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ON A SINGULAR VOLTERRA EQUATION 

1. Introduction 
The importance of equation 

°° F(r) 
(1-1) /(p) = 2 / - = y = = d r 

p V l - ( p / r ) 2 

in investigations of electromagnetic cascades was pointed out by B. Slo-
winski [5]. Here / is a given C1 function on [0, oo[ such that ]imp-^00pf(p) 
does exist. The unique solution F continuous on ]0, oo[ has the form 

( « > nr) = ¿ « - W W - à I ¿ W W I ^ ^ J J , • 

Consult also [6]. This solution can be obtained in the following way. When 
one changes variables in (1.1) by introducing 

(1.3) y : = i , i : = I r p 
and by defining new functions 

(1-4) * • ) : - / ( } ) , «»> - ¿ ' ( J ) . 

then the equation (1.1) becomes 

u(y)dy (1.5) 7;(*)= f , 
i Vi - (y/t)2 

The equation (1.5) was derived by H. Wagner [9] in a connection with his 
studies on landing of seaplanes. The unique continuous on ]0, oo[ solution of 
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equation (1.5) is (see W. Tollmien [8]) 

[•K01 2 f d 
+ - y J 17 7T J dt 0 

dt 

t 

2 f d 
+ - y J 17 7T J dt 0 

t V v 2 - t 2 
(1 .6) u(y) = — lim 

7r t—>o+ 

Then the formula (1.2) follows from (1.6) by means of (1.3) and (1.4). 
More general Abel-type equations were investigated by M. Soupline [7]. 

We refer to W. Schmeidler [4] for further informations on Volterra equations 
and for useful references to original papers. 

For some physical reasons (consult, e.g., G. A. Acopdjanov [1] and B. Slo-
wiriski papers), the most interesting solution of (1.1) is for the function 

(1.7) m = - L - P / a 

where a > 0 is constant. For this function we obtain, by (1.2), 

ds 
(1.8) F i r ) / ( H ) ' 7ra- u \s rJ 

~ r / a 3 . 

The integrand in (1.8) is a C°° function of s on [0,1[ (if we let 0 for s = 0) 
and the singularity of this function at 1 is weak. Moreover, the function F 
defined by (1.8) is a very well defined analytic function on ]0,oo[. 

Our aim is to study the behaviour of F at infinity and at zero. Some 
results in this topic were announced in [3]. 

2. On Kostritsa conjecture 
A. A. Kostritsa [2] suggests that the solution of (1.1) for the function 

(1.7) has the form 

(2.1) F(r) = const. , 

where Ko is the MacDonals's function. If the function F were as in (2.1) it 
would satisfy the equation 

(2.2) r2F"(r) + rF'(r)-^F(r) = 0. 
a 

But the result of substitution of F described in (1.8) into the left-hand side 
of equation (2.2) is 

1 r z L _ +
 r 2 V - r / a « d s 

7ra2 jf \a r s a2s as2 a2sj s2>/l — s2 

It is clear that the above function does not identically vanish, and hence, 
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for every real constants ci and C2, there exists a positive r such that 

In particular, (2.1) does not hold. 

3. Behaviour of F at infinity 
Let us define the function h :]0, l[xiZ+ —> R by the formula 

( 5 U ) h M - = sWl-»* 
We see that for F defined by (1.8) 

(3.2) 
0 v 7 

Hence, the behaviour of F for small r > 0 and range r, say r > a, is 
completely described by estimates of the function 

l 
(3.3) II(x):= J h(s,x)ds 

o 
for small x > 0 and x > 1, respectively. 

LEMMA 3 .4 . There exists C+ > 0 such that H(x) < C+e~x for every 
x > 1. 

P r o o f . We see from formulae (3.1) and (3.3) that 

ds 
S2 

Since 7 = 7 + and ^ > x - 1 for s G]0,1[, we infer that 8 3 S 3 

H(x) < f e-1" e-^)'* , , < e1"* f . 

The result follows with 

(3.4') C7+ = e / - 5 ^ S f . -v ' J i 

LEMMA 3 .5 . Let c € R and c > 1. Then there exists C~ > 0 such that 

H(x) > C-e"*2/2 

for every x > c. 
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P r o o f . By means of estimates x • j < \{x2 + pr) and ^ < jt for 
s €]0,1[, we derive inequality 

V ds 
Jy/l^s* 

1 ds \ \ J. e - ^ d s = > ( i - I ) e - n j 

Thus, the result holds with 

c — 1 r _i /o„2 ds 
(3.5') C~ = — / e - 1 /2® 

- o 

R e m a r k 3.6. It is easy to see that 

l > f ±e-V»2ds = - L . 

£ s 3 v / l - s 2 0 s 

Thus, one can take the constant C~ = ^ ^ in Lemma 3.5. and C~ = 7rb= if ' c\/e 2\/e c > 2. 
Now, composing (3.2 -j- 5), we obtain the following result. 

