

Yu. I. Karlovich

ON THE HASEMAN PROBLEM

1. This article is devoted to the theory in a Lebesque space $L_p(\Gamma, \varrho)$ with a power weight ϱ of a singular integral operator (SIO) with a shift

$$(1) \quad N = WP_+ + GP_-,$$

where $P_+ + P_- = I$ is the identity operator, $P_+ - P_- = S$ is the singular integral operator with Cauchy kernel given by

$$(S\varphi)(t) = (\pi i)^{-1} \int_{\Gamma} (\tau - t)^{-1} \varphi(\tau) d\tau, \quad t \in \Gamma,$$

W is the shift operator defined by $(W\varphi)(t) = \varphi[\alpha(t)]$, α is an orientation-preserving diffeomorphism of a simple open oriented smooth curve Γ onto itself and at last G is a function or matrix-valued function (briefly MVF) on Γ .

The operator (1) is closely connected with the boundary value problem of Haseman: find a piecewise analytic function $\Phi(z)$ having a representation of it in the form of the Cauchy type integral with a density of class $L_p(\Gamma, \varrho)$ on the basis of the boundary condition

$$(2) \quad \Phi^+[\alpha(t)] = G(t)\Phi^-(t) + g(t), \quad t \in \Gamma,$$

where $\Phi^{\pm}(t)$ are angular limit values of the function $\Phi(z)$. D. A. Kveselava, N. P. Vekua, G. F. Mandzhavidze and B. V. Khvedelidze, I. B. Simonenko, L. I. Chibrikova, S. N. Antoncev and V. N. Monakhov studied the Haseman problem (2) under the various assumptions (see [1]). On the basis of the investigations of Banach algebras of SIO with noncarleman shifts and ruled coefficients (that is uniform limits of step functions) V.G. Kravchenko and

This paper has been presented at the Vth Symposium on Integral Equations and Their Applications, 10-13 December 1991, held at the Institute of Mathematics, Warsaw University of Technology.

the author [2], [3] obtained necessary and sufficient Noetherian conditions and a formula for computing the index of the operator (1).

THEOREM 1. *Let $\Gamma = [t_0, t_1]$ be a simple open oriented smooth curve, let G be a continuous function on Γ and*

$$\varrho(t) = |t - t_0|^{\beta_0} |t - t_1|^{\beta_1}, -p^{-1} < \beta_j < 1 - p^{-1}, 1 < p < \infty.$$

Then the operator (1) is Noetherian in the space $L_p(\Gamma, \varrho)$ if and only if $G(t) \neq 0$ for all $t \in \Gamma$ and the numbers

$\varphi_j = (p^{-1} + \beta_j)(1 + \delta_j^2) + (2\pi)^{-1}[\delta_j \ln |G(t_j)| - (-1)^j \arg G(t_j)]$ ($j = 0, 1$)
are not integers, where $\delta_j = (2\pi)^{-1} \ln |\alpha'(t_j)|$. If these conditions are satisfied, the index of the operator (1) is equal to

$$(3) \quad \text{ind } N = (2\pi)^{-1} \{ \arg G(t) \}_{t \in \Gamma} + \sum_{j=0}^1 [E(\varphi_j) + (-1)^j (2\pi)^{-1} \arg G(t_j)],$$

where $(2\pi)^{-1} \{ \arg G(t) \}_{t \in \Gamma}$ is the Cauchy index of the invertible function G and $E(x)$ is the integer part of a real number x .

Later the Noether theory of the operator (1) was constructed under more generalized conditions: for piecewise continuous matrix-valued coefficients, composite contours and piecewise smooth shifts (see [4], [3]).

The next step was calculation of defect numbers of the operator (1). This result was obtained jointly by A. V. Ajzenshtat, G. S. Litvinchuk and the author [5], but under more strict conditions: Γ is a simple open Ljapunov curve and the derivative α' in addition satisfies a Hölder condition. It is based on the next sewing theorem.

Let \mathfrak{R} be a set consisting from all curves γ , such that the operator S is bounded in all spaces $L_p(\gamma)$, $1 < p < \infty$. G. David [6] proved that

$$\mathfrak{R} = \{ \gamma : \sup_{t \in \Gamma} \sup_{r > 0} r^{-1} \text{mes}(\gamma \cap \{z : |z - t| < r\}) < \infty \}.$$

DEFINITION 1. We call an open curve $\mathcal{L} \in \mathfrak{R}$ with endpoints $\tau_0, \tau_1 \in \mathbb{C} \setminus \{\infty\}$ a spiral of logarithmic type (Δ_0, Δ_1) if there exist limits

$$\lim_{\tau \rightarrow \tau_j, \tau \in \mathcal{L}} [\arg(\tau - \tau_j) / \ln |\tau - \tau_j|^{-1}] = \Delta_j \quad (j = 0, 1).$$

THEOREM 2. *Let Γ be a simple open Ljapunov arc with endpoints t_0, t_1 and let α be an orientation-preserving H -smooth diffeomorphism of the contour Γ onto itself. Then the following propositions are valid:*

1) *there exists a conformal and one-sheeted mapping $\omega : \mathbb{C} \setminus \Gamma \rightarrow \mathbb{C} \setminus \mathcal{L}$, where $\mathcal{L} \in \mathfrak{R}$ is a spiral of logarithmic type (δ_0, δ_1) , which is a Ljapunov curve outside of an arbitrary neighborhood of the endpoints $\tau_j = \omega(t_j)$, $\delta_j = (2\pi)^{-1} \ln |\alpha'(t_j)|$;*

2) the function ω has Hölder limit values $\omega^\pm(t)$ on Γ satisfying the boundary condition $\omega^+[\alpha(t)] = \omega^-(t)$, $t \in \Gamma$;

3) the derivative ω' is continuously extended onto $\Gamma \setminus \{t_0, t_1\}$ from left and right sides and has the next asymptotics in neighborhoods of endpoints

$$|\omega'(z)| \asymp |z - t_j|^{-\delta_j^2/(1+\delta_j^2)} \quad \text{for } z \rightarrow t_j, z \in \Gamma \ (j = 0, 1).$$

