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ON THE HASEMAN PROBLEM

1. This article is devoted to the theory in a Lebesque space Ly(I’, p) with
a power weight g of a singular integral operator (SIO) with a shift

(1) N=WP; +GP_,

where Py + P_ = I is the identity operator, P, — P_ = § is the singular
integral operator with Cauchy kernel given by

(So)t) = (ri)™ [ (r-t)"p(r)dr, teT,
r

W is the shift operator defined by (We)(t) = ¢la(t)], a is an orientation-
preserving diffeomorphism of a simple open oriented smooth curve I" onto
itself and at last G is a function or matrix-valued function (briefly MVF)
on I'.

The operator (1) is closely connected with the boundary value problem
of Haseman: find a piecewise analytic function @(z) having a representation
of it in the form of the Cauchy type integral with a density of class L (T, o)
on the basis of the boundary condition

(2) &F[a(t)] = G)P~ () +9(t), teT,

where ®%(¢) are angular limit values of the function ®#(z). D. A. Kveselava,
N. P. Vekua, G. F. Mandzhavidze and B. V. Khvedelidze, I. B. Simonenko,
L. I. Chibrikova, S. N. Antoncev and V. N. Monakhov studied the Haseman
problem (2) under the various assumptions (see [1]). On the basis of the
investigations of Banach algebras of SIO with noncarleman shifts and ruled
coefficients (that is uniform limits of step functions) V.G. Kravchenko and
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the author [2], [3] obtained necessary and sufficient Noetherian conditions
and a formula for computing the index of the operator (1).

THEOREM 1. Let I" = [to,t1] be a simple open oriented smooth curve, let
G be a continuous function on I' and

o(t) = |t — to|®|t —t1|Pr,—p~ < Bj < 1-p~1,1< p < o0.

Then the operator (1) is Noetherian in the space L,(I,p) if and only if
G(t) # 0 for allt € I' and the numbers

0; = (@71 4 0;)(1 +87) + (27) 7 [6;1n|G(¢;)| — (-1) arg G(¢;)] (5 =0,1)
are not integers, where §; = (2r)~n|a'(t;)|. If these conditions are satis-
fied, the indez of the operator (1) is equal to

1
(3) md N = (20) HargG(O)her + S [E(g5) + (~1)(2m) " arg G(t;)),
j=0
where (2r)~1{arg G(t)}ter is the Cauchy indez of the invertible function G
and E(z) is the integer part of a real number z.

Later the Noether theory of the operator (1) was constructed under more
generalized conditions: for piecewise continuous matrix-valued coefficients,
composite contours and piecewise smooth shifts (see [4], [3]).

The next step was calculation of defect numbers of the operator (1). This
result was obtained jointly by A. V. Ajzenshtat, G. S. Litvinchuk and the
author [5], but under more strict conditions: I" is a simple open Ljapunov
curve and the derivative o' in addition satisfies a Hélder condition. It is
based on the next sewing theorem.

Let 2R be a set consisting from all curves 4, such that the operator S is
bounded in all spaces Ly(), 1 < p < co. G. David [6] proved that

R ={y:supsupr 'mes(yN {z:]z—¢t| < 7}) < o0}.
tel r>0

DEriNITION 1. We call an open curve £ € R with endpoints 79,7 €
C \ {00} a spiral of logarithmic type (Ap, A;) if there exist limits

,Jm  larg(r = 7)/In|r = 7| 7] = 4; (5 =0,1).

THEOREM 2. Let I' be a simple open Ljapunov arc with endpoints ty,t,
and let a be an orientation-preserving H -smooth diffeomorphism of the con-
tour I' onto itself. Then the following propositions are valid:

1) there ezists a conformal and one-sheeted mapping w : C\I' - C\ L,
where L € R is a spiral of logarithmic type (8o,6,), which is a Ljapunov
curve outside of an arbitrary neighborhood of the endpoints t; = w(t;), 6; =
(2) ! In o/ (2;)[;
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2) the function w has Holder limit values w*(t) on I satisfying the bound-
ary condition wt[a(t)] = w(t), t € I’;

3) the derivative W' is continuously extended onto I' \ {to,t1} from left
and right sides and has the nezxt asymptotics in neighborhoods of endpoints

lw'(z) x|z~ t;|"/0+) for 2 > t;, zE T (j=0,1).