T H E O R E M 3.7. Let c > 1. Then the function F defined by formula (1.8) 
has the estimates: 

C+ 
F(r) < —~e~r/a forr>a 

7Tfl 
C~ 2 2 

F(r) > —je~r for every r > ca, 

where positive constants C+ and C~ are defined by (3.4') and (3.5'), respec-
tively. 

R e m a r k 3.8. By the methods used above one can also prove that 
as r oo for any derivative F^ of the function F. 

4. Es t imates of F on ]0, a[ 
We assume throughout this paragraph that 0 < x < 6 < 1. It is not 

difficult to calculate 

( 4 , ) , ,<„»>: . 
«2 

2b* 2 b ' 
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(4.2) M x , 6 ) : = / . - / • ( = 

X 

(4.3) / 3(x) : = / , - / ' ( 
0 x 7 

Note that Ii(x,b) < 0, h ( x , b) < 0 and h ( x ) > 0, since the functions under 
integrals in ( 4 . 1 ) - ( 4 . 3 ) have constant sign. 

It is visible from formulae (3.1) and (4.3) that 

1 x 1 
— j < f h(s,x)ds < 
ex2 o ex2 v l — x2 

for x G]0,1[. This implies that 
x 1 

lim x2 I h(s,x)ds=-i-»o+ J e o 
which means that h(-, x) has a very high local maximum in the interval ]0, x[ 
if x > 0 is a fixed small real number. 

Dividing the interval [0,1] into three ones: [0,x],[x,6] and [6,1], and 
taking into account (3.3), (4.1)-(4.3), we obtain 

(4.4) H{x) < - j = = I 3 { x ) + - ^ = = / 2 ( x , & ) + e-x'bh{x,b), 

( 4 . 5 ) H(x) > J3(x) + _ ^ L = / 2 ( X , 6 ) + e~xIi(x,b). 

# 

These estimates are valid for all x,b such that 0 < x < b < 1. 

L e m m a 4 .6 . 7 / 0 < x < 6 < 1 then 

(4.6.1) * ( , ) < I l a S - I l n H ^ + ^ ^ - ^ F ) = : « • ( » , » ) • 

Moreover, for c € ] 0 , l [ and b = xc, we have 

{lim x 2 / 3 Q+(x,x 1 / 3 ) = 1, 

x—>0+ 

^l im + x 1 - c Q+(x,x c )= \ force] 0 , | [ , 

Jhn + x 2 c Q+(x,x c ) = i for c G] j, l [ . 
P r o o f . By means of the estimate (4.4) and equalities (4.1)-(4.3), we 

obtain * w < + T i b - + ' ~ " b h ( " b ) < 
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xb\/1 — x2 ^ ' ^ 

and, since 
V T ^ F < 1 and ln(l + v T ^ F ) < In 2, we see that (4.6.1) holds. 

To prove (4.6.2) let us notice that xc > x for any c G]0,1[ and x G]0,1[. 
Hence, by (4.6.1) H(x) < Q+(x,xc), where 

Q + ( s , z c ) = i l n 2 - | l n z + i * - 2 * 

+ x c " 1 
c 2 - 2 C _ X 2 + 1 

+ ^ l - x ^ l - x ^ ) ) ' 

This formula for Q+(x,xc) makes all limits in ( 4 .6 .2 ) evident. 

LEMMA 4 .7 . If0<x<b<l then 

and, for c €]0,1[ and b = x°, we have 

(4 .7 .2 ) 

f lim x2-2=Q-(x,xc) = - i i f c e ] 0 , i [ , 
x—>0+ 
lim xQ (x,y/x) = 

x—>0+ 
l i m x 2 c Q - ( x , x c ) = if c 1[. 

P r o o f . By (4.5) and (4.1)-(4.3), we infer 

1 e~x!h 1 
(4.7.3) H(x) > -Ar + , T 

+ 262 xb 
We dropped the term with ln(. . . ) , since it is positive for all b €]0,1[ and, 
when multiplied by xc , it tends to zero as x —• 0 for 6 = xc . Combining the 
first term with third, and the second one with last in (4.7.3), 

+ 262 

x 2 ey / T^6 2 x&v/T^t2 J x + 2i>2 
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Since 

tu (iW^t 
k\ fc=l v ' k=l 

and, clearly, 
00 f_i^fc-i 

o<Y,k\—*k<x f o r x ( E M ' 
k=1 

the following inequality holds 

-b2 

(4.7.4) H(x) > 
t~ 1 ^ ' 

k-l 

+ 262 ' 
where we dropped £ e - x , having limx_+o+ X ( ^ r e ~ x ) = 0 every c > 0. 
Since 0 < f < 1 and tends monotonically to zero as k —<• 00, we 
have the estimate 

k-l 

-kEStUJ <0 
k=\ x 7 

which, used in (4.7.4), gives (4.7.1). 
For b = x° we have 

= ¡ T T ^ " " ' * + - -jèsc) 
and thus all limits in (4.7.2) are evident. • 

R e m a r k s . Taking the right-hand side of (4.4) as the upper bound 
Q+(x,b) of H in (4.6.1), we obtain the same limits for such Q+(x,b) as 
written down in (4.6.2). Similarly, if one replaces Q~(x,xc) by the lower 
bound written in (4.5) with b = xc, then the limits (4.7.2) remain still valid. 
From (4.6.2) it is easy to see that the best upper bound near zero (with 
b = x°) is for c = j . The best lower bound that may be obtained by this 
method is for c = | . 