With the help of Theorem 2 the Haseman problem (2) is reduced to the equivalent Riemann problem on the logarithmic type spiral $\mathcal{L} = \omega(\Gamma)$:

$$(4) \quad F^+(\tau) = \widehat{G}(\tau)F^-(\tau) + \widehat{g}(\tau), \quad \tau \in \mathcal{L},$$

where $\widehat{G}(\tau) = G[(\omega^-)^{-1}(\tau)]$, $\widehat{g}(\tau) = g[(\omega^-)^{-1}(\tau)] \prod_{j=0}^1 (\tau - \tau_j)^{m_j}$,

$$F(z) = \Psi[\omega^{-1}(z)] \prod_{j=0}^1 (z - \tau_j)^{m_j} \quad \text{and} \quad m_j = E[(p^{-1} + \beta_j)(1 + \delta_j^2)].$$

With problem (4) we associate a SIO

$$(5) \quad \widehat{N} = P_+ + \widehat{G}P_-$$

acting in the space $L_p(\mathcal{L}, \widehat{\varrho})$, where

$$\widehat{\varrho}(\tau) = \prod_{j=0}^1 |\tau - \tau_j|^{\widehat{\beta}_j}, \quad -p^{-1} < \widehat{\beta}_j = (p^{-1} + \beta_j)(1 + \delta_j^2) - p^{-1} - m_j < 1 - p^{-1}.$$

From the connection between problems (2) and (4) we can receive the following.

THEOREM 3. *The operators (1) and (5) are Noetherian only simultaneously. If they are Noetherian, then*

$$\dim \text{Ker } N = \max\{0, \text{ind } \widehat{N} + m\}, \quad \dim \text{Coker } N = \max\{0, -\text{ind } \widehat{N} - m\},$$

where $m = m_0 + m_1$.

COROLLARY 1. *If the operator (1) is Noetherian, then*

$$\dim \text{Ker } N = \max\{0, \text{ind } N\},$$

$$\dim \text{Coker } N = \max\{0, -\text{ind } N\},$$

where $\text{ind } N$ is calculated by the formula (3).

2. Let us consider the operator (1) with a coefficient G having points of discontinuity of semi-almost periodic type on a piecewise smooth contour Γ . At first in the space $L_p^n(\mathbb{R})$ we shall study SIO's.

$$(6) \quad T_G = P_+ + GP_-$$

with semi-almost periodic MVF's G and corresponding convolution type operators

$$(7) \quad W_G = \chi_- I + \mathcal{F}^{-1} G \mathcal{F} \chi_+ I,$$

where χ_{\pm} are characteristic functions of semi-axes \mathbb{R}_{\pm} and \mathcal{F} is the Fourier transformation:

$$(\mathcal{F}\varphi)(x) = (2\pi)^{-1/2} \int_{\mathbb{R}} e^{-ixy} \varphi(y) dy, \quad x \in \mathbb{R}.$$

In [7] D. Sarason defined the class SAP of semi-almost periodic functions as the subalgebra of L_{∞} generated by the class AP of uniform almost periodic functions and the class $C(\overline{\mathbb{R}})$ of functions continuous on the two-point compactification of \mathbb{R} . In parallels we consider the algebra \mathcal{M}_p of Fourier multipliers on $L_p(\mathbb{R})$ and the subalgebra $SAP_p \subset \mathcal{M}_p$ generated by AP_p and $C_p(\overline{\mathbb{R}})$, where AP_p is the closure in \mathcal{M}_p of the class AP_W of absolutely convergent trigonometrical series $\sum f_{\lambda} e^{i\lambda x}$ ($\lambda \in \mathbb{R}$) and $C_p(\overline{\mathbb{R}})$ is the closure of the set of continuous functions on $\overline{\mathbb{R}}$ of bounded variation.

Any MVF $G \in SAP$ can be represented in the form

$$(8) \quad G = G_+ u_+ + G_- u_- + G_0,$$

where MVF's $G_{\pm} \in AP$, MVF $G_0 \in C(\overline{\mathbb{R}})$ and $G_0(\pm\infty) = 0$, the functions $u_{\pm} = (1 \pm \tanh \pi x)/2$ and the mappings $G \rightarrow G_{\pm}$ are homomorphisms of the Banach algebra SAP onto AP. This fact remains correct if SAP, AP and $C(\overline{\mathbb{R}})$ are replaced by SAP_p , AP_p and $C_p(\overline{\mathbb{R}})$, respectively. According to [8] the MVF's G_{\pm} in (8) will be called the almost periodic components (or local representatives) of G at $\pm\infty$.

With the use of limit operators technique (see, for example, [9]) we can prove the following.

THEOREM 4. *If a MVF $G \in SAP$ (respectively, $G \in SAP_p$) and the operator T_G (W_G) is Noetherian in the space $L_p^n(\mathbb{R})$ then the operators $T_{G_{\pm}}$ ($W_{G_{\pm}}$) with almost periodic components G_{\pm} of the MVF G are invertible in $L_p^n(\mathbb{R})$.*

In the case $n = 1$ Theorem 4 was obtained earlier in [10], [11]. The proof of Theorem 4 in the case $n > 1$ is based on the following statements.

Let \mathfrak{C} and \mathfrak{G} be Banach algebras of SIO in $L_p^n(\mathbb{R})$ with matrix-valued coefficients of class SAP and AP, respectively. Let \mathfrak{B} and \mathfrak{D} be Banach algebras in $L_p^n(\mathbb{R})$ generated by operators $\text{sgn}(\cdot)I$ and $\mathcal{F}^{-1}G\mathcal{F}$, where MVF's G belong to SAP_p and AP_p , respectively. It is clear that algebras \mathfrak{C} and \mathfrak{B} contain the ideal \mathcal{L}_0 of compact operators in $L_p^n(\mathbb{R})$.

