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UNBOUNDED SOLUTIONS OF QUASILINEAR 
DIFFERENTIAL-FUNCTIONAL EQUATIONS 

1. Introduction 
We will denote by C°(X, V) the class of all continuous functions defined 

on X and taking values in Y where X,Y are metric spaces. Let ho 6 R+, 
h = (hi,..., hn) € R\ where R+ = [0, +oo) and let D = [~h0,0] x [-h, h]. 

Suppose that a > 0 and z : [ -Ao,a]xi2 n —• R. For (x,y) = (x,yi,.. .,yn) 
€ [0, a] x Rn we denote by Z(x,y) '• D —»• R the function defined in the 
following way: 

*(*,!/)(M) = z(x + + (t,s)eD. 
Let a0 > 0 and Q = [0, a0] x Rn x C°(D, R). Suppose that g = (qi , . . . , 

0n) : ft Rn and / : Q —> R are the functions of variables (x,y,w), 
(x,y,w) e [0,ao] x Rn x C°(D,R). Let <p : [ - / i o ,0] x Rn R be given 
function. 

We consider the differential-functional equation 
n 

(1) Bxz(x,y) + Y^Qk(x,y,Z(xty))Dykz(x,y) = f(x,y,z(Xty)) 
k=1 

with initial condition 

(2) z(x,y) = <p(x,y) for (®,y) e [~ho,0] X Rn. 
In this paper we give sufficient conditions for the existence and unique-

ness of unbounded classical solutions of (1), (2). The method used in this 
paper is based on results due to P. Bassanini and L. Cesari for solutions in 
the sense "almost everywhere" of systems which are not functional (see [1]-
[4]). Bounded solutions of initial value problems for quasilinear hyperbolic 
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systems of differential-functional equations have been discussed in [6]. The 
cases of bounded and unbounded classical solutions of nonlinear equations 
have been treated in [5]. 

We will introduce some notations and definitions. For y = ( y i , . . . , yn) G 
Rn we denote ||y||n = |j/i| + . . . + \yn\ and \\y\\ = max{|j/i| : i = l , . . . , n } . 
For w G C°(D,R) we define ||w||0 = max{|u;(f,s)| : (t,s) G D). Let 
C°l)(D,R) denotes the space of all continuous functions of variables (¿, s) = 
(t, si,..., sn) which satisfy the Lipschitz condition with respect to s on D. If 
w G then we define ||w||(i+L) = sup{|ti;(i,s) — u;(i,s)|||.s — s | | - 1 : 
(t,s),(t,s) G D}. Denote by C^(D,R) the set of all continuous functions 
w : D —> R which have continuous derivatives D3kw,k = l , . . . , n and for 
w 6 CW(D,R) we define | H | ( 1 ) = Let R) denotes 
the space of functions w G R) such that their first order derivatives 
DSkw,k = l , . . . , n satisfy the Lipschitz condition with respect to s. For 
w G * ) we define | |w| | ( 1 + L ) = |MI(i) + £ L I If XyY 
are Banach spaces then CL(X,Y) denotes the set of all linear continuous 
operators defined on A' and taking values in Y, and || • | |x is the norm in 
CL(X,Y). Let us denote by J+ the set of all functions a : R+ —> R+ which 
are nondecreasing on R+. Let fiW = [0,ao] X Rn x C^(D,R). 

2. B¡characteristics 
The following assumptions will be needed through the paper. 

ASSUMPTION HI . Suppose that <p : [-/iO,0] x Rn -* R is of class C 1 and 
there are AI,A2 € R-\- such that 

\ \ D i ^ ^u\\Dyv(x,y)-Dy<p{x,y)\\ < Aall»-»!!«, 
(x,y),(x,y) G [~h0,0] x Rn. 

ASSUMPTION H2. Suppose that 

1° Q G C°(i2,R), there exist on fiW the derivatives Dyg,D wq and they 
are continuous on 

2° there exists a i G J+ such that for ( x , y , w ) G i^1) we have 

||Dyg(x,y,w)\\ < ai(||ti>||(i)), \\Dwg(x, y, w)||c°(£>,fl) < <*i(|M|(i)); 

3° there exists Pi G J+ such that for (x, y), (x,y) G [0,a] X Rn, 
w G C\2)(D,R),h G CW(D,R) we have 

||Dyg(x,y, w + h)- Dyg(x,y,w)\\ < /?i(IMI(i+L)XII0 - y\\n + ||/i||(i)) 
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\ \ D w g ( x , y , w + h) — Dwq(x, y, uO||c(°t)(D,/i) < 

</3i(IIHI(i+L))(||lf-y||n + ||fc||(i)). 

