of F , then 

(3.7) /[F,F](ZA,/F) = o , 
(3.8) Jfc[F,FpA,fcF) = o , 
(3.9) n[F,F](nA, nY) = 0 , 
(3.10) l[F,F](kX,kY) = ea2l[kX, kY\, 

(3.11) l[F,F](nX,nY) = ea2l[nX,nY], 

(3.12) k[F,F](lX,lY) = ea2k[lX,lY], 

(3.13) k[F,F](nX,nY) = 4ea2k[nX, nY], 

(3.14) n[F,F](ZA,ZF) = ea2n[lX,lY], 

(3.15) n[F,F](kX,kY) = 4ea2n[kX,kY]. 

P r o o f . The Nijenhuis tensor [F, F] of F is defined by 

(3.16) [F, F](X, Y ) = [FA', FY] - F[FX, Y] - F[X, FY] + F2 [X, Y]. 
But k + n = e~1F2a~2, therefore we get 

(3.17) [F, F](A', Y) = [FA', FY] - F[FX, Y] - F[X, FY] 
+ ea2k[X,Y] + ea2n[X,Y]. 

On putting in (3.17) nX and nY in place of A and Y , respectively, operating 
the whole equation by k and using (3.1), (3.6), we get (3.13). Similarly we 
get (3.7)-(3.12), (3.14), (3.15). 

Finally, we prove main theorem of this section. 

THEOREM 3.1. The comprehensive structure manifold M is completely 
integrable if and, only if 

(3.18) [F, F](A, Y) = [F, F](/A, kY) + [F, F](/A, nY) 
+[F, F p A , IY) + [F, F](kX, nY) + [F, F](nA, IY) + [F, F ] ( T I A , kY). 

P r o o f. It is well known that any distribution D is integrable if and only 
if [A, y ] € D for all A*, y 6 D. Thus, the distribution L is integrable if and 
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only if 

(3.19) k[lX,lY] = 0, 
(3.20) n[lX,lY] = 0. 
Equivalently, from (3.12) and (3.14) we have 
(3.21) k[F,F]{lX,lY) = 0 , 

(3.22) n[F,F](lX,lY) = 0 . 

The distribution K is integrable if and only if 
(3.23) l[kX,kY] = 0, 
(3.24) n[kX, kY] = 0 , 
and, equivalently, 
(3.25) l[F,F](kX,kY) = 0 , 

(3.26) n[F,F](kX,kY) = 0 . 

Similarly, the distribution N is integrable if and only if 
(3.27) l[nX, nY] = 0 , 
(3.28) k[nX, nY] = 0 , 
and equivalently, 
(3.29) l[F,F](nX,nY) = 0 , 

(3.30) k[F, F](nX, nY) = 0 . 
The Nijenhuis tensor [F, F] of F can be written in the form 

[F, F]( A', Y ) = (I+ k + n)[F, F]((l +k + n)X, (l + k + n ) Y ) . 

Expanding right-hand side and using (3.7), (3.9), (3.21), (3.22), (3.25), 
(3.26), (3.29), (3.30), we get (3.18). 

4. Special cases 
The structure of this paper generalizes many known structures which 

may be obtained by taking particular values of a2, e, c, r. We list these par-
ticular cases by giving different values to a2, e, c, r, writing structural equa-
tions corresponding to (1.2), (1.4), (1.6), (1.9) and discussing the details. 

CASE 1. (a 2 = 1, e = £i = ±1, c = s2 — ±1). Almost (£i,£2)~r-contact 
Riemannian structure [10], [11]: 

F2X = exX + £ 2 A x ( X ) T x , Ax{Ty) = - e ^ S * , 

g ( F X , F Y ) = g ( X , Y ) + £ ^ 2 ^ AX(X)A*(Y), 

g ( F X , Y ) = £l9(X*FY)-
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CASE 2. (a2 = 1, e = = ± 1 , c = e2 — ± l , r = 1) Almost ( £ I , £ 2 ) -
contact Riemannian structure [9]: 

F2X = eiX + £2A(X)T, A(T) = -eie2, 
g(FX, FY) = g(X, Y) + £l£2A(X)A(Y), 

g(FX,Y) = £ig(X,FY). 

The existence theorem already has been discussed for cases 1, 2. Now, 
integrability conditions can be deduced from this paper. 

AGREEMENT 4 .1 . In the above and in what follows, when r = 1, ( A ' , T I ) 
will be identified by (A,T). 

CASE 3. (a2 = 1, e = —1, c = 1) Almost r-contact Riemannian structure 
[4], [7], [15]: 

F2X = -X + Ax(X)Tx, Ax(Ty) = bx
y , 

g(FX,FY) = g(X,Y) - £ A*(X)A*(Y), 

g(FX,Y) = -g(X,FY). 

CASE 4. (a2 = 1, e = —1, c = 1, r = 1). Almost contact Riemannian 
structure [2], [6], [8]: 

F2X = -X + A(X)T, A(T) = 1, 
g(FX, FY) = g{X,Y) - A{X)A{Y), 

G(FX,Y) = -g(X,FY). 

In cases 3, 4 the dimension of K becomes equal to the dimension of N 
and hence, in case of almost contact manifold, the manifold becomes odd 
dimensional. 

CASE 5. (a2 = 1, e = 1, c = —1) Almost r-paracontact Riemannian 
structure [3]: 

F2X = X- Ax(X)Tx, Ax(Ty) = 6X, 

g(FX,FY) = g(X,Y) - Y,AX(X)AX(Y)» 

g(FX,Y) = g(XX,FY). 