LEMMA 1. *The mappings $\nu_{\pm} : T \rightarrow T_{\pm}$ defined on generators GI (MVF's $G \in SAP$) and $S = P_+ - P_-$ of the algebra \mathfrak{C} by the equalities*

$$\nu_{\pm}(GI) = G_{\pm}I, \quad \nu_{\pm}(S) = S$$

are continued to homomorphisms of the algebra \mathfrak{C} onto the algebra \mathfrak{G} ; moreover

$$(\forall T \in \mathfrak{C}) \|T_{\pm}\| \leq |T| = \inf \{\|T + K\| : K \in \mathcal{L}\}.$$

LEMMA 2. *The mappings $\mu_{\pm} : W \rightarrow W_{\pm}$ defined on generators $\text{sgn}(\cdot)I$ and $\mathcal{F}^{-1}GF$ (MVF's $G \in SAP_p$) of the algebra \mathfrak{B} by the equalities*

$$\mu_{\pm}(\mathcal{F}^{-1}GF) = \mathcal{F}^{-1}G_{\pm}\mathcal{F}, \quad \mu_{\pm}(\text{sgn}(\cdot)I) = \text{sgn}(\cdot)I$$

are continued to homomorphisms of the algebra \mathfrak{B} onto the algebra \mathfrak{D} ; moreover

$$(\forall W \in \mathfrak{B}) \|W_{\pm}\| \leq |W|.$$

According to [9], the limits of any strongly convergent subsequences $B'_{h_n}TB'^{-1}_{h_n}$ and $e^{-ixh_n}We^{ixh_n}I$, respectively, of sequences $B_{h_n}TB_{h_n}^{-1}$ and $e^{-ixh_n}We^{ixh_n}I$, where $(B_h\varphi)(x) = \varphi(x + h)$ and $h_n \rightarrow \pm\infty$ as $n \rightarrow \pm\infty$, will be called limit operators for T and W .

THEOREM 5. *If the operator $T \in \mathfrak{C}$ ($W \in \mathfrak{B}$) is Noetherian, then limit operators $T_{\pm} = \nu_{\pm}(T) \in \mathfrak{G}$ ($W_{\pm} = \mu_{\pm}(W) \in \mathfrak{D}$) are invertible.*

Theorem 4 follows from Theorem 5 for $T = T_G$ and $W = W_G$.

COROLLARY 2. *For a MVF $G \in AP$ (respectively, $G \in AP_p$) the Noether property and the invertibility of the operator $T_G(W_G)$ in $L_p^n(\mathbb{R})$ are equivalent.*

It is clear that Lemma 1 and Theorems 4–5 are extended on algebras SIO's in $L_p^n(\Gamma)$ with coefficients having semi-almost periodic type discontinuities.

In the case $p = 2$ Theorem 4 admits the strengthening.

THEOREM 6. *If a MVF $G \in SAP$ and the operator T_G or W_G is n -normal (d -normal) in the space $L_2^n(\mathbb{R})$, then the operators $T_{G_{\pm}}$ and $W_{G_{\pm}}$ are left (right) invertible in $L_2^n(\mathbb{R})$.*

If $n = 1$, then Theorem 6 is valid for all $p \in (1, \infty)$ (see [10], [11]).

The investigation of the Noether property of the operators (6)–(7) is closely connected with the study of a special form of factorization of almost periodic MVF's G_{\pm} , which I. M. Spitkovskii factorization of almost periodic MVF's G_{\pm} , which I.M. Spitkovskii and the author have called P -factorization (see [8], [12]).

For a MVF $G \in AP$ let $\mathbf{M}(G)$ and $\Omega(G)$ denote its mean value and spectrum, respectively:

$$\mathbf{M}(G) = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^T G(x) dx, \quad \Omega(G) = \{\lambda \in \mathbb{R} : \mathbf{M}(e^{-i\lambda x} G(x)) \neq 0\}.$$

Let $AP^\pm = \{G \in AP : \Omega(G) \subset \mathbb{R}_\pm\}$ and $AP_W^\pm = AP^\pm \cap AP_W$.

DEFINITION 2. A P -factorization (correspondingly a P_W -factorization) of an $n \times n$ MVF G defined on \mathbb{R} is defined to be a representation of it in the form

$$(9) \quad G = G^+ \wedge G^-,$$

where $\wedge(X) = \text{diag}[e^{i\lambda_1 x}, \dots, e^{i\lambda_n x}]$, the numbers λ_j are real and MVF's $G^\pm (G^\pm)^{-1} \in AP^\pm$ (respectively, AP_W^\pm).

The set of the values λ_j is invariant for the P -factorable MVF G . We call these numbers the partial P -indices of the MVF G . If all partial P -indices are equal, then the matrix $\mathbf{M}(G^+) \mathbf{M}(G^-)$ is uniquely determined, and we denote it below by $d(G)$.

3. Let a MVF $G \in AP_W$.

THEOREM 7. *If a MVF $G \in AP_W$, then the following affirmations are equivalent:*

- 1) the operator T_G is Noetherian in the space $L_p^n(\mathbb{R})$,
- 2) the operator T_G is invertible in $L_p^n(\mathbb{R})$,
- 3) the operator W_G is Noetherian in $L_p^n(\mathbb{R})$,
- 4) the operator W_G is invertible in $L_p^n(\mathbb{R})$,
- 5) the MVF G is P -factorable with zero partial P -indices,
- 6) the MVF G is P_W -factorable with zero partial P -indices.

The implications 6) \Rightarrow 2) \Rightarrow 1) and 6) \Rightarrow 4) \Rightarrow 3) are obvious. The equivalence 5) \Leftrightarrow 6) was established in [13] with the use of the results from [14]. The implications 1) \Rightarrow 2) and 3) \Rightarrow 4) were proved in Theorem 4. It remains to prove the implications 2) \Rightarrow 6) and 4) \Rightarrow 6), moreover only for $n > 1$, since in the case $n = 1$ they were established in [15], [16].

