

Jan Rogulski

ON A SINGULAR VOLTERRA EQUATION

1. Introduction

The importance of equation

$$(1.1) \quad f(p) = 2 \int_p^\infty \frac{F(r)}{\sqrt{1 - (p/r)^2}} dr$$

in investigations of electromagnetic cascades was pointed out by B. Słowiński [5]. Here f is a given C^1 function on $[0, \infty[$ such that $\lim_{p \rightarrow \infty} pf(p)$ does exist. The unique solution F continuous on $]0, \infty[$ has the form

$$(1.2) \quad F(r) = \frac{1}{\pi r^2} \lim_{p \rightarrow \infty} [pf(p)] - \frac{1}{\pi r^2} \int_r^\infty \frac{d}{dp} [pf(p)] \frac{dp}{\sqrt{1 - (r/p)^2}}.$$

Consult also [6]. This solution can be obtained in the following way. When one changes variables in (1.1) by introducing

$$(1.3) \quad y := \frac{1}{r}, \quad t := \frac{1}{p}$$

and by defining new functions

$$(1.4) \quad \eta(t) := f\left(\frac{1}{t}\right), \quad u(y) := \frac{2}{y^2} F\left(\frac{1}{y}\right),$$

then the equation (1.1) becomes

$$(1.5) \quad \eta(t) = \int_0^t \frac{u(y) dy}{\sqrt{1 - (y/t)^2}}.$$

The equation (1.5) was derived by H. Wagner [9] in a connection with his studies on landing of seaplanes. The unique continuous on $]0, \infty[$ solution of

This paper has been presented at the Vth Symposium on Integral Equations and Their Applications, 10-13 December 1991, held at the Institute of Mathematics, Warsaw University of Technology.

equation (1.5) is (see W. Tollmien [8])

$$(1.6) \quad u(y) = \frac{2}{\pi} \lim_{t \rightarrow 0^+} \left[\frac{\eta(t)}{t} \right] + \frac{2}{\pi} y \int_0^y \frac{d}{dt} \left[\frac{\eta(t)}{t} \right] \frac{dt}{\sqrt{y^2 - t^2}}.$$

Then the formula (1.2) follows from (1.6) by means of (1.3) and (1.4).

More general Abel-type equations were investigated by M. Soupline [7]. We refer to W. Schmeidler [4] for further informations on Volterra equations and for useful references to original papers.

For some physical reasons (consult, e.g., G. A. Acopdjanov [1] and B. Śliński papers), the most interesting solution of (1.1) is for the function

$$(1.7) \quad f(p) = \frac{1}{a} e^{-p/a},$$

where $a > 0$ is constant. For this function we obtain, by (1.2),

$$(1.8) \quad F(r) = \frac{1}{\pi a^2} \int_0^1 \left(\frac{1}{s} - \frac{a}{r} \right) e^{-r/as} \frac{ds}{s^2 \sqrt{1-s^2}}.$$

The integrand in (1.8) is a C^∞ function of s on $[0, 1[$ (if we let 0 for $s = 0$) and the singularity of this function at 1 is weak. Moreover, the function F defined by (1.8) is a very well defined analytic function on $]0, \infty[$.

Our aim is to study the behaviour of F at infinity and at zero. Some results in this topic were announced in [3].

2. On Kostritsa conjecture

A. A. Kostritsa [2] suggests that the solution of (1.1) for the function (1.7) has the form

$$(2.1) \quad F(r) = \text{const. } K_0 \left(\frac{r}{a} \right),$$

where K_0 is the MacDonals's function. If the function F were as in (2.1) it would satisfy the equation

$$(2.2) \quad r^2 F''(r) + r F'(r) - \frac{r^2}{a^2} F(r) = 0.$$

But the result of substitution of F described in (1.8) into the left-hand side of equation (2.2) is

$$\frac{1}{\pi a^2} \int_0^1 \left(\frac{r}{a} - \frac{a}{r} - \frac{1}{s} - \frac{r^2}{a^2 s} - \frac{2r}{as^2} + \frac{r^2}{a^2 s} \right) e^{-r/as} \frac{ds}{s^2 \sqrt{1-s^2}}.$$

It is clear that the above function does not identically vanish, and hence,

for every real constants c_1 and c_2 , there exists a positive r such that

$$F(r) \neq c_1 I_0\left(\frac{r}{a}\right) + c_2 K_0\left(\frac{r}{a}\right).$$

In particular, (2.1) does not hold.