With the help of Theorem 2 the Haseman problem (2) is reduced to the
equivalent Riemann problem on the logarithmic type spiral £ = w(I'):

(4) F¥(r)=G(r)F~ (1) +§(r), T€L,
where G(7) = G[(w™)"Y(7)], §(7) = gl(w™) (P [Tjzol(r — 75)™,

F(z) = 9w (@) [[(z =)™ and m; = E[(p7" + B;)(1 + &3)]-

Jj=0
With problem (4) we associate a S10
(5) N=P,+GP_
acting in the space L,(L, p), where

1 o~ ~
or)=[[Ir-71%, -p7' <B; =" +8;)(1+8)-p " —mj <1-p~".
=0

From the connection between problems (2) and (4) we can receive the
following.

THEOREM 3. The operators (1) and (5) are Noetherian only simultane-
ously. If they are Noetherian, then

dim Ker N = max{0,ind N + m}, dim Coker N = max{0, —ind N — m},
where m = mg + my.
COROLLARY 1. If the operator (1) is Noetherian, then
dim Ker N = max{0,ind N},
dim Coker N = max{0,—ind N},
where ind N is calculated by the formula (3).

2. Let us consider the operator (1) with a coefficient G having points
of discontinuity of semi-almost periodic type on a piecewise smooth contour
T'. At first in the space Lp(R) we shall study SIO’s.

(6) Tg = Py + GP-
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with semi-almost periodic MVF’s G and corresponding convolution type
operators

M Wg = X_I+ F'GFX,I,

where X4 are characteristic functions of semi-axes Ry and F is the Fourier
transformation:

(Fo)(z) = (2m)/? [ e Vp(y)dy, z€R.
R

In [7] D. Sarason defined the class SAP of semi-almost periodic functions
as the subalgebra of L, generated by the class AP of uniform almost peri-
odic functions and the class C(R) of functions continuous on the two-point
compactification of R. In parallels we consider the algebra M, of Fourier
multipliers on L,(R) and the subalgebra SAA, C M, generated by AP,
and Cp(ﬁ), where AP, is the closure in M, of the class APw of absolutely
convergent trigonometrical series 3 f1e'** (A € R) and C,(R) is the closure
of the set of continuous functions on R of bounded variation.

Any MVF G € SAP can be represented in the form
(8) G = G+U+ + G_u_ + Go,

where MVF’s G4 € AP, MVF Gy € C(R) and Go(+o0) = 0, the functions
us = (1 £ tanh7z)/2 and the mappings G — G4 are homomorphisms of
the Banach algebra SAP onto AP. This fact remains correct if SAP, AP and
C(R) are replaced by SAP,, AP, and C,(R), respectively. According to (8]
the MVF’s G4 in (8) will be called the almost periodic components (or local
representatives) of G at too.

With the use of limit operators technique (see, for example, [9]) we can
prove the following.

THEOREM 4. If a MVF G € SAP (respectively, G € SAP,) and the
operator Tg (Wg) is Noetherian in the space Ly(R) then the operators Tg,

(Wg, ) with almost periodic components G+ of the MVF G are invertible in
LZ(R).
P

In the case n = 1 Theorem 4 was obtained earlier in [10}, [11]. The proof
of Theorem 4 in the case n > 1 is based on the following statements.

Let € and & be Banach algebras of 510 in L3(R) with matrix-valued
coefficients of class SAP and AP, respectively. Let B and © be Banach
algebras in L7 (R) generated by operators sgn(-)/ and ¥ ~'GF, where MVF’s
G belong to SAP, and AP,, respectively. It is clear that algebras € and B
contain the ideal Lo of compact operators in L7(R).
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LEMMA 1. The mappings vy : T — Ty defined on generators GI (MVF’s
G € SAP) and S = P; — P_ of the algebra € by the equalities

Vi(GI) = GiI, Vi(S) =8

are continued to homomorphisms of the algebra € onto the algebra &; more-
over

(VT € @) ||Tell < |T| = inf{|T + K]| : K € Lo}.

