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Introduction

In recent years several structures, notably almost contact structure [2],
[6], (8], almost r-contact structure [4], [15], almost paracontact structure
(9], almost r-paracontact structure [2], almost contact hyperbolic structure
[14] and almost r-contact hyperbolic structure [5], have been defined and
studied on a differentiable manifold by many geometers. Some generalized
structures, including almost (g1, €2)-contact structure [10], almost (&1,£;) —
r-contact structure [11], [12] and unified structure [1], [13], have also been
defined.

In this paper we define and study a comprehensive structure having all
structures mentioned above as its special cases.

1. A comprehensive structure
We first define a comprehensive structure X on a differentiable manifold
as follows.

DEFINITION 1.1. Let M be an m-dimensional differentiable manifold
admitting a tensor field F' of type (1, 1), linearly independent vector fields
(T;) and 1-forms (A%), z = 1,...,7, r < n, such that
(1.1) F(T;)=0,

(1.2) F?X = ea’z + cA*(X)T,,
where e, ¢ take values +1 and a? is a (complex) constant. We define the

structure ¥ = (F,T;, A®) to be a comprehensive structure on M and the
pair (M, X)) or simply M to be a comprehensive structure manifold.

AGREEMENT 1.1. In the above and in what follows the indices z,y, z,. ..
run over (1,...,r) and the equations containing X,Y,Z,... hold for arbi-
trary vector fields unless otherwise stated.
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THEOREM 1.1. If M is a comprehensive structure manifold, then

(1.3) A* . F=0,
(1.4) A*(T,) = —eca®5Z,
(1.5) rank(F)=m-r,

65 being Kronecker’s symbol.
Now introduce a metric on M.

DEFINITION 1.2. On a comprehensive structure manifold (M, X') let a
metric g be introduced such that

(1.6) 9(FX,FY) = a*g(X,Y) + ec ) A®(X)A*(Y).

We define (X, g) = (F, Ty, A%, g) to be a comprehensive metric structure
and M equipped with such a metric structure to be a comprehensive metric
structure manifold. The above metric g is said to be a metric associated to
the comprehensive structure on M.

Setting X = T, an immediate consequence is that A7 is the covariant
form of T, that is

(1.7) : AZ(Y) = g(T.,Y).

THEOREM 1.2. On a comprehensive structure manifold (M, X)) there al-
ways ezists a melric g, given by (1.6).

Proof. Let A’ be any Riemannian metric on M and let h be defined by
a?h(X,Y) % —ec [h'(F2X, FY)+ Y A’(X)A’(Y)] .

Then h(T;,Y) = A*(Y) and it is easy to check that h is a metric. Now let
us define g by

2a%(X,Y) T h(FX,FY) + a®h(X,Y) — ec 3 A%(X)A*(Y).

Again g is clearly a metric and the relation
2a’g(FX,FY) = a’h(FX, FY) + h(ead’ X + cA*(X)Ty,ea®Y + cA*(Y)T:)
= a’h(FX,FY) + a*h(X,Y) + eca® Y A"(X)A*(Y)

=2a'g(X,Y) + 2eca’ Y _ A%(X)A*(Y)

implying (1.6). However, the metric g is, of course, not unique.
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THEOREM 1.3. On a comprehensive metric structure manifold (M, X, g)
the following relations hold good:

(1.8) 9(T:, FX) =0,
(1.9) 9(FX,Y)=eg(X,FY).

The proof is obvious.

Using (1.1) and (1.2), it is easy to verify the following result.

THEOREM 1.4. Let (F, Ty, A®) and (F, Ty, A°) [resp. (F, T, A®)] be two
comprehensive structure on a differentiable manifold M; then we have A® =
A° [resp. T, = Tg).

Thus we see that two comprehensive structures having same F and same
(Ty) [resp. (A®)] on a differentiable manifold are always identified. However,
a comprehensive structure on a differentiable manifold M always induces
another comprehensive structure on M. So we can prove the following the-
orem.

THEOREM 1.5. A comprehensive structure on a differentiable manifold
M is not unique.

Proof. Let H be an arbitrary non-singular tensor field of type (1, 1) on
M. Defining
def

(1.10) FEH'FrH, A4 H, T, Yo YT,
it can be easily seen that (F, TI,XI) is also a comprehensive structure on
M. Moreover, if g is an associated metric to the structure (F,T,, A*) on M,

then a metric § on M defined by

(1.11) (X, V) g X, HY)

provides an associated metric to the structure (F, T,,,Z’) on M.

We can state this fact as follows.

COROLLARY 1.1. A comprehensive metric structure on a differentiable
manifold is not unique.

