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ON A SINGULAR VOLTERRA EQUATION

1. Introduction
The importance of equation

(L1) f) = f \/F(T’/)

in investigations of electromagnetlc cascades was pointed out by B. Slo-
wifiski [5]. Here f is a given C! function on [0, oo[ such that lim,_,. pf(p)
does exist. The unique solution F continuous on ]0, co[ has the form

(12)  F(r)= —2Ph1r°1o pf(p)] - 7”.2 f pi2l0 Hﬁ

Consult also [6]. This solution can be obta.ined in the following way. When
one changes variables in (1.1) by introducing

1
(13) Y= ;, t:= ;
and by defining new functions

2 et )

then the equation (1.1) becomes
u(y)dy

The equation (1.5) was derived by H. Wagner [9] in a connection with his
studies on landing of seaplanes. The unique continuous on ]0, co[ solution of
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equation (1.5) is (see W. Tollmien [8])

(1.6) uly) = ;t lm, [n(t)] +2, [n(t)] m

Then the formula (1.2) follows from (1.6) by means of (1.3) and (1.4).
More general Abel-type equations were investigated by M. Soupline [7].
We refer to W. Schmeidler [4] for further informations on Volterra equations
and for useful references to original papers.
For some physical reasons (consult, e.g., G. A. Acopdjanov [1] and B. Slo-
winiski papers), the most interesting solution of (1.1) is for the function

(L.7) f(p) = —e“’/"

where a > 0 is constant. For this functlon we obtain, by (1.2),

(1.8) F(r)= L 1_a e"'/“—ds
) —7ra'-’0 s T 2y1=s°

The integrand in (1.8) is a C*° function of s on [0, 1[ (if we let 0 for s = 0)
and the singularity of this function at 1 is weak. Moreover, the function F
defined by (1.8) is a very well defined analytic function on ]0, col.

Our aim is to study the behaviour of F at infinity and at zero. Some
results in this topic were announced in [3].

2. On Kostritsa conjecture
A. A. Kostritsa [2] suggests that the solution of (1.1) for the function
(1.7) has the form

(2.1) F(r) = const. Ko (2) :

where Ky is the MacDonals’s function. If the function F were as in (2.1) it
would satisfy the equation

: r2
(2.2) P F"(r) + TF'(r) - 2 F(r) = 0.

But the result of substitution of F' described in (1.8) into the left-hand side
of equation (2.2) is
1 ffr a 1 ¢ 2r + r? J— ds
s \a r s a’s as® a’s 21 —s?’

ra?
It is clear that the above function does not identically vanish, and hence,
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for every real constants ¢; and ¢, there exists a positive 7 such that

F(r)# aly (s) + 2 Ko (2) .

In particular, (2.1) does not hold.

3. Behaviour of F at infinity
Let us define the function 4 :]0,1[X R4 — R by the formula

(3.1) h(s,z) := (.1. _ %) e;;r:}l—f_/;)

s
We see that for F defined by (1.8)

(32) F(r) = f h(s, )

Hence, the behaviour of F for small r > 0 and range r, say r > a, is
completely described by estimates of the function

1
(3.3) H(z):= [ h(s,z)ds
0

for small z > 0 and z > 1, respectively.

LEMMA 3.4. There exists Ct > 0 such that H(z) < Cte™ for every
z>1

Proof. We see from formulae (3.1) and (3.3) that

1
ds
H < —zfs____ 7
(@) 6[ ‘ $3v1—s?

z=1 5 g — 1 for s €]0,1[, we infer that

. z _ 1
Since £ =

ds boelsds
-1/s —(a: 1)/s 1-z
fiz) < fe e < s

The resuit follows with
(3.4") Ct=e [
LEMMA 3.5. Let ¢ € R and ¢ > 1. Then there ezists C~ > 0 such that

H(z)>C e = /?

for every z > c.
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Proof. By means of estimates -1 < 1(z? + %) and & < % for
s €]0, 1[, we derive inequality

1
11 1, 1 ds
H(z)> (‘)f (33 - a:s3)exP (_ 2% ~ 232)\/IT_3—2
(1__1_> _xz/zf ~1/s @8 ds (1__) _zz/2f —1/23 ds
z 33\/1 s3v1—s
Thus, the result holds with

c—1 1} 2 ds
3.5 C™ = [
(3.5 c Of ¢ aice "

Remark 3.6. It is easy to see that

1 1 .
f — € 128" = > (*)f 8—36 /2s ds = —.

s 83 V1-s? Ve
Thus, one can take the constant C~ = %15 in Lemma 3.5.and C~ = 217 if
c2 2.

Now, composing (3.2 + 5), we obtain the following result.