LEMMA 2. The mappings py : W — Wy defined on generators sgn(-)I
and F~1GF (MVF’s G € SAP,) of the algebra ‘B by the equalities

pe(FIGF) = F'GF, pa(sgn(-)I) = sgn(-)]

are continued to homomorphisms of the algebra B onto the algebra D; more-
over

(VW € B) W] < [W].

According to [9], the limits of any strongly convergent subsequences
B;l"TB;,:l and e~ Wei=ha I, respectively, of sequences Bj, TB,:"1 and
e~ iTha Weizhn I where (Brp)(z) = ¢(z + h) and h,, — +o00 as n — *oo,
will be called limit operators for T and W.

THEOREM 5. If the operator T € € (W € B) is Noetherian, then limit
operators Ty = v4(T) € & (W4 = pt(W) € D) are invertible.

Theorem 4 follows from Theorem 5 for T = T and W = Wg.

COROLLARY 2. For a MVF G € AP (respectively, G € AP,) the Noether
property and the invertibility of the operator Tg(Wg) in L3(R) are equiva-
lent. v

It is clear that Lemma 1 and Theorems 4-5 are extended on algebras
S§I0’s in L3(I") with coefficients having semi-almost periodic type disconti-
nuities.

In the case p = 2 Theorem 4 admits the strengthening.

THEOREM 6. Ifa MVF G € SAP and the operator T or Wg is n-normal
(d-normal) in the space L3 (R), then the operators Tg, and Wg, are left
(right) invertible in L} (R).

If n = 1, then Theorem 6 is valid for all p € (1, 00) (see [10], [11]).

The investigation of the Noether property of the operators (6)—(7) is
closely connected with the study of a special form of factorization of al-
most periodic MVF’s G4, which I. M. Spitkovskii factorization of almost
periodic MVF’s G4, which .M. Spitkovskii and the author have called P-
factorization (see [8], [12]).
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For a MVF G € AP let M(G) and £2(G) denote its mean value and
spectrum, respectively:

T
M(G) = Jim 51? [ G(a)ds, 9(G)={)e€R:M(e™G(X)) #0}.
~-T

Let AP* = {G € AP : 2(G) C Ry} and APL = AP* N APy.

DEFINITION 2. A P-factorization (correspondingly a Py -factorization)
of an n X n MVF G defined on R is defined to be a representation of it in
the form

(9) G=G*"G",
where N(X) = diag[e!™?,...,e***7], the numbers ); are real and MVF’s
.G* (G*)~! € AP* (respectively, APL).

The set of the values A; is invariant for the P-factorable MVF G. We call
these numbers the partial P-indices of the MVF G. If all partial P-indices

are equal, then the matrix M(G*)M(G™) is uniquely determined, and we
denote it below by d(G).

3. Let a MVF G € APyw.

THEOREM 7. If a MVF G € APy, then the following affirmations are
equivalent:

1) the operator Tg is Noetherian in the space L3(R),

2) the operator T is invertible in L7 (R),

3) the operator Wg is Noetherian in L7(R),

4) the operator Wg is invertible in L3(R),

5) the MVF G is P-factorable with zero partial P-indices,
6) the MVF G is Pw-factorable with zero partial P-indices.

The implications 6)=>2)=>1) and 6)=>4)=>3) are obvious. The equivalence
5)¢»6) was established in [13] with the use of the results from [14]. The
implications 1)=>2) and 3)=>4) were proved in Theorem 4. It remains to
prove the implications 2)=>6) and 4)=>6), moreover only for = > 1, since in
the case n = 1 they were established in [15], [16].

At first let p = 2. Then Wg = F~1TgF, where F is the isometry of
L3(R) onto itself. Hence in the case p = 2 it is sufficient to consider only
the operator Tg.