2. Existence of a comprehensive structure

Let A be an eigenvalue of F' corresponding to an eigenvector P. We now
consider the following two possible cases.

Casg 1. P is linearly independent of (7). Then (1.2) implies (A% —
ea’)P = cA*(P)T,. Hence A = +Vea? and A%(P) = 0.

CASE 2. P is a linear combination of (T;). Then F(P) = 0 thatis A = 0.
Therefore, there are r eivenvalues 0.
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Since M is of dimension m and rank(F) = m — r, there are, say, r

eigenvalues 0, s eigenvalues +vea? and m — r — s eigenvalues —vea?. Let
L,K and N denote the distributions corresponding to the eigenvalues 0,

+Vvea? and —V'ea?, respectively.

LEMMA 2.1. The distributions L, K and N are complementary distribu-
tions generated by the complementary projection operators l, k and n, defined

by

(2.1) 1 (a®I — eF?)a™?,
(2.2) 2k < (eF? + dF)a™?,
and

(2.3) 2n ' (eF? - dF)a™?,

respectively, where I is the identity tensor field and d = evea?.
Proof. We see that { + k + n = I. We also have
2= (a'T+ F* —2ea®’F*)a™ = (a*I + ea® F* — 2ea’F*)a™* =1,
k= (F* + d®F? + 2edF?)La™ = (e’ F? + ea’ F? + 2da*F)la™* = k
and similarly n? = n. Again, we get
2k = (ea’ F? + da®F — F* — edF®)a™*
= (ea’F? 4+ da®F — ea®’F* — da®F)a™ =0,
2in = (ea’F? — da’F — F* + edF3)a™
= (ea®F? — da’F — ea®F? + da’F)a™ =0,
4kn = F — d*F? = ea®F? — ea’F? = 0.
Consequently I, k, n are complementary projection operators. Moreover
Fl=(a’F —eF¥)a™? = (a’F - a’F)a? =0,
Fk = (eF* +dF*)la™? = (a’F + e\/ﬁl’z)—;—a'2
= \/ag(eF2 + dF)%a“2 = kVea?
and similarly Fn = —nvea?. We also get k + n = a~2eF?.

Now it remains to show that L, K and N are the complementary distribu-
tions generated by the complementary projection operators /, k and =, that is
L={X;Xe X M)}, K={kX;X e X(M)},and N = {nX; X € X(M)}.
Let Z € L. Then, since 0 is the eigenvalue for L, we have FFZ = 0. Also, since
Z=1Z+kZ+nZ,weget0=FZ=FIZ+DkZ+ FnZ =0+ Vea’kZ -
Vea®nZ or kZ —nZ = 0. But k + n = a~2eF?; therefore kZ + nZ = 0.
Hence, kZ = 0 and nZ = 0 and thus Z = 1Z, thatis L C {IX; X € X(M)}.
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Conversely, let Z = X, then FZ = FIX = 0 which shows that Z € L, that
is {IX; X e X(M)} C L. Thus L = {IX;X € X(M)}.

Again, if Z € K, then since Vea? is the eigenvalue for K we have
VealZ = FZ = FIZ+FkZ+FnZ = 0+Vea’kZ—Vea®nZ or Z = kZ-nZ.
Also kZ + nZ = ea™®F*Z = Z. Thus Z = kZ, that is K C {kX;X €
X(M)}. On the other hand, let Z = kX, then FZ = FkX = Ved?kX =
Vea’Z. Thus Z € K; thatis, {kX; X € X(M)} C K. Hence K = {kX;X €
X(M)}. Similarly, we can prove that N = {nX;X € X(M)}.

AGREEMENT 2.1. In what follows the indices ¢, j [resp. i', '] run over
{1,...,s} [resp. {1,...,m — 1 — s}].

Now we are in a position to prove the main theorem of this section.

THEOREM 2.1. A necessary and sufficient condition for M to admit a
comprehensive structure is that there exists complementary projection oper-
ators l, k and n which bring together the complementary distributions L, K
and N of dimensions r, s and m — r — s, respectively, which together span
the manifold.