At first let $p = 2$. Then $W_G = \mathcal{F}^{-1} T_G \mathcal{F}$, where \mathcal{F} is the isometry of $L_2^n(\mathbb{R})$ onto itself. Hence in the case $p = 2$ it is sufficient to consider only the operator T_G .

We denote by B_2 the Hilbert space of Besicovitch almost periodic functions, i.e. the supplement of the set of almost periodic polynomials $f(x) =$

$\sum f_\lambda e^{i\lambda x}$ by the norm

$$\|f\|_{B_2} = \left(\sum |f_\lambda|^2 \right)^{1/2} = [\mathbb{M}(|f|^2)]^{1/2}.$$

As is known, the space B_2 is identified with the Hilbert space $L_2(\mathbb{R}_B)$ with respect to the Haar measure $d\mu$ on the Bohr compact \mathbb{R}_B . Parallel with B_2 we consider also Besicovitch spaces B_p ($1 \leq p \leq \infty$) identified with Banach spaces $L_p(\mathbb{R}_B)$ with the Haar measure $d\mu$. In the Besicovitch space B_2 we introduce the orthoprojectors \mathcal{P}_\pm and $\widehat{\mathcal{P}}_\pm$ defined by equalities

$$\mathcal{P}_- = I - \mathcal{P}_+, \quad \widehat{\mathcal{P}}_+ = I - \widehat{\mathcal{P}}_-, \quad \mathcal{P}_+(e^{i\lambda x}) = \chi(\lambda)e^{i\lambda x}, \quad \widehat{\mathcal{P}}_-(e^{i\lambda x}) = \chi(-\lambda)e^{i\lambda x},$$

where $\chi(\lambda) = 1$ for $\lambda \geq 0$ and $\chi(\lambda) = 0$ for $\lambda < 0$.

Let $\mathcal{L}(X)$ be the algebra of all bounded linear operators acting in a Banach space X . In parallels with the C^* -algebra $\mathfrak{S} \subset \mathcal{L}(L_2^n(\mathbb{R}))$ generated by the operators \mathcal{P}_\pm and operators of multiplication by MVF's $G \in AP$ we consider the C^* -algebras $\mathcal{C}, \widehat{\mathcal{C}} \subset \mathcal{L}(B_2^n)$ generated, respectively, by operators \mathcal{P}_\pm, GI and $\widehat{\mathcal{P}}_\pm, GI$, where MVF's $G \in AP$.

With the help of the theorem on an isomorphism of C^* -algebras of operators with shifts established by the author in [17] we can prove the following.

THEOREM 8. *The C^* -algebras $\mathfrak{S}, \mathcal{C}$ and $\widehat{\mathcal{C}}$ are isometrically isomorphic.*

COROLLARY 3. *If a MVF $G \in AP$, then the operators*

$$\begin{aligned} T_G &= \mathcal{P}_+ + G\mathcal{P}_- \in \mathcal{L}(L_2^n(\mathbb{R})), & T_G &= \mathcal{P}_+ + G\mathcal{P}_- \in \mathcal{L}(B_2^n), \\ \widehat{T}_G &= \widehat{\mathcal{P}}_+ + G\widehat{\mathcal{P}}_- \in \mathcal{L}(B_2^n) \end{aligned}$$

are invertible only simultaneously.

The following gives the implication $2) \Rightarrow 6)$ in Theorem 7 in the case $p = 2$.

THEOREM 9. *If a MVF $G \in AP_W$ and the operator T_G is invertible in the space $L_2^n(\mathbb{R})$, then $G = G^+G^-$, where MVF's $G^\pm, (G^\pm)^{-1} \in AP_W^\pm$.*

Really, let I_n be the identity matrix of order n , let G' be the matrix transposed to G and $(\mathbb{C}\varphi)(X) = \overline{\varphi(X)}, X \in \mathbb{R}$. According to Corollary 3, the operators

$$T_G = \mathcal{P}_+ + G\mathcal{P}_-, \quad \mathbb{C}T_G^* \mathbb{C} = \widehat{\mathcal{P}}_- + \widehat{\mathcal{P}}_+ G' I$$

are invertible parallel with T_G . Hence, the operators

$$T_{G'} = G^{-1}\mathcal{P}_+ + \mathcal{P}_-, \quad T_{G''} = (G')^{-1}\mathcal{P}_- + \mathcal{P}_+$$

are invertible in the space B_2 of Besicovitch almost periodic $n \times n$ MVF's. Then the MVF's

$$\Phi^\pm = \mathcal{P}_\pm(T_{G'})^{-1}I_n, \quad \Psi^\pm = \widehat{\mathcal{P}}_\pm(T_{G''})^{-1}I_n,$$

respectively, belong to $B_2^\pm = \{A \in B_2 : \Omega(A) \subset \mathbb{R}_\pm\}$ and satisfy the relations

$$(10) \quad \Phi^+ = G(I_n - \Psi^-), \quad (\Psi^-)' = (I_n - \Psi^+)'G, \quad \mathbf{M}(\Phi^-) = \mathbf{M}(\Psi^+) = 0.$$

Since $G \in AP_W$, according to [14], the MVF's $\Phi^\pm, \Psi^\pm \in AP_W^\pm$. It follows from (10) that

$$(11) \quad C \stackrel{\text{def}}{=} (I_n - \Psi^+)'G(I_n - \Phi^-) = (I_n - \Psi^+)' \Phi^+ = (\Psi^-)'(I_n - \Phi^-).$$

Then $C \in AP_W^+ \cap AP_W^-$ and, consequently, C is a constant matrix. By analogy with Theorem 3.4 [18] we can prove that $\det C \neq 0$. It remains to set $G^+ = \Phi^+$, $G^- = C^{-1}(\Psi^-)'$ and to use (11).

In the case $p \neq 2$ the proof of the implications $2) \Rightarrow 6)$ and $4) \Rightarrow 6)$ is based on the following.