We denote by B; the Hilbert space of Besicovitch almost periodic func-
tions, i.e. the supplement of the set of almost periodic polynomials f(z) =
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Y frei*® by the norm

/118, = (sz)lﬂ = (Ml

As is known, the space B, is identified with the Hilbert space L;(Rp) with
respect to the Haar measure du on the Bohr compact Rp. Parallel with B,
we consider also Besicovitch spaces B, (1 < p < oo) identified with Banach
spaces L,(Rp) with the Haar measure du. In the Besicovitch space By we

introduce the orthoprojectors P4 and '13;1: defined by equalities
P_=I1-P,, Py =1-P_, Pp(e™?) = x(A)e?, P_(*7) = x(—A)e,

where x(A) =1 for A > 0 and x(A) =0 for A < 0.

Let £(X) be the algebra of all bounded linear operators acting in a
Banach space X. In parallels with the C*-algebra & C L(L}(R)) generated
by the operators Py and operators of multiplication by MVF’s G € AP we

consider the C*-algebras C ,CC L(B%) generated, respectively, by operators

Py, GI and Py, GI, where MVF’s G € AP.
With the help of the theorem on an isomorphism of C'*-algebras of oper-
ators with shifts established by the author in [17] we can prove the following.

THEOREM 8. The C*-algebras &,C and C are tsometrically isomorphic.
COROLLARY 3. If a MVF G € AP, then the operators
Te = Py + GP_ € L(L3(R)), 7g =P+ + GP- € L(B),
76 = Py + GP_ € L(B})
are invertible only simultaneously.

The following gives the implication 2)=>6) in Theorem 7 in the case
p=2.

THEOREM 9. If a MVF G € APw and the operator Tg is invertible in
the space L3(R), then G = G*G~, where MVF’s G%, (G*)~! ¢ AP%.

Really, let I, be the identity matrix of order n, let G’ be the matrix

transposed to G and (Cp)(X) = ¢(X),X € R. According to Corollary 3,
the operators

T =P+ + GP_, CTC';“C_—.'}3_+ﬁ+G’[
are invertible parallel with 7. Hence, the operators
TGI = G_1P+ + P—, TG" = (GI)_I’P_ + ’P+

are invertible in the space By of Besicovitch almost periodic n x n MVF’s.
Then the MVF’s

ot = P:t(TGl)—IIn, vt = ﬁi(TGu)-IIn,
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respectively, belong to Bf = {A € B; : £2(A) C Ry} and satisfy the
relations

(10) ¢t =G, -97), (¥~) =T, -¥+YG, M($~)=M¥t)=0.

Since G € APy, according to [14], the MVF’s * 0% ¢ APE. It follows
from (10) that

(11) CE (U, —¥rYGU, - 67) = (I, - wt) ot = (#~Y (I, — ¢7).

Then C € APVT, N APy, and, consequently, C is a constant matrix. By
analogy with Theorem 3.4 [18] we can prove that detC # 0. It remains to
set Gt = &%+, G~ = C~1(¥~) and to use (11).

In the case p # 2 the proof of the implications 2)=-6) and 4)=>6) is based
on the following.

THEOREM 10. If a MVF G € APw, then the operator T (respectively,
W) is invertible in all spaces Ly(R), 1 < p < 00, only simultaneously.

This theorem for the operator Wg follows from Corollary 2.2.12 in
V. G. Kurbatov [19]. With a view to prove Theorem 10 for T we intro-
duce the algebra G, (1 < p < o) of operators T = Y A e***T acting in
the Banach space L;(R), where Ay = F —1q\F, F is the Fourier transfor-
mation, elements of MVF’s a)(A € R) belong to the algebra M, of Fourier
multipliers on L,(R) and

ITlw =D Il czgmy < oo

The algebra &, is Banach under this norm.