Suppose that a G (0,ao],Qi,£j2 £ R+ and Q1 > A i ,Q2 > X2. We say 
that the function z : [ - / i 0 , a ] x Rn R belongs to Ka(Qi,Q2) if 2 is 
continuous and 

( i ) z(x,y) = <p(x,y) for (x,y) G [~ho,0] X Rn 

(ii) there exist continuous derivatives with respect to y and 

\\Dyz(x,y)\\ < Qu \\Dyz(x,y)-Dyz(x,y)\\ < Q2\\y - y\\n, 

(x,y),(x,y) G [ - / i 0 ,a ] X Rn. 

For z G Ka(QuQ2) we define | |;| | . = sup{|2(x, j/)|(l + \\y\\)~l : ( x , y ) G 
[-/i0,a] X Rn}. 

Suppose that a G (0,a0], ( x , y ) G [0,a] X Rn,z G Ka(Qi,Q2) be fixed. 
Consider the following problem 

(3) v'{t) = e ( t , T]{t), ¿(f,„(t)))> = y 

LEMMA 1. If assumptions H i , H2 are satisfied and a G ( 0 , a o ] , Z G 
Q2) then for each ( x , y ) G [0 ,a ] x Rn there exists an unique so-

lution g(-,x,y) = g[z](-,x, y) of the problem ( 3 ) . This solution is defined on 
[0, a ) and the derivatives Dxg,Dykg, k = 1 , . . . , n exist on [0, a] X [0, a] X Rn 

and 

\\Dykg(t,x,y)\\ < Cu \\Dykg(t,x,y) - Dykg(t,x,y)\\ < C2\\y - y\\n, 

k = l , . . . , n , (t,x,y),(t,x,y) G [0,a] x [0,a] x Rn, 

where Ci = exptaa^QiXl + Qx)), C2 = a ^ Q i + Q2)Cl(i + Q1)2 + 
+ai(Qi)Q2C1

2)C1 . Moreover, if z,z G Ka{Qi,Q2) then 

\\g[z](t, x, j,) - x, y)||(l + Ili/H)"1 < axiQOCiHz - *||„, 
( I , X, Y) G [0, a] X [0,A] X Rn. 

The proof of this lemma is based on the Gronwall inequality and we omit 
the details. 

3. Transformation T 
ASSUMPTION H 3 . Suppose that: 

1° / G C°(f2, R), there exist on fiW the derivatives D y f , Dwf and they 
are continuous on 

2° there exists a2 G J+ such that for ( x , y , w ) G we have 

\\Dyf(x, y, w)|| < a2(||«;||(1)), ||Dwf(x, y, w)\\Co{DiR) < a2(|M|(i)); 



618 D. Jaruszewska-Walczak 

3° there exists /?2 € J+ such that for (x,y),(x,y) € [0,a] x Rn, 

w € d j ^ D . R ^ h e CW(D,R) we have 

||Dvf(x,y,x + h) - Dyf(x,y,w)\\ < &(|MI<i+L))(||y ~ »11« + IWI(i))> 
\\Dwf(x, y,w + h)~ D w f ( x , y, ti>)||c(

0
L,(i>,Ji) < 

<A(IIHI( i+L,)( | |»-! i | |» + INI(i)). 
ASSUMPTION H4. If Ho > 0 then suppose that the following consistency 

condition 
n 

Dx<p(.o,y) + ^2Qk(o,y,<p(o,y))DyMQ^y) = /(o, y, v>(0,y)) 
k-1 

holds for y € Rn. 
Suppose that a £ (0,a<)]. For u € Ka(Qi,Q2) we define T : u w Tu in 

the following way: 
X 

(Tu)(x,y) = ¥>(0,5[u](0,x,y))+ f / ( i , a;, y), «(ilS[u](t,x,y))) ¿i 
0 

(4) for (x,y) £ [0,a] x Rn 

(Tu)(x, y) = <p(x, y) for (a , y) € [ - / i 0 , 0 ] x Rn. 
LEMMA 2. Let Assumptions H1-H4 hold. Then there are Qi,Q2 G R+ 

and a € (0,ao] such that the transformation T maps the set Ka(Qi,Q2) into 
itself. 

P r o o f . Let choose Q\,Q2 € R+,a € (0,ao] such that 

Qi > XiCi + aa2(Q1)C1(l + Q1), 

(5) Q2 > A 2 C \ + AxC2 + a(a2(Q!)(C a( 1 + Qi) + Q2Ci)+ 

+ /?2(QI + Q2)C1
2(1 + Q1)2). 