Lemmas 4.6 and 4.7 imply the result as follows. 

COROLLARY 4.8. For every e > 0,limx_+0+ x1+cH(x) = 0. 

P r o o f . For x €]0,1[ and £ > 0, we obtain the followinf estimates, by 
virtue of (4.6.1) and (4.7.1), 

x e x Q ~ ( x < x1+eH(x) < x^3+tx2/3Q+(x,^x). 

Applying (4.6.2) and (4.7.2) to the above lower and upper bounds, we obtain 
the result. • 
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Let us define for r e]0, a[ the following functions 

(4.9) F+(r) := ( L , ¡F) J ^ ( r ) := ~2Q~ J?) . 7ra2 \a V a / Tra2 \ a V a J 
We now formulate results concerning asymptotics of F near zero. 

THEOREM 4 .10 . For every r G]0,A[ 

(4 .10 .1 ) F~{r) < F(r) < F + ( r ) 

and F(r) = 0(j:) as r —> 0. In particular, limr_>0+ rl+eF(r) = 0 for every 
£ > 0. Moreover, 

f lim r*/3F+(r) = , 
/ , I r-o+ 7ra4/3 

( 0 J I V R W X 1 /^1 lim rF~(r) = + - . 
I r-+o+ w i a \ 2 c / 

P r o o f . From (3.2) and (3.3) it follows that 

(4.10.3) f ( r ) = _ i . „ ( 0 . 

Hence, viewing (4.6.1), (4.7.1) and (4.9), we obtain (4.10.1). 
Now, by virtue of (4.6.2) and (4.9), 

lim r a ' » f + ( r ) = «»/3 lim ( ( ¡ F ) = - ^ J . r—»0+ r - o + \ a / 7ra2 \a \ a J ira4/3 

Similarly, by virtue of (4.7.2) and (4.9), 

lim [ r f - ( r ) ] = a lim i - • ( - , 
r—»0+ r—o+ La TO2 \ a V a / J 

= — lim [a;Q"(x, V®)] = - — ( J + - ) • na x-+o+ 7ra \ 2 e / 
Thus, equalities (4.10.2) are valid. The remaining statements easily follow 
from (4.10.2) and from the fact that r c ln r —• 0 as r —> 0+ for any c > 0. • 

Theorems 3.7 and 4.10 imply the following result. 
COROLLARY 4 .11 . For every real m > 1 the integral J"0°° rmF(r)dr is 

convergent. 
One important question remains still open. Is the function F positive 

everywhere on R + ? From Theorem 3.7 we see that it is the case for r 6 [a, oo[. 
It is also not difficult to deduce from (3.1)^(3.3) that F'(r) < 0 for all r > a. 
To prove that F(r) > 0 for r €]0, a[, it is sufficient to show that H(x) > 0 
for x e]0,1[ (see (3.2) and (3.3)). Unfortunately, for a fixed small x > 0 the 
function ]0,1[9 s H-> h(s, x) 6 R has a high positive local maximum in ]0, x[ 
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and a low negative local minimum for s > x, near zero. This can be seen 
from equality (4.3) and Lemma 4.6 or from the estimate 

1 ^ 1 
/ 9 / / 2 ( x , ^ ) < f h(s,x)ds < v 1 - I2/3

 J
x Vl - x2 

where is defined by (4.2). Since 

I2(x, = x" 4 / 3 exp(-x2 /3) - - x " 2 , 
e 

we see that 
lim x2I2{x,\/x) = — . 

x—»o+ e 
The same type of troubles appears for derivative H'(x) in interval ]0,1[. Is 
H'(x) < 0 for all x €]0,1[? Computer calculations show that H(x) > 0 and 
H decreases for x > 10 - 6 (Slowinski's private communication). If F(r) > 0 
or, equivalently, H(x) > 0 for all positive r and x, then one can use F, after 
a suitable normalization, as a probability density fi on the plane, namely: 

C • F ( y / ^ T t f ) = / ¿ (x , y), ( x , y ) e R 2 , 

where 
1 r 0 0 —x 

0 

The integral above is convergent, by virtue of Corollary 4.11, which would 
also guarantiee the existence of all moments for fi. 
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