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UNBOUNDED SOLUTIONS OF QUASILINEAR
DIFFERENTIAL-FUNCTIONAL EQUATIONS

1. Introduction

We will denote by C%(X,Y) the class of all continuous functions defined
on X and taking values in Y where X,Y are metric spaces. Let hy € Ry,
h = (h1,...,hs) € R} where Ry =[0,+00) and let D = [~hq,0] X [—h,A].

Suppose thata > 0 and 2 : [—ho,a]XR™ — R.For (z,y) = (z,y1,..,¥Yn)
€ [0,a] x R™ we denote by 2, : D — R the function defined in the
following way:

gy () =2(z+t,y+s), (ts)€D.

Let ap > 0 and 2 = [0,a0) X R™ x C°(D, R). Suppose that g = (p1,...,
fn) : 2 — R™ and f : 2 — R are the functions of variables (z,y,w),
(z,y,w) € [0,a0] X R™ X C°(D, R). Let ¢ : [—ho,0] Xx R® — R be given
function.

We consider the differential-functional equation

n
(1) D;,;Z(:L', y) + Z Qk(z’ Y, Z(a:,y))Dyk z(a:, y) = f(z’ Y, z(:c,y))
k=1
with initial condition
(2) 2(z,y) = p(z,y) for (z,y) € [~ho,0] X R™.

In this paper we give sufficient conditions for the existence and unique-
ness of unbounded classical solutions of (1), (2). The method used in this
paper is based on results due to P. Bassanini and L. Cesari for solutions in
the sense “almost everywhere” of systems which are not functional (see [1]-
[4]). Bounded solutions of initial value problems for quasilinear hyperbolic
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systems of differential-functional equations have been discussed in [6]. The
cases of bounded and unbounded classical solutions of nonlinear equations
have been treated in [5].

We will introduce some notations and definitions. For y = (y1,...,¥n) €
R™ we denote ||y|ln = |y1] + ... + |yn| and ||y|| = max{|p]| : ¢ =1,...,n}.
For w € C°%D,R) we define ||w|lo = max{|w(t,s)| : (t,s) € D}. Let
C?L)(D, R) denotes the space of all continuous functions of variables (t,s) =
(t,s1,.-.,8,) which satisfy the Lipschitz condition with respect to s on D. If
wE C?L)(D,R) then we define ||w|)(14+L) = sup{|w(t,s) — w(t,3)|||s—3]| 7! :
(t,3),(t,3) € D}. Denote by C()(D, R) the set of all continuous functions
w : D — R which have continuous derivatives D,, w,k = 1,...,n and for
w € CW(D, R) we define |Jwl|1) = X, |1 Ds, wllo. Let C((;J))(D,R) denotes
the space of functions w € C(V)(D, R) such that their first order derivatives
D, ,w,k = 1,...,n satisfy the Lipschitz condition with respect to s. For
w € C(D, R) we define lwlla+zy = lwlla) + Tkt 1Dswllzy- I X, Y

(L)
are Banach spaces then CL(X,Y) denotes the set of all linear continuous

operators defined on X and taking values in Y, and || - ||x is the norm in
CL(X,Y). Let us denote by J; the set of all functions a : Ry — R4 which
are nondecreasing on Ry. Let 2(1) = [0, a0] x B* x C)(D, R).

2. Bicharacteristics
The following assumptions will be needed through the paper.

AssuMPTION H;. Suppose that ¢ : [—hg,0] X R® — R is of class C? and
there are A1, Ay € Ry such that

IDye(z,9)ll € M, IDye(2,9) = Dy(@, B)I| < Azlly = TFlln,
(z,y),(z,y) € [_hO,O] x R™.

AssuMmpPTION H;. Suppose that

1° g € C°(£2, R), there exist on 2(1) the derivatives Dyp, D0 and they
are continuous on £2(1);
2° there exists a; € J4 such that for (z,y,w) € 2(1) we have

1Dyo(z, 9, )| < er(llwliwy), | Dwelz, y, wllcon,ry < er(lfwliy);
3° there exists 8; € J4 such that for (z,y),(z,%) € [0,a] X R",
we C((;J))(D’R)’h € C(D, R) we have

1Dyo(z,9,w + h) = Dye(z,y, w)ll < Ba(llwlla4+2))(Nly = Fll= + l[~ll2))
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”Dwg(z’?7 w+ h’) - Dwg(‘”? Y, w)”C&)(D,R) S

< Billlwlla+2))lly = Flla + llally )-

Suppose that a € (0,a0],Q1,Q2 € R4+ and Q1 > A1,Q2 > Az. We say
that the function z : [—hg,a] x R® — R belongs to K,(Q1,Q2) if z is
continuous and

(i) 2(2,9) = p(2,y) for (z,y) € [~ho,0] X R”

(ii) there exist continuous derivatives with respect to y and

1Dyz(2, )l < @1, [1Dyz(2,9) = Dy2(z, Pl < Q2lly — Flln,

(z’y)a(‘r7§) € [_h0$a] X R™.