THEOREM 10. *If a MVF $G \in AP_W$, then the operator T_G (respectively, W_G) is invertible in all spaces $L_p^n(\mathbb{R})$, $1 < p < \infty$, only simultaneously.*

This theorem for the operator W_G follows from Corollary 2.2.12 in V. G. Kurbatov [19]. With a view to prove Theorem 10 for T_G we introduce the algebra \mathfrak{S}_p ($1 < p < \infty$) of operators $T = \sum A_\lambda e^{i\lambda x} I$ acting in the Banach space $L_p^n(\mathbb{R})$, where $A_\lambda = \mathcal{F}^{-1} a_\lambda \mathcal{F}$, \mathcal{F} is the Fourier transformation, elements of MVF's a_λ ($\lambda \in \mathbb{R}$) belong to the algebra \mathcal{M}_p of Fourier multipliers on $L_p(\mathbb{R})$ and

$$\|T\|_W = \sum \|A_\lambda\|_{\mathcal{L}(L_p^n(\mathbb{R}))} < \infty.$$

The algebra \mathfrak{S}_p is Banach under this norm.

Let G be a discrete abelian group and let $K = K(G)$ be its character group (all characters are continuous). Let \mathcal{L} denote a Banach algebra with identity and let $W(K, \mathcal{L})$ denote the subalgebra of the algebra $C(K, \mathcal{L})$ consisting of functions of the form

$$T(\kappa) = \sum \langle \kappa, \lambda \rangle b_\lambda, \quad \kappa \in K,$$

where $b_\lambda \in L$, $\langle \kappa, \lambda \rangle$ is the value of the character κ at the element $\lambda \in G$ and $\sum \|b_\lambda\| < \infty$.

In [20] S. Bochner and R. Phillips proved that the algebra $W(K, \mathcal{L})$ is full. With a help of this fact we can prove, according to [21], [19], the following.

THEOREM 11. *The algebra \mathfrak{S}_p is full for every $p \in (1, \infty)$.*

COROLLARY 4. *If the operator $T \in \mathfrak{S}_p$ is invertible, then it is invertible in any space $L_r^n(\mathbb{R})$, where r belongs to the segment with endpoints p and $q = p/(p-1)$.*

Theorem 10 follows from Corollary 4 and Theorem 9. As a result, Theorem 7 is proved completely.

Remark 1. A P -factorization of a MVF $G \in AP_W$ is not a necessary condition of one-sided invertibility of the operator T_G in contrast to two-sided invertibility. In fact, it is sufficient to consider the left (right) invertible in the space $L_p^2(\mathbb{R})$ operator T_G with the MVF $G = e^{-i\lambda x}A$ ($G = e^{-\lambda x}A$), where the MVF

$$A(x) = \begin{bmatrix} e^{i(1+\alpha)x} & 0 \\ e^{-ix} - 1 + e^{i\alpha x} & e^{-i(1+\alpha)x} \end{bmatrix}$$

with $\alpha = (5^{1/2} - 1)/2$ does not have a P -factorization (see [8]).

For any MVF $G \in AP$ we denote

$$\|G\|_\infty = \|s(G(\cdot))\|_{L_\infty(\mathbb{R})},$$

where $s(G(x))$ is the maximal singular number of $G(x)$.

Theorem 7 implies also the following.

COROLLARY 5. *If a MVF $G \in AP_W$ is P -factorable with coincident partial P -indices, then all MVF's of class AP_W from a sufficiently small by the norm $\|\cdot\|_\infty$ neighborhood of the MVF G are P_W -factorable with the same partial P -indices.*

4. Now we consider the operators T_G and W_G with semi-almost periodic MVF G having almost periodic components $G_\pm \in AP_W$ in the space $L_p^n(\mathbb{R})$, $1 < p < \infty$.

If the operator T_G is Noetherian in $L_p^n(\mathbb{R})$, then according to Theorem 4, the operators T_{G_\pm} are invertible in $L_p^n(\mathbb{R})$. Then, in view of conditions $G_\pm \in AP_W$ and Theorem 7, the Noether property of T_G implies P_W -factorability of MVF's G_\pm with zero partial P -indices. A similar fact is correct for W_G too. Hence from Theorem 3.2 in [8] and Theorem 2 in [12] we can obtain the following.

THEOREM 12. *If G is an $n \times n$ MVF of class SAP (respectively, SAP_p) and its local representatives $G_\pm \in AP_W$, then the operator $T_G(W_G)$ is Noetherian in the space $L_p^n(\mathbb{R})$ if and only if the following conditions hold:*

- 1) $\det G(x) \neq 0$ for all $X \in \mathbb{R}$,
- 2) MVF's G_\pm are P -factorable (equivalently, P_W -factorable) with zero partial P -indices,
- 3) the eigenvalues ξ_j ($j = 1, \dots, n$) of the matrix $d(G_-)^{-1}d(G_+)$ satisfy the inequalities

$$(12) \quad \gamma_j \stackrel{\text{def}}{=} \{p^{-1} - (2\pi)^{-1} \arg \xi_j\} \neq 0 \quad (\hat{\gamma}_j \stackrel{\text{def}}{=} \{q^{-1} - (2\pi)^{-1} \arg \xi_j\} \neq 0),$$

where $\{x\}$ denotes the fractional part of a number $X \in \mathbb{R}$ and $q = p/(p-1)$. If conditions 1) – 3) are satisfied, then

$$(13) \quad \begin{aligned} \operatorname{ind} T_G &= \operatorname{Ind} \det G - n/p + \sum_1^n \gamma_j \\ (\operatorname{ind} W_G &= \operatorname{Ind} \det G - n/q + \sum_1^n \hat{\gamma}_j), \end{aligned}$$

where

$$\operatorname{Ind} \det G = \frac{1}{2\pi} \lim_{t \rightarrow +\infty} \frac{1}{t} \int_{-t}^t \arg \det G(x) \operatorname{sgn} x \, dx.$$

Remark 2. Theorem 12 remains true for T_G acting in the weight space $L_{p,\beta}^n = \{f : (1 + |x|^\beta)f \in L_p^n(\mathbb{R})\}$, $1 < p < \infty$, $-p^{-1} < \beta < 1 - p^{-1}$, if in relations (12)–(13) p^{-1} is replaced by $p^{-1} + \beta$.