Proof. The necessary part follows from Lemma 2.1. For sufficient part,
let (T, Ui, Uy) be a set such that (T;), (U;) and (U;/) are the basis vectors
in L, K and N, respectively, and let (—eca=2A4%,V?, Vi') be the inverse set.
Therefore, we get

—eca™?A*(T,) = 62, A*(U;)=0, A*(Ux)=0,
(2.4) { ViT;)=0, Vi(U;)= 6;'-, Vi{Uy)=0,
Vi(T:) =0, VIU;)=0, VI(U;)=46,

and
VHX)U; + VI (X)Us - eca™ 2 A%(X)T, = X,
or
(2.5) ea®VH(X)U; + ea®V¥ (X)Us — cA*(X)T, = ea’X .
Putting
(2.6) FX = Vea®V(X)U; + Vea? V¥ (X )Us

we have F(T;) = 0 and
F*X = Vea VI (FX)U; 4+ Vea? V¥ (X)U;
= Vea?VIi(Vea?V!(X)U; + Vea? V¥ (X)U:)U;
|+ Vea? Vi (Vea Vi(X)U; + Vea® V¥ (X)Us)U;
= ea®VI(X)U; + ea®V¥ (X)Ui = ea® X + cA*(X)T;.

Thus (F, T, A*) defines a comprehensive structure on M.
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3. Integrability conditions
Let us recall some relations of the previous section as follows:

(3.1) lk=kl=ln=nl=kn=nk=0,

(3.2) =1, kK'=k nl=n,

(3.3) Fl=1F=0,

(3.4) Fk = kF = kVea?,

(3.5) Fn=nF = —nVea?,

(3.6) Fl=0, F=ea’k, F’n=ea’n.
LEMMA 3.1. If [F, F] is the Nijenhuis tensor of F', then

(3.7) I[F, F)(IX,1Y) =0,

(3.8) k[F, F)(kX,kY) =0,

(3.9) n[F, Fl(nX,nY)=0,

(3.10) I[F, F)(kX,kY) = ea?l[kX, kY],

(3.11) I[F, F)(nX,nY) = ea®l[nX,nY],

(3.12) k[F, F)(I1X,IY) = ea®k[IX,1Y],

(3.13) k[F, F)(nX,nY) = 4ea®k[nX,nY],

(3.14) aF, F)(IX,1Y) = ea*n[IX,lY],

(3.15) n[F, Fl(kX,kY) = 4ea’n[kX, kY].

Proof. The Nijenhuis tensor [F, F] of F is defined by
(3.16) [F,F)(X,Y)=[FX,FY)- F[FX,Y] - F[X,FY] + F*}[X,Y].
But £ +n = e~ F?a~?, therefore we get
(3.17) [F,F|(X,Y)=[FX,FY)- F[FX,Y] - F[X, FY]
+ ea?k[X,Y] + ea’n[X,Y].
On putting in (3.17) nX and nY in place of X and Y, respectively, operating
the whole equation by k and using (3.1), (3.6), we get (3.13). Similarly we

get (3.7)-(3.12), (3.14), (3.15).
Finally, we prove main theorem of this section.

THEOREM 3.1. The comprehensive structure manifold M is completely
integrable if and only if
(3.18) [F,F|(X,Y) = [F, F|(IX,kY) + [F, F]J(IX,nY)
+1F, FY(kX, 1Y) + [F, F)(kX,nY) + [F, F)(nX, 1Y) + [F, F(nX, kY).
Proof. It is well known that any distribution D is integrable if and only
if [X,Y] € D for all X,Y € D. Thus, the distribution L is integrable if and
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only if

(3.19) k[iX,lY]=0,
(3.20) n[lX,lY]=0.
Equivalently, from (3.12) and (3.14) we have
(3.21) E[F,FI(IX,lY)=0,
(3.22) n[F, Fl(IX,lY)=0.
The distribution K is integrable if and only if
(3.23) l[kX,kY]=0,
(3.24) n[kX,kY]=0,
and, equivalently,

(3.25) I[F,F(kX,kY)=0,
(3.26) n[F, FI(kX,kY)=0.
Similarly, the distribution N is integrable if and only if
(3.27) [nX,nY]=0,
(3.28) k[nX,nY]=0,
and equivalently,

(3.29) I[F,F}(nX,nY)=0,
(3.30) k[F, F}(nX,nY)=0.

The Nijenhuis tensor [F, F] of F' can be written in the form
[F,FI(X,Y) = (L + k+ m)[F, FI((I+ k + )X, (1+ k+n)Y).
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Expanding right-hand side and using (3.7), (3.9), (3.21), (3.22), (3.25),

(3.26), (3.29), (3.30), we get (3.18).

4. Special cases

The structure of this paper generalizes many known structures which
may be obtained by taking particular values of a2, e, c, r. We list these par-
ticular cases by giving different values to a?, e, ¢, r, writing structural equa-
tions corresponding to (1.2), (1.4), (1.6), (1.9) and discussing the details.