3. Behaviour of F at infinity

Let us define the function $h :]0, 1[\times R_+ \rightarrow R$ by the formula

$$(3.1) \quad h(s, x) := \left(\frac{1}{s} - \frac{1}{x}\right) \frac{\exp(-x/s)}{s^2 \sqrt{1-s^2}}$$

We see that for F defined by (1.8)

$$(3.2) \quad F(r) = \frac{1}{\pi a^2} \int_0^1 h\left(s, \frac{r}{a}\right) ds.$$

Hence, the behaviour of F for small $r > 0$ and range r , say $r \gg a$, is completely described by estimates of the function

$$(3.3) \quad H(x) := \int_0^1 h(s, x) ds$$

for small $x > 0$ and $x \gg 1$, respectively.

LEMMA 3.4. *There exists $C^+ > 0$ such that $H(x) < C^+ e^{-x}$ for every $x > 1$.*

Proof. We see from formulae (3.1) and (3.3) that

$$H(x) < \int_0^1 e^{-x/s} \frac{ds}{s^3 \sqrt{1-s^2}}.$$

Since $\frac{x}{s} = \frac{1}{s} + \frac{x-1}{s}$ and $\frac{x-1}{s} > x-1$ for $s \in]0, 1[$, we infer that

$$H(x) < \int_0^1 e^{-1/s} e^{-(x-1)/s} \frac{ds}{s^3 \sqrt{1-s^2}} < e^{1-x} \int_0^1 \frac{e^{-1/s} ds}{s^3 \sqrt{1-s^2}}.$$

The result follows with

$$(3.4') \quad C^+ = e \int_0^1 \frac{e^{-1/s} ds}{s^3 \sqrt{1-s^2}}. \blacksquare$$

LEMMA 3.5. *Let $c \in R$ and $c > 1$. Then there exists $C^- > 0$ such that*

$$H(x) > C^- e^{-x^2/2}$$

for every $x > c$.

Proof. By means of estimates $x \cdot \frac{1}{s} < \frac{1}{2}(x^2 + \frac{1}{s^2})$ and $\frac{1}{s^2} < \frac{1}{s^3}$ for $s \in]0, 1[$, we derive inequality

$$\begin{aligned} H(x) &> \int_0^1 \left(\frac{1}{s^3} - \frac{1}{xs^3} \right) \exp \left(-\frac{1}{2}x^2 - \frac{1}{2s^2} \right) \frac{ds}{\sqrt{1-s^2}} \\ &= \left(1 - \frac{1}{x} \right) e^{-x^2/2} \int_0^1 e^{-1/s^2} \frac{ds}{s^3 \sqrt{1-s^2}} > \left(1 - \frac{1}{c} \right) e^{-x^2/2} \int_0^1 \frac{e^{-1/2s^2} ds}{s^3 \sqrt{1-s^2}}. \end{aligned}$$

Thus, the result holds with

$$(3.5') \quad C^- = \frac{c-1}{c} \int_0^1 e^{-1/2s^2} \frac{ds}{s^3 \sqrt{1-s^2}}. \quad \blacksquare$$

Remark 3.6. It is easy to see that

$$\int_0^1 \frac{1}{s^3} e^{-1/2s^2} \frac{ds}{\sqrt{1-s^2}} > \int_0^1 \frac{1}{s^3} e^{-1/2s^2} ds = \frac{1}{\sqrt{e}}.$$

Thus, one can take the constant $C^- = \frac{c-1}{c\sqrt{e}}$ in Lemma 3.5. and $C^- = \frac{1}{2\sqrt{e}}$ if $c \geq 2$.

Now, composing (3.2 ÷ 5), we obtain the following result.

THEOREM 3.7. *Let $c > 1$. Then the function F defined by formula (1.8) has the estimates:*

$$\begin{cases} F(r) < \frac{C^+}{\pi a^2} e^{-r/a} & \text{for } r \geq a \\ F(r) > \frac{C^-}{\pi a^2} e^{-r^2/a^2} & \text{for every } r > ca, \end{cases}$$

where positive constants C^+ and C^- are defined by (3.4') and (3.5'), respectively.

Remark 3.8. By the methods used above one can also prove that $F^{(n)}(r) = 0(e^{-r/a})$ as $r \rightarrow \infty$ for any derivative $F^{(n)}$ of the function F .