Relation (4) implies for U = Tu 
n 

DykU(x,y) = ¿2Dyi<p{0,f(0,x,y))Dyk9j(0,x,y)+ 
3=1 

X 71 

+ / { Y , D v i K p ( t > x > v » D v M ( t > x > v ) + 

0 j=1 
n 

yjU)(t,g(t,x,y))Dyk9j(t, X, J/)) dt, 
3=1 

where (z ,y) e [0,a] x and P(t,x,y) = (t,g(t,x, y),u(t,g(t,x,y)))-
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By Assumptions II2, H3 and by inequalities (5) we have 

(6) ||DyU(x, y)\\ < A!CI + aa^Q^C^l + Qi) < Qu 

( x , 2 / ) € [ 0 , a ] x E n , 
(7) ||DyU(x, y) - DyU(x,y)\\ < (X1C2 + A2C\)\\x - f||n+ 

+a(a2(Q1)(C2(l + Qy) + Q2C\) + + Q2)Ci2(1 + Qi)2)||t/ - y||n < 

< Q2II» - y||„, (*, y), (X,y) G [0,a] x Rn. 

From (6) and (7) we obtain Lemma 2. 

ASSUMPTION H5. Suppose that Qi,Q2 G R+ and a € (0,ao] satisfy 
(5) and a(Aiori(Qi)Ci + aa 2 (Qi)ai(Qi)Ci(l + Qi) + a 2 (Qi) ) < q where 
0 < q < 1. 

LEMMA 3. Suppose that Assumptions H1-H5 are satisfied. Then trans-
formation T : Ka(Qi,Q2) —> KaiQuQi) has an unique fixed point. 

P r o o f . For u,v € A'a(Qi,CJ2) we have 

||Tti - Tt;||. < a(Ai«2(Qi)Ci 
+aa 2 (Q 1 )ai(Qi)Ci( 1 + QI) + a2(Qi))||u - t>||. < ï||» -

where 0 < q < 1. Thus T is contraction and Lemma 3 we obtain from the 
Banach fixed-point theorem. 

4. The main theorem 
We are now in position to show a theorem on existence and uniqueness 

of solutions of problem (1), (2). 

THEOREM. Suppose that Assumptions II1-H5 are satisfied. Then there is 
a function z G A'a(Qi,(J2) which is an unique solution of problem (1), (2) 
in class Ka(Qi,Q2). 

P r o o f . For z* which is an unique fixed point of T : Ka(Qi,Q2) —> 
KaiQhQi) we have 

(8) z*(x,y) = <p(0,g(0tx,y)) 
N 

+ J f(t,g(t,x,y),z{t g{ttXty)))dt, (x,y) G [0,a] x Rn 

0 
and z*(x,y) = <p(x,y) for ( x , y ) G [- /io,0] X Rn. 

By uniqueness of solutions for (3) the following relation holds 

( 9 ) y = g(x,0,T])<& T} = g(0,x,y). 
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For fixed x € [0,a] this relation represents a 1-1 transformation of the space 
Rn into itself. By taking y = g(x, 0, r?) and making use of (9), relation (8) is 
transformed into 

X 

( 1 0 ) z'{x,g{x,0,ri)) = <p(0,V)+ J f{t,g(t,0,r)),zlg{tfltri)))dt. 
o 

By differentiating (10) with respect to x and taking rj = <7(0, x, y) we obtain 
that z* is a solution of (1), (2). 

R e m a r k . The above result can be extended to weakly coupled quasi-
linear systems 

n 

DxZi(x,y) + ^2eik(x,y,z{Xty))DykZi(x,y) = f i ( x , y , z i X t y ) ) , i= l , . . . , m 
Jt=i 

w h e r e * = ( z i , . . . , z m ) a n d g i k , f i : [ 0 , a o ] x Rn x C°(D,Rm) R, 
i = 1 , . . . , to, k = 1 , . . . , n. 

5. Examples 
Let 0k,J: [0,ao] X Rn X R -»• R, k = l , . . . , n . 
As a particular case of (1), (2) we obtain the initial problem for partial 

differential equations with a retarded argument 
n 

(11) Dxz(x, y) + ^ Qk{x, y, z(71(1), 6i(x, y)))DVk z(x, y) 
k=1 

= 7(x,y,z(-r2(x)62(x,y))) 

where 71,72 : [0 ,a 0 ] R, 6lt62 : [0 , a o ] X Rn -»• Rn. 
We define Qk{x,y,w) = e k ( x , y , w ( j i ( x ) - x,h{x,y) ~ y)), 

f ( x , y, w) = f ( x , y, w ( j 2 ( x ) - x, S2(x, y) - y)) 

and it is easy to formulate a theorem on the existence and uniqueness of 
solutions of Cauchy problem for (11). 

The differential-integral equation 
n 

Dxz(x, y) + y> f z(x + t,y + s) dt ds) Dyk z(x, y) 
fc=1 D 

= f ( x , y , J z(x + t, y + s) dt ds) 

D 

is a particular case of (1) with gk(x,y,w) = gk(x,y, JD z(t,s) dt ds) and 
/ (x , y, w) = J ( x , y, JD z(t, s) dt ds). 
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