5. Now we get criteria for T_G with any $G \in SAP$ to be Noetherian or $n(d)$ -normal in the space $L_2^n(\mathbb{R})$. As a result we get rid of the condition $G_\pm \in AP_W$. For this it is necessary to generalize a concept of P -factorability for MVF's $G \in AP$.

We consider the Banach spaces B_p ($p = 1, 2, \infty$) of $n \times n$ MVF's A with elements belonging to $L_p(\mathbb{R}_B)$ and norms

$$\begin{aligned} \|A\|_1 &= \int_{\mathbb{R}_B} \operatorname{tr}(A(t)A^*(t))^{1/2} \, d\mu, \\ \|A\|_2 &= \left(\int_{\mathbb{R}_B} \operatorname{tr}(A(t)A^*(t)) \, d\mu \right)^{1/2}, \\ \|A\|_\infty &= \|s(A(\cdot))\|_{L_\infty(\mathbb{R}_B)}, \end{aligned}$$

respectively, where tr is a matrix trace, $s(\cdot)$ is a maximal singular number and $d\mu$ is the Haar measure on \mathbb{R}_B . Let $B_p^\pm = \{A \in B_p : \Omega(A) \subset \mathbb{R}_\pm\}$.

DEFINITION 3. We call a representation (9) a generalized P -factorization of an $n \times n$ MVF $G \in AP$, if \wedge has a previous form, MVF's $G^\pm, (G^\pm)^{-1} \in B_2^\pm$ and the operators $G^+ \mathcal{P}_+(G^+)^{-1} I$ and $(G^{-1})^{-1} \wedge^{-1} \mathcal{P}_-(G^+)^{-1} I$ are bounded in the space B_2^n .

Similarly to Theorem 2.1 in [8] we obtain the following

THEOREM 13. Let a MVF $G \in AP$ parallel with the P -factorization (9), in which $\lambda_1 \geq \dots \geq \lambda_n$, admits a representation $G = F^+ M F^-$, where $M(x) = \operatorname{diag}[e^{i\mu_j x}]_{j=1}^n$, $\mu_j \in \mathbb{R}$, $\mu_1 \geq \dots \geq \mu_n$ and MVF's $F^\pm, (F^\pm)^{-1} \in B_2^\pm$.

B_2^\pm . Then $\mu_j = \lambda_j$ ($j = 1, \dots, n$) and the factors F^\pm are determined by the formulas

$$F^+ = G^+ z, \quad F^- = \Lambda^{-1} z^{-1} \Lambda G^{-1},$$

where a MVF $z = (z_{kj})_{k,j=1}^n \in B_1^+$ together with $z^{-1}, z_{kj} = 0$ if $\lambda_k < \lambda_j$ and $\Omega(z_{kj}) \subset [0, \lambda_k - \lambda_j]$ if $\lambda_k \geq \lambda_j$.

The numbers λ_j uniquely to within transpositions determined by a generalized P -factorable MVF $G \in AP$ are also called the partial P -indices of G .

COROLLARY 6. *If all the partial P -indices of a generalized P -factorable MVF $G \in AP$ are equal, then a generalized P -factorization is determined to within the transformation $G^+ \rightarrow G^+ z, G^- \rightarrow z^{-1} G^-$, where z is a constant nonsingular matrix. In this case the nonsingular matrix $d(G) = \mathbf{M}(G^+) \mathbf{M}(G^-)$ is uniquely determined.*

LEMMA 3. *If G is a generalized P -factorable MVF of class AP and all $\lambda_j = 0$ ($\leq 0, \geq 0$), then the operator T_G is invertible (left-invertible, right-invertible) in the space $L_2^n(\mathbb{R})$.*

Let \mathcal{P} denote the open with respect to the norm $\|\cdot\|_\infty$ set of all MVF's $G \in AP$ such that the operators T_G are invertible in $L_2^n(\mathbb{R})$. According to Corollary 3, the operators T_G and \widehat{T}_G are invertible in B_2^n for $G \in \mathcal{P}$. Let I_n be the identity $n \times n$ matrix in contrast to the identity in B_2^n operator I .

LEMMA 4. *The mappings $G \rightarrow \mathbf{M}(T_G^{-1} G)$ and $G \rightarrow \mathbf{M}(\widehat{T}_G^{-1} I_n)$ are continuous at \mathcal{P} .*

LEMMA 5. *Matrices $\mathbf{M}(T_G^{-1} G)$ and $\mathbf{M}(\widehat{T}_G^{-1} I_n)$ are nonsingular for all $G \in \mathcal{P}$.*

THEOREM 14. *If a MVF $G \in AP$, then the operator T_G is invertible in the space $L_2^n(\mathbb{R})$ if and only if G is the generalized P -factorable MVF with zero partial P -indices.*

The sufficiency was proved in Lemma 3. The necessity is proved similarly to Theorem 9 and ([15], pp. 273–274) with the use of Lemmas 4–5 and the relations

$$C = d(G) = \mathbf{M}(T_G^{-1} G), \quad C^{-1} = [d(G)]^{-1} = \mathbf{M}(\widehat{T}_G^{-1} I_n),$$

where C is defined by (11).

With a help of Theorems 13–14 we can prove the following.

THEOREM 15. *If G is a Hermitian-positive MVF of class AP and $G^{-1} \in AP$, then $G = G^+(G^+)^*$, where $(G^+)^{\pm 1} \in B_\infty^+$.*

Theorem 13 implies also the following.

COROLLARY 7. *If a MVF $G \in AP$ is generalized P -factorable with zero partial P -indices, then all MVF's of class AP in a sufficiently small neighborhood of G are also generalized P -factorable with zero partial P -indices.*

From Lemmas 4–5 we can deduce also the following.