Let G be a discrete abelian group and let K = K(G) be its charac-
ter group (all characters are continuous). Let £ denote a Banach algebra
with identity and let W(K, L) denote the subalgebra of the algebra C(K, L)
consisting of functions of the form

T(k) =) (k,\br, K€K,

where by € L, (k,]A) is the value of the character k at the element A € G
and )’ ||ba|| < oo.

In [20] S. Bochner and R. Phillips proved that the algebra W(K,L)
is full. With a help of this fact we can prove, according to [21], [19], the
following.

THEOREM 11. The algebra S, is full for every p € (1,00).

COROLLARY 4. If the operator T € &, is invertible, then it is invertible
in any space LT*(R), where r belongs to the segment with endpoints p and

g=p/(p-1).
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Theorem 10 follows from Corollary 4 and Theorem 9. As a result, The-
orem 7 is proved completely.

Remark 1. A P-factorization of a MVF G € APw is not a necessary
condition of one-sided invertibility of the operator T in contrast to two-
sided invertibility. In fact, it is sufficient to consider the left (right) invertible
in the space L2(R) operator Tg with the MVF G = e~ A (G = e~ A),
where the MVF

i(1+a)z
A(x) = [e—ia:e_ 1+ eiar e—i(10+a)r]

with @ = (5!/2 — 1)/2 does not have a P-factorization (see [8]).
For any MVF G € AP we denote

[1Gllce = Is(G(DlLoo(m)>
where s(G(z)) is the maximal singular number of G(z).
Theorem 7 implies also the following.

COROLLARY 5. If a MVF G € APw is P-factorable with coincident
partial P-indices, then all MVF’s of class APw from a sufficiently small
by the norm || - || neighborhood of the MVF G are Py -factorable with the

same partial P-indices.

4. Now we consider the operators T and W with semi-almost peri-
odic MVF G having almost periodic components G+ € APw in the space
L3 (R),1 < p < oo.

If the operator T is Noetherian in L7(R), then according to Theorem 4,
the operators T, are invertible in L7(R). Then, in view of conditions G+ €
APw and Theorem 7, the Noether property of T implies Py -factorability
of MVF’s G4 with zero partial P-indices. A similar fact is correct for Wg
too. Hence from Theorem 3.2 in [8] and Theorem 2 in [12] we can obtain
the following.

THEOREM 12. If G is an n X n MVF of class SAP (respectively, SAP,)
and its local representatives G+ € APy, then the operator To(Wg) is Noe-
therian in the space Ly (R) if and only if the following conditions hold:

1) det G(z) # 0 for all X € R,

2) MVF’s G4 are P-factorable (equivalently, Py -factorable) with zero
partial P-indices, '

3) the eigenvalues &; (j = 1,...,n) of the matriz d(G-)"1d(G) satisfy
the inequalities

(12) 7 € {p7t—(@r)targg;) £ 0} (5; Y {g71 - (2r) M arg;) #0),
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where {z} denotes the fractional part of a number X € R and ¢ = p/(p—1).
If conditions 1) — 3) are satisfied, then

(13) ind T = Inddet G — n/p+ ) _7;
1

(ind We =InddetG — n/q+ z":%)’
1
where

InddetG = 2i li

m
T t—+o0

t
% f argdet G(z)sgnz dzx.
—t

Remark 2. Theorem 12 remains true for T acting in the weight space
po =1 (1+]e’)f € L;R)}, 1<p<oo, -p7 <f<l=p7},
if in relations (12)-(13) p~! is replaced by p~! + 8.

5. Now we get criteria for T with any G € SAP to be Noetherian
or n(d)-normal in the space L}(R). As a result we get rid of the condition
G+ € APw. For this it is necessary to generalize a concept of P-factorability
for MVF’s G € AP.

We consider the Banach spaces B, (p =1,2,00) of n x n MVF’s A with
elements belonging to L,(Rp) and norms

Il = [ (A4 (©)2 dy,
Rp

il = ( [ wawa@)de)”,

Rs
1 Alleo = lIs(A())l| L (mB)>

respectively, where tr is a matrix trace, s(-) is a maximal singular number
and dp is the Haar measure on Rp. Let BX = {A € B, : 2(A) C Ry}

DEFINITION 3. We call a representation (9) a generalized P-factorization
of an nxn MVF G € AP, if A has a previous form, MVF’s G*,(G*)~1 ¢ Bf
and the operators Gt P4 (G+)~1I and (G~1)"'A"'P_(G*)~I are bounded
in the space B7.