For z € K,(Q1,Q:) we define ||z]|. = sup{|z(z,9)|(1 + [[y])7! : (z,¥) €
[—-ho,a] X Rn} )

Suppose that a € (0,a0},(z,y) € [0,a] X R™, 2 € K,(Q1,Q2) be fixed.

Consider the following problem

(3) ﬂ’(t) = Q(tv n(t)az(t,n(t))), 77(‘”) = ?]

LEMMA 1. If assumptions H,, Hy are satisfied and a € (0,a0),2 €
K,(Q1,Q2) then for each (z,y) € [0,a] X R™ there ezists an unique so-
lution g(-,z,y) = g[z](-,z,y) of the problem (3). This solution is defined on
[0, a) and the derivatives Dyg,D,, g,k = 1,...,n ezist on [0,a] X [0,a] X R™
and

| Dy 9(t, 2, )| < C1,  |Dy9(2,2,y) — Dy, g(t, 2,9l £ Cally = Fllns
k = 1""’”’ (t’z’y)’(t’z,y) e [O’a] X [0’a] X Rn,
where C, = exp(aca(Q1)(1 + Q1)), C2 = a(B1(Q1 + Q2)CF(1 + Q1) +
+a1(Q1)Q2C?)Cy1. Moreover, if z,Z € K,(Q1,Q2) then
lg[2)(t, 2, ) — glZ](t 2, A + lyl) ™" < er(@1)Chllz - =],
(t,z,y) € [0,a] X [0,a] X R™.

The proof of this lemma is based on the Gronwall inequality and we omit
the details.

3. Transformation T
AssuMPTION Hj. Suppose that:

1° f € C°(£2, R), there exist on 2(1) the derivatives D, f, D,,f and they
are continuous on £2(1);
2° there exists a; € J4 such that for (z,y,w) € 2(!) we have

1Dy f(z, 9, W)l < e2(llwllr))s N Pwf (2,9, w)llcop,py < ca(llwll));
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3° there exists 8, € J4 such that for (z,y),(z,%) € [0,a] x R™,

wE C((B(D,R),h € C)(D, R) we have

1Dy f(2,9,2 + k) — Dyf(z,y, w)l| < B2(llwlla+2))(Ily = Flln + [IBll2))

”Dwf(:t, yw+ h) - DWf(xa y,w)”C&)

< Bz(llwlla+))(ly = Flln + 12ll(1))-

AssuMPTION Hy. If Hy > 0 then suppose that the following consistency
condition

(p,R) <

DzSO(O, y) + Z Qk((), Y, SO(O,y))Dyk 99(07 y) = f(07 Y, ‘P(O'y))
k=1

holds for y € R™.

Suppose that a € (0,aq). For v € K,(Q1,Q2) we define T : u — Tu in
the following way:

(Tu)(z,y) = (0, 9(u](0,2,9)) + [ F(t,9[u](t,2,9), w(e,glui(t,z))) ¢
0

4) for (z,y) € [0,a] x R™
(Tu)(z,y) = ¢(z,y) for (z,y) € [~ho,0] x R™.

LEMMA 2. Let Assumptions Hy-Hy hold. Then there are Q,,Q2 € Ry
and a € (0, ag) such that the transformation T maps the set K,(Q1,Q2) into
itself.

Proof. Let choose @1,Q2 € Ry, a € (0, a0} such that
Q1 2 MC1 + aay(Q1)C1(1 4 @Q1),
(5) Q2 > MC? + MCs + a(a2(Q1)(C2 (1 + Q1) + Q2C)+
+ £2(Q1 + @2)CT(1 + Q1)*).
Relation (4) implies for U = Tu

D, U(z,y) = Y Dy;¢(0, f(0,,9)) Dy, 9;(0, 2, y)+

Jj=1
n

+ f( Dyif(P(t’z’y))Dyng'(t,zsy)'*‘
0 =1

+ Dy f(P(t,2,y)) E(Dyj u)(t,9(t,2,9)) Dur 95 (2, T, y)) dt,
j=1
where (37 y) € [070'] X R™ and P(t,:l,', y) = (t7 g(t7z’ y)7u(t,g(t,z.y)))'
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By Assumptions Hy, H3 and by inequalities (5) we have