4. Estimates of F on $]0, a[$

We assume throughout this paragraph that $0 < x < b < 1$. It is not difficult to calculate

$$\begin{aligned} (4.1) \quad I_1(x, b) &:= \int_b^1 \left(\frac{1}{s^3} - \frac{1}{xs^2} \right) \frac{ds}{\sqrt{1-s^2}} \\ &= \frac{\sqrt{1-b^2}}{2b^2} + \frac{1}{2} \ln \frac{1+\sqrt{1-b^2}}{b} - \frac{1}{xb} \sqrt{1-b^2}, \end{aligned}$$

$$(4.2) \quad I_2(x, b) := \int_x^b e^{-s/x} \left(\frac{1}{s^3} - \frac{1}{xs^2} \right) ds = \frac{1}{xb} e^{-x/b} - \frac{1}{ex^2},$$

$$(4.3) \quad I_3(x) := \int_0^x e^{-s/x} \left(\frac{1}{s^3} - \frac{1}{xs^2} \right) ds = \frac{1}{ex^2}.$$

Note that $I_1(x, b) < 0$, $I_2(x, b) < 0$ and $I_3(x) > 0$, since the functions under integrals in (4.1)–(4.3) have constant sign.

It is visible from formulae (3.1) and (4.3) that

$$\frac{1}{ex^2} < \int_0^x h(s, x) ds < \frac{1}{ex^2 \sqrt{1-x^2}}$$

for $x \in]0, 1[$. This implies that

$$\lim_{x \rightarrow 0^+} x^2 \int_0^x h(s, x) ds = \frac{1}{e}$$

which means that $h(\cdot, x)$ has a very high local maximum in the interval $]0, x[$ if $x > 0$ is a fixed small real number.

Dividing the interval $[0, 1]$ into three ones: $[0, x]$, $[x, b]$ and $[b, 1]$, and taking into account (3.3), (4.1)–(4.3), we obtain

$$(4.4) \quad H(x) < \frac{1}{\sqrt{1-x^2}} I_3(x) + \frac{1}{\sqrt{1-x^2}} I_2(x, b) + e^{-x/b} I_1(x, b),$$

$$(4.5) \quad H(x) > I_3(x) + \frac{1}{\sqrt{1-b^2}} I_2(x, b) + e^{-x} I_1(x, b).$$

These estimates are valid for all x, b such that $0 < x < b < 1$.

LEMMA 4.6. *If $0 < x < b < 1$ then*

$$(4.6.1) \quad H(x) < \frac{1}{2} \ln 2 - \frac{1}{2} \ln b + \frac{1}{2b^2} + \frac{1}{xb} \left(\frac{1}{\sqrt{1-x^2}} - \sqrt{1-b^2} \right) =: Q^+(x, b).$$

Moreover, for $c \in]0, 1[$ and $b = x^c$, we have

$$(4.6.2) \quad \begin{cases} \lim_{x \rightarrow 0^+} x^{2/3} Q^+(x, x^{1/3}) = 1, \\ \lim_{x \rightarrow 0^+} x^{1-c} Q^+(x, x^c) = \frac{1}{2} & \text{for } c \in]0, \frac{1}{3}[, \\ \lim_{x \rightarrow 0^+} x^{2c} Q^+(x, x^c) = \frac{1}{2} & \text{for } c \in]\frac{1}{3}, 1[. \end{cases}$$

P r o o f. By means of the estimate (4.4) and equalities (4.1)–(4.3), we obtain

$$H(x) < \frac{1}{ex^2 \sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}} \left(\frac{1}{xb} e^{-x/b} - \frac{1}{ex^2} \right) + e^{-x/b} I_1(x, b) <$$

$$\begin{aligned}
&< \frac{1}{xb\sqrt{1-x^2}} + I_1(x, b) \\
&< \frac{1}{xb\sqrt{1-x^2}} + \frac{\sqrt{1-b^2}}{2b^2} + \frac{1}{2} \ln(1 + \sqrt{1-b^2}) - \frac{1}{2} \ln b - \frac{\sqrt{1-b^2}}{xb}
\end{aligned}$$

and, since $\sqrt{1-b^2} < 1$ and $\ln(1 + \sqrt{1-b^2}) < \ln 2$, we see that (4.6.1) holds. To prove (4.6.2) let us notice that $x^c > x$ for any $c \in]0, 1[$ and $x \in]0, 1[$. Hence, by (4.6.1) $H(x) < Q^+(x, x^c)$, where

$$\begin{aligned}
Q^+(x, x^c) &= \frac{1}{2} \ln 2 - \frac{c}{2} \ln x + \frac{1}{2} x^{-2x} \\
&\quad + x^{c-1} \frac{x^{2-2c} - x^2 + 1}{\sqrt{1-x^2}(1 + \sqrt{(1-x^2)(1-x^2c)})}.
\end{aligned}$$