Similarly to Theorem 2.1 in [8] we obtain the following

THEOREM 13. Let a MVF G € AP parallel with the P-factorization (9),
in which A\ > ... > A, admits a representation G = FtMF~, where
M(z) = diag[e'=]7;, pj €R, py > ... > pn and MVF’s F*, (F%)' €
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B;h. Then u; = A; (j = 1,...,n) and the factors F* are determined by the
formulas
Ft=Gtz, F-=A"2"1AG™,

where @ MVF z = (zk;)} ;=1 € Bt together with z71,zx; = 0 if A < A;
and .Q(ij) C [O,Ak - /\j] if A 2> Aj.

The numbers A; uniquely to within transpositions determined by a gen-
eralized P-factorable MVF G € AP are also called the partial P-indices
of G.

COROLLARY 6. If all the partial P-indices of a generalized P-factorable
MVF G € AP are equal, then a generalized P-factorization is determined
to within the transformation Gt — Gtz2,G~ — 271G~, where z is a
constant nonsingular matriz. In this case the nonsingular matriz d(G) =
M(G*)M(G™) is uniquely determined.

LeEMMA 3. If G is a generalized P-factorable MVF of class AP and all
Aj =0 (L 0,> 0), then the operator Tg is invertible (letf-invertible, right-
invertible) in the space L3 (R).

Let P denote the open with respect to the norm || - ||oo set of all MVF’s
G € AP such that the operators T are invertible in L}(R). According to
Corollary 3, the operators 7 and 7¢ are invertible in B} for G € P. Let I,
be the identity n X n matrix in contrast to the identity in B} operator I.

LEMMA 4. The mappings G — M(75'G) and G — M('?'G_lln) are con-
tinuous at P.

LEMMA 5. Matrices M(75'G) and M('?G_lln) are nonsingular for all
GeP.

THEOREM 14. If a MVF G € AP, then the operator Tg is invertible in
the space L}(R) if and only if G is the generalized P-factorable MVF with
zero partial P-indices.

The sufficiency was proved in Lemma 3. The necessity is proved similarly
to Theorem 9 and ([15], pp. 273-274) with the use of Lemmas 4-5 and the
relations

C=d(G)=M(15'G), C™'=[dG)] " =MT5"L),
where C is defined by (11).

With a help of Theorems 13—-14 we can prove the following.

THEOREM 15. If G is a Hermitian-positive MVF of class AP and G™1 €
AP, then G = GY(G*)*, where (Gt)*! € BY.

Theorem 13 implies also the following.
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COROLLARY 7. Ifa MVF G € AP is generalized P-factorable with zero
partial P-indices, then all MVF’s of class AP in a sufficiently small neigh-
borhood of G are also generalized P-factorable with zero partial P-indices.

From Lemmas 4-5 we can deduce also the following.
COROLLARY 8. The function d : G — d(G) defined by the formulas
d(G) = M(G*)M(G™) = M(75 ' G)
continuously maps the open set P onto the set of nonsingular numerical
n X n matrices.

Remark 3. The invertibility of a MVF G in AP doesn’t guarantee both
the P-factorability and the generalized P-factorability of G.

THEOREM 16. If an n x n MVF G € SAP, then the operator Tg is
Noetherian in the space L} 5 (18] < 271) if and only if the following condi-
tions hold:

1) det G(z) # 0 for all x € R,

2) the MVF’s G+ are generalized P-factorable with zero partial P-indices,

3) the eigenvalues &; of the matriz d(G_)~1d(G) satisfy the inequalities

7 E 27 48— (2m) M arg) £0 (F=1,...,m).

If conditions 1)-3) are fulfilled, then the inder of Tg can be computed from
the formula (13) with p~! replaced by 27! + S.