COROLLARY 8. *The function $d : G \rightarrow d(G)$ defined by the formulas*

$$d(G) = \mathbf{M}(G^+) \mathbf{M}(G^-) = \mathbf{M}(T_G^{-1} G)$$

continuously maps the open set \mathcal{P} onto the set of nonsingular numerical $n \times n$ matrices.

Remark 3. The invertibility of a MVF G in AP doesn't guarantee both the P -factorability and the generalized P -factorability of G .

THEOREM 16. *If an $n \times n$ MVF $G \in SAP$, then the operator T_G is Noetherian in the space $L_{2,\beta}^n$ ($|\beta| < 2^{-1}$) if and only if the following conditions hold:*

- 1) $\det G(x) \neq 0$ for all $x \in \mathbb{R}$,
- 2) the MVF's G_{\pm} are generalized P -factorable with zero partial P -indices,
- 3) the eigenvalues ξ_j of the matrix $d(G_-)^{-1} d(G_+)$ satisfy the inequalities

$$\gamma \stackrel{\text{def}}{=} \{2^{-1} + \beta - (2\pi)^{-1} \arg \xi_j\} \neq 0 \quad (j = 1, \dots, n).$$

If conditions 1)–3) are fulfilled, then the index of T_G can be computed from the formula (13) with p^{-1} replaced by $2^{-1} + \beta$.

LEMMA 6. *Let a MVF $G \in L_{\infty}(\mathbb{R})$. Then the operator T_G is n -normal (d -normal) in the space $L_2^n(\mathbb{R})$ if and only if the operator T_{G_n} (respectively, T_{G_d}) is Noetherian in the space $L_2^{2n}(\mathbb{R})$, where*

$$G_n = \begin{bmatrix} G^* & 0 \\ I_n + GG^* & G \end{bmatrix}, \quad G_d = \begin{bmatrix} G & 0 \\ I_n + G^*G & G^* \end{bmatrix}.$$

From Lemma 6 and Theorem 16 we deduce the following.

THEOREM 17. *If a MVF $G \in SAP$, then the operator T_G is n -normal (d -normal) in the space $L_{2,\beta}^n$ if and only if:*

- 1) $\det G(x) \neq 0$ for all $x \in \mathbb{R}$,
- 2) the MVF's $(G_n)_{\pm}$ (respectively, $(G_d)_{\pm}$) are generalized P -factorable with zero partial P -indices,
- 3) the eigenvalues ξ_j of the matrix $d[(G_n)_-]^{-1} Bd[(G_n)_+]B$ (respectively, $d[(G_d)_-]^{-1} B^{-1} d[(G_d)_+]B^{-1}$) satisfy the relations

$$2^{-1} - (2\pi)^{-1} \arg \xi_j \in \mathbb{Z} \quad (j = 1, \dots, 2n),$$

where $B = \text{diag}[e^{\pi i \beta} I_n, e^{-\pi i \beta} I_n]$.

6. Let a contour Γ consist of simple open oriented smooth arcs Γ_k ($k = 1, \dots, k_0$) intersecting only at their endpoints and not forming zero angles, \mathcal{T} is the set of nodes of the contour Γ , α is an orientation-preserving diffeomorphism of each arc Γ_k onto itself.

In the space $L_p^n(\Gamma, \varrho)$, $\varrho(t) = \prod_{\tau \in \mathcal{T}} |t - \tau|^{\beta_\tau}$, $-p^{-1} < \beta_\tau < 1 - p^{-1}$, $1 < p < \infty$, we consider the operator (1), where G is a continuous on $\Gamma \setminus \mathcal{T}$ MVF of order n having at nodes discontinuities of semi-almost periodic type, i.e. there exist such uniform almost periodic MVF's $G_{k,\pm}$ and such orientation-preserving diffeomorphisms γ_k of real axis \mathbb{R} onto $\Gamma_k \setminus \mathcal{T}$ with finite non-zero limits $\lim_{x \rightarrow \pm\infty} x^2 \gamma'_k(x)$ that

$$\lim_{x \rightarrow \pm\infty} [G(\gamma_k(x)) - G_{k,\pm}(x)] = 0.$$

We assume that MVF's $G_{k,\pm} \in AP_W$ if $p \neq 2$.

LEMMA 7. *If the operator (1) is Noetherian in $L_p^n(\Gamma, \varrho)$, then for $k = 1, \dots, k_0$ the MVF's $G_{k,\pm}$ are P_W -factorable (generalized P -factorable if $p = 2$) with zero partial P -indices.*

To each node τ of the contour Γ (being for example a common end of arcs $\Gamma_1, \Gamma_2, \dots, \Gamma_m$ numbered as a result of a circuit around τ in a counter-clockwise direction) we can associate the eigenvalues $\lambda_j(\tau)$ ($j = 1, \dots, n$) of the matrix $[d(G_m)]^{\vartheta_m} [d(G_{m-1})]^{\vartheta_{m-1}} \dots [d(G_1)]^{\vartheta_1}$ and the number

$$\xi(\tau) = (2\pi)^{-1} \sum_{k=1}^m \vartheta_k \ln \left(\lim_{t \rightarrow \tau, t \in \Gamma_k} |\alpha'(t)| \right),$$

where $G_k = G_{k,-}$ and $\vartheta_k = 1$ (respectively, $G_k = G_{k,+}$ and $\vartheta_k = -1$) if τ is the origin (end) of the arc Γ_k .