This formula for $Q^+(x, x^c)$ makes all limits in (4.6.2) evident. ■

LEMMA 4.7. If $0 < x < b < 1$ then

$$(4.7.1) \quad H(x) > \frac{-b^2}{x^2 e \sqrt{1-b^2}} - \frac{1}{b^2 \sqrt{1-b^2}} + \frac{e^{-x} \sqrt{1-b^2}}{2b^2} =: Q^-(x, b)$$

and, for $c \in]0, 1[$ and $b = x^c$, we have

$$(4.7.2) \quad \begin{cases} \lim_{x \rightarrow 0^+} x^{2-2c} Q^-(x, x^c) = -\frac{1}{e} & \text{if } c \in]0, \frac{1}{2}[, \\ \lim_{x \rightarrow 0^+} x Q^-(x, \sqrt{x}) = -\frac{1}{e} - \frac{1}{2}, \\ \lim_{x \rightarrow 0^+} x^{2c} Q^-(x, x^c) = -\frac{1}{2} & \text{if } c \in]\frac{1}{2}, 1[. \end{cases}$$

Proof. By (4.5) and (4.1)–(4.3), we infer

$$\begin{aligned}
(4.7.3) \quad H(x) &> \frac{1}{ex^2} + \frac{e^{-x/b}}{xv\sqrt{1-b^2}} - \frac{1}{ex^2\sqrt{1-b^2}} \\
&\quad + \frac{\sqrt{1-b^2}}{2b^2} e^{-x} - \frac{\sqrt{1-b^2}}{xb} e^{-x}.
\end{aligned}$$

We dropped the term with $\ln(\dots)$, since it is positive for all $b \in]0, 1[$ and, when multiplied by x^c , it tends to zero as $x \rightarrow 0$ for $b = x^c$. Combining the first term with third, and the second one with last in (4.7.3),

$$\begin{aligned}
H(x) &> \frac{-b^2}{x^2 e \sqrt{1-b^2} (1 + \sqrt{1-b^2})} + \frac{1}{xb\sqrt{1-b^2}} (e^{-x/b} - e^{-x} + b^2 e^{-x}) \\
&\quad + \frac{\sqrt{1-b^2}}{2b^2} e^{-x} \\
&> \frac{-b^2}{x^2 e \sqrt{1-b^2}} + \frac{1}{xb\sqrt{1-b^2}} (e^{-x/b} - e^{-x}) + \frac{b}{x} e^{-x} + \frac{\sqrt{1-b^2}}{2b^2} e^{-x}.
\end{aligned}$$

Since

$$e^{-x/b} - e^{-x} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \left(\frac{x}{b}\right)^k + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} x^k$$

and, clearly,

$$0 < \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} x^k < x \quad \text{for } x \in]0, 1[,$$

the following inequality holds

$$(4.7.4) \quad H(x) > \frac{-b^2}{x^2 e \sqrt{1-b^2}} + \frac{1}{b^2 \sqrt{1-b^2}} \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \left(\frac{x}{b}\right)^{k-1} + \frac{\sqrt{1-b^2}}{2b^2} e^{-x},$$

where we dropped $\frac{b}{x} e^{-x}$, having $\lim_{x \rightarrow 0^+} x(\frac{x^c}{x} e^{-x}) = 0$ for every $c > 0$. Since $0 < \frac{x}{b} < 1$ and $\frac{1}{k!} (\frac{x}{b})^{k-1}$ tends monotonically to zero as $k \rightarrow \infty$, we have the estimate

$$-1 < \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \left(\frac{x}{b}\right)^{k-1} < 0$$

which, used in (4.7.4), gives (4.7.1).