(6) 1IDyU(z, )|l £ AiC1 + aaz(@1)C1(1 + @) < €,
(z,y) € [0,a] x R,

(1) IDyU(z,y) = D,U(z, 9| £ (MC2 + 2P|z = Fllnt

+a(az(Q1)(Ca(1l + Q1) + Q2C1) + B2(Q1 + Q2)CI (1 + Q1)) ly — Fll» <

< Qally=Tlla, (2,9),(2,9) € [0,a] x R™.

From (6) and (7) we obtain Lemma 2.

AssuMPTION Hjs. Suppose that Q,Q,; € Ry and a € (0,a0] satisfy
(5) and a(A11(@1)C1 + ae2(Q1)e1(@1)C1(1 + Q1) + a2(Q1)) < ¢ where
0<g< 1.

LEMMA 3. Suppose that Assumptions H1-H; are satisfied. Then trans-
Jormation T : Ko,(Q1,Q2) — K4(Q1,Q2) has an unique fized point.

Proof. For u,v € K,(Q1,Q2) we have
1Ty — Tv|ls < a(A102(@Q1)Ch
+aa2(Q1)ar(Qu)C1(1 + Q1) + a2(@1))llu — vl < glfu = o]l

where 0 < ¢ < 1. Thus T is contraction and Lemma 3 we obtain from the
Banach fixed-point theorem.

4. The main theorem
We are now in position to show a theorem on existence and uniqueness
of solutions of problem (1), (2).

THEOREM. Suppose that Assumptions 11; -Hs are satisfied. Then there is
a function z € K,(Q1,Q2) which is an unique solution of problem (1), (2)
in class K,(Q1,Q2).

Proof. For z* which is an unique fixed point of T : K,(Q1,Q2) —
K,(Q1,Q2) we have

(8) Z*(:L‘,y) = 99(079(0,za y))
N
+ f f(t)g(tax’y)az(t,g(t,z,y))) dta (.’L‘, y) € [0,(1] X R"
0

and 2*(z,y) = ¢(z,y) for (z,y) € [—ho,0] X R™.
By uniqueness of solutions for (3) the following relation holds

(9) y = g(z,0,7) & n = g(0,z,y).
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For fixed z € [0, a] this relation represents a 1-1 transformation of the space
R™ into itself. By taking y = g(z,0,7) and making use of (9), relation (8) is
transformed into

(10)  2*(z,9(z,0,m) = (O, m) + [ f(t,9(t,0,1), 2] g10,m)) -
0

By differentiating (10) with respect to z and taking n = ¢(0,z, y) we obtain
that z* is a solution of (1), (2).

Remark. The above result can be extended to weakly coupled quasi-
linear systems

n
Dzzi(z, y) + Egik(za yaz(:c,y))Dygzi(za y) = fi(za y)z(a:,y))’ t= ,...,m
k=1

where z = (2z1,...,2) and §;k,}; : [0,a0] X R® x C°(D,R™) — R,
i=1,....,m,k=1,...,n.

5. Examples

Let 94, f:[0,a0] X R*" xR —> R, k=1,...,n.

As a particular case of (1), (2) we obtain the initial problem for partial
differential equations with a retarded argument :

(11) D,,.z(z, y) + Z ?k(‘ﬁ Y, 3(71(3:)’ 61(17, y)))Dyk z(z, y)

k=1
= 7(37 Y, 3(72(3)62(3’ 3/)))
where 71,72 : [0,a0] — R, 63,63 : [0,a0] X R* — R™.
We define gi(z,y, w) = 2x(z,y, w(11(z) - z,61(z,¥) — 9)),
f(xa Y, w) = T(I, Y, w(72(z) - I, 62(2?, y) - y))
and it is easy to formulate a theorem on the existence and uniqueness of

solutions of Cauchy problem for (11).
The differential-integral equation

D z(z,y) + Z?(:c, v, f 2z +t,y+s)dt ds) Dy, z(z,y)
k=1 D

= T(z,y, f 2(z +t,y+s)dt ds)
D
is a particular case of (1) with gi(z,y,w) = Bi(z,y, [ 2(,s) dt ds) and
f(z,y,w) = f(z,y, [ 2(t, s) dt ds).
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