THEOREM 18. *If an $n \times n$ MVF G is continuous on $\Gamma \setminus \mathcal{T}$ and admits discontinuities of semi-almost periodic type at nodes of the contour Γ and also the MVF's $G_{k,\pm} \in AP_W$ for all $p \in (1, \infty) \setminus \{2\}$, then the operator (1) is Noetherian in the space $L_p^n(\Gamma, \varrho)$ if and only if the following conditions hold:*

- 1) $\det G(t) \neq 0$ for all $t \in \Gamma \setminus \mathcal{T}$,
- 2) for $k = 1, \dots, k_0$ the MVF's $G_{k,\pm}$ are generalized P -factorable with zero partial P -indices if $p = 2$ and P_W -factorable with zero partial P -indices for other $p \in (1, \infty)$,
- 3) for all $\tau \in \mathcal{T}$ and $j = 1, \dots, n$ the numbers

$$\varphi_j(\tau) = (p^{-1} + \beta_\tau)[\xi^2(\tau) + 1] + (2\pi)^{-1}[\xi(\tau) \ln |\lambda_j(\tau)| - \arg \lambda_j(\tau)]$$

are not integers.

If these conditions are satisfied, then

$$\begin{aligned} \operatorname{ind} N = (2\pi)^{-1} \sum_{k=1}^{k_0} \lim_{t \rightarrow +\infty} t^{-1} \int_{-t}^t \arg \det G(\gamma_k(x)) \operatorname{sgn} x \, dx \\ + \sum_{\tau \in T} \sum_{j=1}^n [E(\varphi_j(\tau)) + (2\pi)^{-1} \arg \lambda_j(\tau)], \end{aligned}$$

where $\arg f$ is an arbitrary continuous branch of the argument of f on \mathbb{R} .

Remark 4. The results of sections 2-6 were partly announced in [22], [23], their systematic presentation is contained in [3].

References

- [1] G. S. Litvinchuk, *Boundary value problems and singular integral equations with a shift*, "Nauka", Moscow, 1977.
- [2] Yu. I. Karlovich, V. G. Kravchenko, *On a singular integral operator with non-Carleman shifts on an open contour*, Dokl. Akad. Nauk SSSR 236 (1977), 792-795.
- [3] Yu. I. Karlovich, *Algebras of operators of convolution type with discrete groups of shifts and oscillating coefficients*, Doctoral Dissertation, Marine Hydrophysical Institute of Academy of Sciences of the Ukrainian SSR, Odessa, 1990.
- [4] Yu. I. Karlovich, V. G. Kravchenko, *An algebra of singular integral operators with piecewise-continuous coefficients and a piecewise-smooth shift on a composite contour*, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 1030-1077.
- [5] A. V. Ajzenshtat, Yu. I. Karlovich, G. S. Litvinchuk, *On deficiency numbers of D. Kveselava-N. Vekua operator with discontinuous derivative of a shift*, Dokl. Akad. Nauk SSSR 318 (1991), 11-16.
- [6] G. David, *Opérateurs intégraux singuliers sur certaines courbes du plan complexe*, Ann. Sci. Ecole Norm. Supér. 17 (1984), 157-189.
- [7] D. Sarason, *Toeplitz operators with semi-almost periodic symbols*, Duke Math. J. 44 (1977), 357-364.
- [8] Yu. I. Karlovich, I. M. Spitkovskii, *Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type*, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 276-308.
- [9] B. V. Lange, V. S. Rabinovich, *it Pseudodifferential operators on \mathbb{R}^n and limit operators*, Mat. Sb. 129 (171), (1986), 175-185.
- [10] A. I. Saginashvili, *Singular integral equations with coefficients having discontinuities of semi-almost periodic type*, Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 66 (1980), 84-95.
- [11] R. V. Duduchava, A. I. Saginashvili, *Integral convolution equations on a half-line with semi-almost periodic presymbols*, Differential'nye Uravneniya 17 (1981), 301-312.
- [12] Yu. I. Karlovich, I. M. Spitkovskii, *On the theory of systems of convolution type equations with semi-almost-periodic symbols in spaces of Bessel potentials*, Dokl. Akad. Nauk SSSR 286 (1986), 799-803.

- [13] I. M. Spitkovskii, *On factorization of almost periodic matrix-valued functions*, Mat. Zametki 45 (1989), no. 6, 74–82.
- [14] R. G. Babadzhanyan, V. S. Rabinovich, *On factorization of almost periodic operator-valued functions*, Differential Integral Equations and Complex Analysis, Elista, (1986), 13–22.
- [15] I. Ts. Gokhberg, N. Ya. Krupnik, *Introduction to the theory of one-dimensional singular integral operators*, “Shtiintsa”, Kishinev, 1973.
- [16] I. Ts. Gokhberg, I. A. Fel'dman, *Convolution equations and projection methods for their solution*, “Nauka”, Moscow, 1971.
- [17] Yu. I. Karlovich, *The local-trajectory method of studying invertibility in C^* -algebras of operators with discrete groups of shifts*, Dokl. Akad. Nauk SSSR, 299 (1988), 546–550.
- [18] G. C. Litvinchuk, I. M. Spitkovskii, *Factorization of measurable matrix-valued functions*, Akademie-Verlag, Berlin and Birkhäuser Verlag, Basel, 1987.
- [19] V. G. Kurbatov, *Linear differential-difference equations*, Voronezh, 1990.
- [20] S. Bochner, R. S. Phillips, *Absolutely convergent Fourier expansion for non-commutative normed rings*, Ann. Math., 43 (1942), 409–418.
- [21] V. N. Semenyuta, *On singular operator equations with a shift on a circle*, Dokl. Akad. Nauk SSSR 237 (1977), 1301–1302.
- [22] Yu. I. Karlovich, G. S. Litvinchuk, *On some classes of semi-Noetherian operators*, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1990), 3–16.
- [23] Yu. I. Karlovich, *Vector boundary value problems of Riemann and Haseman with oscillating coefficients*, Rep. Extended Sessions Sem. Vekua Inst. Appl. Math., Tbilis. Gos. Univ., Tbilisi, 5 (1985), no. 1, 86–89.

DIVISION OF HYDROACOUSTICS
 MARINE HYDROPHYSICAL INSTITUTE
 ACADEMY OF SCIENCES OF THE UKRAINE
 ODESSA, UKRAINA

Received April 6, 1992.