For $b = x^c$ we have

$$Q^-(x, x^c) = \frac{-1}{e \sqrt{1-x^{2c}}} x^{-2+2c} + \left(\frac{1}{2} \sqrt{1-x^{2c}} e^{-x} - \frac{1}{\sqrt{1-x^{2c}}} \right) x^{-2c}$$

and thus all limits in (4.7.2) are evident. ■

Remarks. Taking the right-hand side of (4.4) as the upper bound $Q^+(x, b)$ of H in (4.6.1), we obtain the same limits for such $Q^+(x, b)$ as written down in (4.6.2). Similarly, if one replaces $Q^-(x, x^c)$ by the lower bound written in (4.5) with $b = x^c$, then the limits (4.7.2) remain still valid. From (4.6.2) it is easy to see that the best upper bound near zero (with $b = x^c$) is for $c = \frac{1}{3}$. The best lower bound that may be obtained by this method is for $c = \frac{1}{2}$.

Lemmas 4.6 and 4.7 imply the result as follows.

COROLLARY 4.8. *For every $\varepsilon > 0$, $\lim_{x \rightarrow 0^+} x^{1+\varepsilon} H(x) = 0$.*

Proof. For $x \in]0, 1[$ and $\varepsilon > 0$, we obtain the following estimates, by virtue of (4.6.1) and (4.7.1),

$$x^\varepsilon x Q^-(x, \sqrt{x}) < x^{1+\varepsilon} H(x) < x^{1/3+\varepsilon} x^{2/3} Q^+(x, \sqrt[3]{x}).$$

Applying (4.6.2) and (4.7.2) to the above lower and upper bounds, we obtain the result. ■

Let us define for $r \in]0, a[$ the following functions

$$(4.9) \quad F^+(r) := \frac{1}{\pi a^2} Q^+ \left(\frac{r}{a}, \sqrt[3]{\frac{r}{a}} \right); \quad F^-(r) := \frac{1}{\pi a^2} Q^- \left(\frac{r}{a}, \sqrt{\frac{r}{a}} \right).$$

We now formulate results concerning asymptotics of F near zero.

THEOREM 4.10. *For every $r \in]0, a[$*

$$(4.10.1) \quad F^-(r) < F(r) < F^+(r)$$

and $F(r) = O(\frac{1}{r})$ as $r \rightarrow 0$. In particular, $\lim_{r \rightarrow 0^+} r^{1+\varepsilon} F(r) = 0$ for every $\varepsilon > 0$. Moreover,

$$(4.10.2) \quad \begin{cases} \lim_{r \rightarrow 0^+} r^{2/3} F^+(r) = \frac{1}{\pi a^{4/3}}, \\ \lim_{r \rightarrow 0^+} r F^-(r) = -\frac{1}{\pi a} \left(\frac{1}{2} + \frac{1}{e} \right). \end{cases}$$

P r o o f. From (3.2) and (3.3) it follows that

$$(4.10.3) \quad F(r) = \frac{1}{\pi a^2} H \left(\frac{r}{a} \right).$$

Hence, viewing (4.6.1), (4.7.1) and (4.9), we obtain (4.10.1).

Now, by virtue of (4.6.2) and (4.9),

$$\lim_{r \rightarrow 0^+} r^{2/3} F^+(r) = a^{2/3} \lim_{r \rightarrow 0^+} \left(\frac{r}{a} \right)^{2/3} \frac{1}{\pi a^2} Q^+ \left(\frac{r}{a}, \sqrt[3]{\frac{r}{a}} \right) = \frac{1}{\pi a^{4/3}}.$$

Similarly, by virtue of (4.7.2) and (4.9),

$$\begin{aligned} \lim_{r \rightarrow 0^+} [r F^-(r)] &= a \lim_{r \rightarrow 0^+} \left[\frac{r}{a} \cdot \frac{1}{\pi a^2} Q^- \left(\frac{r}{a}, \sqrt{\frac{r}{a}} \right) \right] \\ &= \frac{1}{\pi a} \lim_{x \rightarrow 0^+} [x Q^-(x, \sqrt{x})] = -\frac{1}{\pi a} \left(\frac{1}{2} + \frac{1}{e} \right). \end{aligned}$$

Thus, equalities (4.10.2) are valid. The remaining statements easily follow from (4.10.2) and from the fact that $r^c \ln r \rightarrow 0$ as $r \rightarrow 0^+$ for any $c > 0$. ■

Theorems 3.7 and 4.10 imply the following result.