THEOREM 3.7. Let ¢ > 1. Then the function F defined by formula (1.8)
has the estimates:

ct
F(r)< me"/“ Jorr>a
F(r)> %e"’z/"z for every r > ca,

where positive constants Ct and C~ are defined by (3.4') and (3.5'), respec-
tively.

Remark 3.8. By the methods used above one can also prove that
F(™) (1) = 0(e~"/) as r — oo for any derivative F(*) of the function F.

4. Estimates of F on 0,4q[
We assume throughout this paragraph that 0 < z < b < 1. It is not
difficult to calculate

1
1 1 ds
@1)  L(z,b):= bf(?"'z—sf)ﬁ
_YIF 1 14VIER 1
=T T2 b 2t
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1 1 1
= —z/s - = —e%/b _
(42)  D(z,b):= f e ( zs2)ds e ol
1
= —zfs _ =
(4.3) I3(z) := f e ( a:.92>ds =

Note that I;(z,b) < O,Ig(z,b) < 0 and I3(z) > 0, since the functions under
integrals in (4.1)-(4.3) have constant sign.
It is visible from formulae (3.1) and (4.3) that

< f h(s,z)ds <

6372 ex?y1 —z°

for z €]0, 1[. This implies that

-0+

r 1
1 2 _——
lim z !h(s,z)ds— S

which means that (-, z) has a very high local maximum in the interval ]0, z[
if £ > 0 is a fixed small real number.

Dividing the interval [0,1] into three ones: [0,z],[z,b] and [b,1], and
taking into account (3 3), (4.1)-(4. 3), we obtain
———I,(z,b) + e~ */*I;(z,b),

(44) H(z)< —==Li(z)+

\/_
12(13 b)+€ II](.’D b)

J_
1
4.5 H(z) > I3(z) +
(4.5) (z) > Is(z) 5
These estimates are vahd for all z,bsuchthat 0 <z < b < 1.
LEMMA 4.6. If0 <z < b< 1 then

1 1 1 1
(461) H(.’E)< —1Il2 1 b+2b2+ b(ﬁ—\/l—bz) =:Q+(z,b).

Moreover, for ¢ €]0,1[ and b = z°, we have
lim z%3Q*(z,z1/3) =1,

z—0+
l-cnH+ c 1
(4.6.2) zlu&z Q*(z,z°)=1 forc€l0, 3,
lll})l z2°Q*(z,z¢) = - Jorc e]:l?, 1.

Proof. By means of the estimate (4.4) and equalities (4.1)—(4.3), we
obtain

1 1 1 1
H —e~/b . ~z/b
(Z)( 612\/1_z2 + \/1_32 (:l:be ez2) +e Il(a:’b)<
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1
< ———x + I1(z,b
zb\/l—x2+ (=)

1 V1 -5% 1 1 1 — b2
“ln(1+V1—b%) - ~lnb-
<zb\/1—x2+ 2b2 +2ln( + ) 2" zb

and, since v1 - 6% < 1 and In(1+v1 - %) < In 2, we see that (4.6.1) holds.
To prove (4.6.2) let us notice that z° > z for any ¢ €]0,1] and z €]0,1[.
Hence, by (4.6.1) H(z) < Q*(z,z°), where

Q*(z,2%) = —21-ln 2- %lnz + %z"h
. 2?72 — g2 4]
VI=22(1+ /(1 -2?)(1~%))
This formula for Q*(z,z°) makes all limits in (4.6.2) evident. "
LEMMA 4.7. If0 < 2 < b < 1 then

—b? 1 V1 -2
- + T = Q(=0h)
zleV/1 -0  b2V/1 - b2 2b
and, for ¢ €]0,1[ and b = z°¢, we have

lim z2-%2¢Q~(z,z%) = -1  ifc €]0,1{,

+z°”

(4.7.1)  H(z)>

z—0+
(4.7.2) lim 2Q~(z,v&) = -1 - §,
lim 22°Q~(2,2%) = -7 ifcelp1l.

Proof. By (4.5) and (4.1)-(4.3), we infer

1 e~z/b 1
(4.7.3) H(.’B) > m +

V-8 . V1-8
LT e

We dropped the term with In(...), since it is positive for all b €]0, 1] and,

when multiplied by z¢, it tends to zero as z — 0 for b = z°. Combining the

first term with third, and the second one with last in (4.7.3),

2

H(z)> b + - (eIt — e=% 4 b%e™?)
z2evV/1-b%(1 4+ vV1-02)  zby1 - b2
V1-082 -
T I
> —b? + ! (e“"‘/b -e ")+ —b-e'z + —1 — b? e %,
zZey/1 — b2  zby1— b2 z 2b%
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Since

and, clearly,

o (=1)F
0<Z % <32 for z €0,1[,

the following inequa.lity—holds

~b? 1 1)F
(4.74)  H(z)> x2em+b2mz( ) ( )

vV1-562 _

2%t ¢
where we dropped —e“‘ having lim,_,q+ a:(—e %) = 0 for every ¢ > 0.
Since 0 < ¥ <1 and % (%£)¥~! tends monotonically to zero as k — oo, we

have the estimate
o (—l)k T k-1
1<)’ T <0

which, used in (4.7.4), gives (4.7.1).
For b = z° we have

-1 1 1
- ey —2+42c = e 2pp—T _ -2c
Q (:c,a:)_e —2 +(2\/1 z2ce 1—z2°)x

and thus all limits in (4.7.2) are evident. ]