Casel.(a’ =1, e=¢ = %1, ¢ =&, = £1). Almost (g1,€2) — r-contact

Riemannian structure [10], [11]:

F’X =X + A" (X)T;, A™(T,) = —616267,
9(FX,FY) = g(X,Y) + €162 3 A™(X)A*(Y),

x
9(FX,Y) = e19(X, FY).
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CASE 2. (¢’ = 1, e = ¢1 = £1, ¢ = g3 = £1,7 = 1) Almost (¢1,¢;)-
contact Riemannian structure [9]:
F'X = e X + £A(X)T, A(T) = —e162,
9(FX,FY) = g(X,Y) + 162 A(X)A(Y),
9(FX,Y) =¢e19(X,FY).
The existence theorem already has been discussed for cases 1, 2. Now,
integrability conditions can be deduced from this paper.

AGREEMENT 4.1. In the above and in what follows, when r = 1, (4%,T})
will be identified by (A, T).

CAse 3. (a? =1, e = —1, ¢ = 1) Almost r-contact Riemannian structure
[4], [7], [15):
F’X = - X + A*(X)T, A*(T,)=6%,
g(FX,FY) = g(X,Y) - ) A*(X)A%(Y),

_ g(FX,Y) = —g()?, FY).
Case 4. (a* =1, e = =1, ¢ = 1, r = 1). Almost contact Riemannian
structure [2], [6], [8]:
F'X = -X + A(X)T, A(T)=1,
g(FX,FY) = g(X,Y) - A(X)A(Y),
G(FX,Y) = —g(X,FY).
In cases 3, 4 the dimension of K becomes equal to the dimension of N

and hence, in case of almost contact manifold, the manifold becomes odd
dimensional.

CAse 5. (a®> = 1, e = 1, ¢ = —1) Almost r-paracontact Riemannian
structure [3]:
F’X =X - A*(X)T,, A*(T,)=6Z,
9(FX,FY) = g(X,Y) - ) A*(X)A*(Y),

o(FX,Y) = g(X, FY).
CASEG. (a® =1, e=1, ¢ = —1, r = 1) Almost paracontact Riemannian
structure [9]:
FPX=X-AX)T, AT)=1,
9(FX,FY) = g(X,Y) - A(X)A(Y),
9(FX,Y)=g(X,FY).
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All the results can be deduced for cases 5, 6 by putting appropriate
values for a2, e, ¢, r.

CASE 7. (a®> = =1, e = —1, ¢ = 1) Almost r-contact hyperbolic Rie-
mannian structure [5]:

FX = X + A(X)Ts, A%(T,) = —6%,
9(FX,FY) = —g(X,Y) - ) A%(X)A*(Y),

9(FX,Y) = —g(X,FY).
Casg 8. (a? = -1, e = =1, ¢ = 1, r = 1) Almost contact hyperbolic
Riemannian structure [14]:

F!X =X + A(X)T, A(T)=-1,
9(FX,FY) = —g(X,Y) - A(X)A(Y),
g(FX,Y) = _g(XsFY)'

To the best of my knowledge, existence and integrability in cases 7, 8 have
not been studied so far.

CASE 9. (a? replaced by —a?, e = —1, ¢ = 1, r = 1) Unified metric
structure [1], [13]:
F!X =a’X 4+ A(X)T, A(T)=-d?,
§(FX, FY) = —a%g(X,Y) - ACX)A(Y),
9(FX,Y)=—g(X,FY).

Putting (e1,€2) = (-1,1), (e1,€2) = (1,-1) and (e1,€2) = (1,1) in case
2 we get almost contact Riemannian structure, almost paracontact Rie-
mannian structure and almost contact hyperbolic structure (but not al-
most contact hyperbolic Riemannian structure), respectively. In fact, when
(e1,€2) = (1,1) we have
9(FX,FY) = g(X,Y) + A(X)A(Y), g(FX,Y)=g(X,FY)

which does not coincide with the metric of case 8. However, if we take a
particular case of the comprehensive metric structure by setting a? = —1,
e =-1,¢c=1,r = 1, it would be possible to find an almost contact
hyperbolic Riemannian structure [14].

The unified metric structure [1}, [13] only unifies an almost contact Rie-
mannian structure [2], [6], [8] and an almost contact hyperbolic Riemannian
structure [14]. However, if we take a particular case of comprehensive met-
ric structure by setting e = —1, ¢ = 1 and a? replaced by —a?, it would be
possible to find a metric structure which unifies an almost contact Rieman-
nian structure [2], [6], [8], an almost r-contact Riemannian structure [4], [7],
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[15], an almost contact hyperbolic Riemannian structure [14] and an almost
r-contact hyperbolic Riemannian structure [5].
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