COROLLARY 4.11. *For every real $m \geq 1$ the integral $\int_0^\infty r^m F(r) dr$ is convergent.*

One important question remains still open. Is the function F positive everywhere on \mathbb{R}_+ ? From Theorem 3.7 we see that it is the case for $r \in [a, \infty[$. It is also not difficult to deduce from (3.1)÷(3.3) that $F'(r) < 0$ for all $r \geq a$. To prove that $F(r) > 0$ for $r \in]0, a[$, it is sufficient to show that $H(x) > 0$ for $x \in]0, 1[$ (see (3.2) and (3.3)). Unfortunately, for a fixed small $x > 0$ the function $]0, 1[\ni s \mapsto h(s, x) \in \mathbb{R}$ has a high positive local maximum in $]0, x[$

and a low negative local minimum for $s > x$, near zero. This can be seen from equality (4.3) and Lemma 4.6 or from the estimate

$$\frac{1}{\sqrt{1-x^{2/3}}} I_2(x, \sqrt[3]{x}) < \int_x^{\sqrt[3]{x}} h(s, x) ds < \frac{1}{\sqrt{1-x^2}} I_2(x, \sqrt[3]{x}),$$

where I_2 is defined by (4.2). Since

$$I_2(x, \sqrt[3]{x}) = x^{-4/3} \exp(-x^{2/3}) - \frac{1}{e} x^{-2},$$

we see that

$$\lim_{x \rightarrow 0^+} x^2 I_2(x, \sqrt[3]{x}) = -\frac{1}{e}.$$

The same type of troubles appears for derivative $H'(x)$ in interval $]0, 1[$. Is $H'(x) < 0$ for all $x \in]0, 1[$? Computer calculations show that $H(x) > 0$ and H decreases for $x > 10^{-6}$ (Slowiński's private communication). If $F(r) > 0$ or, equivalently, $H(x) > 0$ for all positive r and x , then one can use F , after a suitable normalization, as a probability density μ on the plane, namely:

$$C \cdot F(\sqrt{x^2 + y^2}) = \mu(x, y), \quad (x, y) \in \mathbb{R}^2,$$

where

$$C = \frac{1}{2\pi} \left[\int_0^\infty r F(r) dr \right]^{-1}.$$

The integral above is convergent, by virtue of Corollary 4.11, which would also guarantee the existence of all moments for μ .

References

- [1] G. A. Acopdjanov et al., *Determination of photon coordinates in a hodoscope Cherenkov spectrometer*, NIM 140 (1977), p. 441.
- [2] A. A. Kostritsa, *The radial distribution of energy releasing in the electron-photon cascades*, Report of IPHE 87-20, Alma-Ata, 1988.
- [3] J. Rogulski and B. Slowiński, *Radial profiles of photon initiated electromagnetic showers between 100 and 3500 MeV*, JINR Rapid Communications 4 (55)-92, Dubna, 1992, p. 19.
- [4] W. Schmeidler, *Integralgleichungen mit Anwendungen in Physik und Technik. 1, Linear Integralgleichungen*, Akademische Verlagsgesellschaft Geest Portig K.-G., Leipzig, 1955.
- [5] B. Slowiński, *Phenomenological model of electromagnetic showers*, in Proc. of the Intern. Meeting of Problems of Math. Simulation in Nuclear Physics Researches, 30.09–2.10.1980, Commun. JINR D 10, 11-81-622, Dubna (1981), p. 178.
- [6] B. Slowiński, *Statistical model in phenomenological description of electromagnetic cascade processes produced by high-energy gamma quanta*, Commun. JINR E1-87-76, Dubna (1987).

- [7] M. Soupline, *Résolution des équations intégrales du type d'Abel*, Acad. Sc. URSS Ukraine Inst. Math., Rec. Trav. Inst. Math. 3 (1940), 113–141.
- [8] W. Tollmien, *Zum Landestest von Seeflugzeugen*, ZAMM 14 (1934), p. 251.
- [9] H. Wagner, *Über die Entstehung des dynamischen Auftriebes von Tragflügeln*, Diss. Charlottenburg 1924, ZAMM 5 (1925).

INSTITUTE OF MATHEMATICS
WARSAW UNIVERSITY OF TECHNOLOGY
Plac Politechniki 1
00-661 WARSZAWA, POLAND

Received April 13, 1992.