CASE 6. (a2 = 1, e = 1, c = —1, r — 1) Almost paracontact Riemannian 
structure [9]: 

F2X = X - A(X)T, A(T) = 1, 
g(FX, FY) = g(X, Y) - A(X)A(Y), 

g(FX,Y) = g(X,FY). 
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All the results can be deduced for cases 5, 6 by putting appropriate 
values for a2, e, c, r. 

Case 7. (a2 = —1, e = —1, c = 1) Almost r-contact hyperbolic Rie-
mannian structure [5]: 

F2X = X + Ax(X)Tx, Ax{Ty) = -6x
y , 

g(FX,FY) = -g(X,Y) - ^A'(X)A'(Y), 
X 

g(FX,Y) = -g(X,FY). 

Case 8. (a2 = - 1 , e = - 1 , c = 1, r — 1) Almost contact hyperbolic 
Riemannian structure [14]: 

F2X = X + A(X)T, A(T) = -1, 
g(FX, FY) = -g(X, Y) - A(X)A(Y), 

g(FX,Y) = -g(X,FY). 

To the best of my knowledge, existence and integrability in cases 7, 8 have 
not been studied so far. 

C a s e 9. (a2 replaced by —a2, e = —1, c = 1, r = 1) Unified metric 
structure [1], [13]: 

F2X = a2X + A(X)T, A(T) = -a2 , 
g(FX, FY) = —a2g(X, Y) - A(X)A(Y), 

g(FX,Y) = -g(X,FY). 
Putting (£i,£2) = (£i)£2) = (1, —1) and (£1,62) = (1,1) in case 
2 we get almost contact Riemannian structure, almost paracontact Rie-
mannian structure and almost contact hyperbolic structure (but not al-
most contact hyperbolic Riemannian structure), respectively. In fact, when 
(£i>£2) = (1,1) we have 

g(FX, FY) = g(X, Y) + A(X)A(Y), g(FX, Y) = g(X, FY) 
which does not coincide with the metric of case 8. However, if we take a 
particular case of the comprehensive metric structure by setting a2 = — 1, 
e = — l , c = l , r = l , it would be possible to find an almost contact 
hyperbolic Riemannian structure [14]. 

The unified metric structure [1], [13] only unifies an almost contact Rie-
mannian structure [2], [6], [8] and an almost contact hyperbolic Riemannian 
structure [14]. However, if we take a particular case of comprehensive met-
ric structure by setting e = —1, c = 1 and a2 replaced by —a2, it would be 
possible to find a metric structure which unifies an almost contact Rieman-
nian structure [2], [6], [8], an almost r-contact Riemannian structure [4], [7], 
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[15], an almost contact hyperbolic Riemannian structure [14] and an almost 
r-contact hyperbolic Riemannian structure [5]. 

Acknowledgement. I am grateful to Prof. (Mrs.) Kamla D. Singh for 
her valuable suggestions. I am also thankful to C.S.I.R. New Delhi for fi-
nancial support. 

References 

[1] A. A l - A q e e l , A. H a m o u i and M. D. U p a d h y a y , On algebraic structure mani-
folds, Tensor (N.S.) 45 (1987), 37-42. 

[2] D. E. B l a i r , Contact manifolds in Riemannian geometry, Springer Verlag 1976. 
[3] A. B u c k i , Almost r-paracontact structures of P-Sasakian type, Tensor (N.S.) 42 

(1985), 42-54. 
[4] L. S. K. D a s , On almost r-contact metric manifold, C. R. Acad. Sci. Bulgar. 32 

(1979), 711-714. 
[5] K. K. D u b e and R. Ni vas , Almost r-contact hyperbolic structure in a product 

manifold, Demonstratio Math. 11 (1978), 887-897. 
[6] R. S. M i s h r a , Structures on a differentiate manifold and their applications, Chan-

drama Prakashan Allahabad India 1984. 
[7] R. Ni v a s and R. S i n g h , On almost r-contact structure manifolds, Demonstratio 

Math. 21 (1988), 797-803. 
[8] S. S a s a k i , On differentiate manidolds with certain structures which are closely 

related to almost contact structures, I , Tohoku Math. J. 12 (1960), 456-476. 
[9] I. S a t o , On a structure similar to the almost contact structures, Tensor (N.S.) 30 

(1976), 219-224. 
[10] K. D. S i n g h and R. K. A g n i h o t r i , On an almost (ei,£2)-contact structure, 

Demonstratio Math. 12 (1979), 679-688. 
[11] R. S i n g h , Almost (ei, £2)—r-contact manifolds and their product with the Euclidean 

space Er, Chap. 8 Ph. D. Thesis. Lucknow University India 1982. 
[12] K. D. S i n g h and M. M. T r i p a t h i , On normal (ci,e2,r) almost contact structure, 

(to appear in Ganita). 
[13] B. B. S i n h a and D. N a r a i n , Integrdbility condition of C manifold equipped with 

unified structures, Ganita 38 (1987), 41-48. 
[14] M. D. U p a d h y a y and K. K. D u b e , Almost contact hyperbolic ( f , g , ij, ( ) structure, 

Acta Math. Acad. Sci. Hungar. 28 (1976), 1-4. 
[15] J. V a n j u r a , Almost r-contact structure, Ann. Scuola Norm. Sup. Pisa. Sci. Fis. 

Mat. 26 (1972), 97-115. 

DEPARTMENT OF MATHEMATICS AND ASTRONOMY 
FACULTY OF SCIENCE 
LUCKNOW UNIVERSITY 
LUCKNOW 226 007, INDIA 

Received November 12, 1990. 