LEMMA 6. Let a MVF G € Ly(R). Then the operator T is n-normal
(d-normal) in the space L3}(R) if and only if the operator T, (respectively,
Tg,) is Noetherian in the space L3*(R), where

G* 0 _ G 0
CGn = [In+G’G" G] » Ga= [In +G*G G*] :
From Lemma 6 and Theorem 16 we deduce the following.
THEOREM 17. If a MVF G € SAP, then the operator Tg is n-normal
(d-normal) in the space L} 5 if and only if:

1) det G(z) # 0 for allz € R,

2) the MVF’s (Gyn)+ (respectively, (Gq)+) are generalized P-factorable
with zero partial P-indices,

3) the eigenvalues £; of the matriz d[(Gy)-]1"! Bd[(Gy)+]B (respectively,
d[(Ga)-]1"1B71d[(G4)+])B~!) satisfy the relations

27t —(2r)largg; €Z (j=1,...,2n),
where B = diag [e™*I,,e""L,].
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6. Let a contour I' consist of simple open oriented smooth arcs I
(k = 1,...,ko) intersecting only at their endpoints and not forming zero
angles, 7 is the set of nodes of the contour I', a is an orientation-preserving
diffeomorphism of each arc I'; onto itself.

In the space L3(I,0), o(t) = [, It = 7|%, =p™' < Br < 1-p7,
1 < p < 00, we consider the operator (1), where G is a continuous on I' \ 7
MVF of order n having at nodes discontinuities of semi-almost periodic
type, i.e. there exist such uniform almost periodic MVF’s G + and such
orientation-preserving diffeomorphisms 7, of real axis R onto I'y \ 7 with
finite non-zero limits Il{rdrzloo z%v}(z) that

lim_[G(14(2)) — Giz(@)] = 0.
We assume that MVF’s Gy + € APw if p # 2.

LEMMA 7. If the operator (1) is Noetherian in L3(I, ), then for k =
1,...,ko the MVF’s Gy 4 are Py -factorable (generalized P-factorable if p =
2) with zero partial P-indices.

To each node 7 of the contour I' (being for example a common end of
arcs I, I3,..., I, numbered as a result of a circuit around 7 in a counter-

clockwise direction) we can associate the eigenvalues A;(7) (j = 1,...,n) of
the matrix [d(G)]°™ [d(Gm-1)]’=-*...[d(G1)]?* and the number

m '),

m
- (97)-1 ;
£r)=2r)1 ) b In(,_i
k=1
where G = Gk, and Y = 1 (respectively, Gx = Gk 4+ and 9, = —1) if 7
is the origin (end) of the arc I'.

THEOREM 18. If an n X n MVF G is continuous on I' \ T and admits
discontinuities of semi-almost periodic type at nodes of the contour I' and
also the MVF’s G+ € APw for all p € (1,00) \ {2}, then the operator (1)
is Noetherian in the space L3(I,¢) if and only if the following conditions
hold:

1) det G(t) # 0 forallt € '\ T,

2) for k =1,...,ko the MVF’s G + are generalized P-factorable with
zero partial P-indices if p = 2 and Py -factorable with zero partial P-indices
for other p € (1, 00),

3) forallt €T and j = 1,...,n the numbers

¢5(1) = (7" + B)[E*(r) + 1] + (2m) THE(T) In|A;(7)] - arg Ai(7)]

are not integers.
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If these conditions are satisfied, then

ko t
ind N = (2r)7! lim ¢! f argdet G(vx(z))sgnz dz
—t

t—+4oo
k=1

+ ) Y IE(pi(r) + (2m) Tt arg Aj(7)],

T7€T j=1

where arg f is an arbitrary continuous branch of the argument of f on R.

Remark 4. The results of sections 2-6 were partly announced in {22],

[23], their systematic presentation is contained in [3].

{1
(2]
(3]

(8]

(€]
7]
8]

[®]

(10]

(11]

(12]
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