Remarks. Taking the right-hand side of (4.4) as the upper bound
Q*(z,b) of H in (4.6.1), we obtain the same limits for such @*(z,d) as
written down in (4.6.2). Similarly, if one replaces @~ (z,z°) by the lower
bound written in (4.5) with b = z°, then the limits (4.7.2) remain still valid.
From (4.6.2) it is easy to see that the best upper bound near zero (with
b=z is for c = % The best lower bound that may be obtained by this

method is for ¢ = %

+

Lemmas 4.6 and 4.7 imply the result as follows.
COROLLARY 4.8. For every ¢ > 0,lim,_,g+ 21t H(z) =

Proof. For z €]0,1[ and ¢ > 0, we obtain the followmf estimates, by
virtue of (4.6.1) and (4.7.1),

2°2Q " (z,V/z) < 't H(z) < 2'/3*2 2/3Q+(x f ).

Applying (4.6.2) and (4.7.2) to the above lower and upper bounds, we obtain
the result. [
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Let us define for r €]0, a[ the following functions
1 rofr 1 r Ir
+(r) e +(I 5/T). “(r) = —Q [ -,/ -
(49) F (7‘) - 7ra2Q (a’ ’ F (’I‘) N ”azQ ( ’ a

a a
We now formulate results concerning asymptotics of F' near zero.
THEOREM 4.10. For every r €]0, a[
(4.10.1) F~(r) < F(r) < F*(r)

and F(r) = 0(%) as r — 0. In particular, lim,_g+ r'*°F(r) = 0 for every
€ > 0. Moreover,

1
lim r?3F+(r) = ——
r—0+ nad/3’
(4.10.2) R e
0+ T ma\2 e/’
Proof. From (3.2) and (3.3) it follows that
1

Hence, viewing (4.6.1), (4.7.1) and (4.9), we obtain (4.10.1).
Now, by virtue of (4.6.2) and (4.9),

lim r2/3F+(r)—a2/3 im (I 2/3-—!——Q+ Tl = 1
ra? a’

r—0+ r—0+ \ @ a mat/3’
Similarly, by virtue of (4.7.2) and (4.9),

lim [rF~(r)] = @ lim, [2 @ ( \/—)]

. - 1 1
= ;EEILI&[%Q (z,Vz)] = _E(E + ;) -
Thus, equalities (4.10.2) are valid. The remaining statements easily follow

from (4.10.2) and from the fact that r°lnr — 0 as r — 0t forany ¢ > 0. =
Theorems 3.7 and 4.10 imply the following result.

COROLLARY 4.11. For every real m > 1 the integral [° r™F(r)dr is
convergent.

One important question remains still open. Is the function F positive
everywhere on R;? From Theorem 3.7 we see that it is the case for r € [a, 0o].
It is also not difficult to deduce from (3.1)+(3.3) that F'(r) < Oforall 7 > a.
To prove that F(r) > 0 for r €]0,a[, it is sufficient to show that H(z) > 0
for z €]0, 1] (see (3.2) and (3.3)). Unfortunately, for a fixed small z > 0 the
function ]0,1[3 s — h(s,z) € R has a high positive local maximum in )0, z[



Singular Volterra equation 613

and a low negative local minimum for s > z, near zero. This can be seen
from equality (4.3) and Lemma 4.6 or from the estimate

\/1___7_12(17, Vz) < f h(s,z)ds < \/_Ig(:v,\/_),
where I is defined by (4.2). Smce

Iz, ¥2) = 2™ exp(~2*%) — =7,
we see that
lim 2’ Iy(z,¥/z) = -~

The same type of troubles appears for derivative H'(z) in interval ]0,1[. Is
H'(z) < 0 for all z €]0,1[? Computer calculations show that H(z) > 0 and
H decreases for z > 10~® (Slowifski’s private communication). If F(r) > 0
or, equivalently, H(z) > 0 for all positive r and z, then one can use F, after
a suitable normalization, as a probability density x on the plane, namely:

C-F(Vaz? +y?) = u(z,y), (2,9) €R?,

where -
= 517;[ f rF(r)dr]_
0

The integral above is convergent, by virtue of Corollary 4.11, which would
also guarantiee the existence of all moments for p.
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