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Real shifts induced by right invertible operators were studied by D. Prze-
worska-Rolewicz [1]-[4]. Complex and functional extensions of these shifts
were considered by the author [5]-[10]. In the present paper periodic solu-
tions of equations and initial value problems, induced by functional shifts
are studied. Periodic solutions of an equation with an operator of complex
differentation are considered.

0. Denote by L(X) the set of all linear operators with domains and
ranges in a linear space X over the field C of the complex numbers and by
Lo(X) the set of all operators A € L(X) with dom A = X. The set of all
right invertible operators belonging to L(X) will be denoted by R(X). If
D € R(X) then we denote by Rp the set of all right inverses of D. In the
sequel we shall assume that dimker D # 0 and that right inverses belong
to Lo(X). An operator F € L,(X) is said to be an initial operator for D
corresponding to an R € Rp if

F?=F, FX=%kerD and FR=0.

The set of all initial operators for a given D € R(X) is denoted by Fp.
Here and in the sequel we admit that 0° := 1. We also write N for the
set of all positive integers and Ny := {0} UN.

This paper has been presented at the Vth Symposium on Integral Equations and
Their Applications, 10-13 December 1991, held at the Institute of Mathematics, Warsaw
University of Technology.
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For a given operator D € R(X) we shall write (cf. [2], [4]):

. (o<}
(0.1) S = U ker D*.
i=1
If R € Rp then the set S is equal to the linear span P(R) of all D-monomials,
ie.
(0.2) S = P(R) :=1lin{R*2: 2z € ker D, k € Ny} .
Evidently, the set P(R) is independent of the choice of the right inverse R.
In the sequel K will stand either for the unit disk K; := {h € C : |A|

< 1} or for the complex plane C. Denote by H(£2) the class of all functions
analytic on a set 2 C C.

DEFINITION 0.1. Suppose that a function f € H(K) has the following
expansion

(0.3) f(h) = i anh®  forallhe K.

n=0

Suppose that D € R(X) and dimker D > 0. A family Ty x = {Tyr}rex C
Ly(X) is said to be a family of functional shifts for the operator D induced
by the function f if

(0.4) Ty nx = [f(hD)]z := Z a,h™” D"z

n=0
foralhe K;z € §.

We should point out that, by definition of the set §, the last sum has
only a finite number of components different than zero.

ProposITION 0.1 (cf. [9]) Suppose that D € R(X), dimker D # 0, F is
an initial operator for D correspondingto an R € Rp and Ty x = {Tsr}nex
is a family of functional shifts for D induced by the function f. Then

k
0.5) (i) TynR*F = a;}/ R*F,
j=0
FTf,thz = ag,
forallhe K; k € Ng; z € ker D,

(i) If a famzly Wik = {Winthex C L(X) satisfies the condition:
Wi Rz = 2, 0 @ih’ iR¥"iz for all h € K; k € No; z € ker D, where
R, € Rp, then

Winls = Tinls forallhe K.
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PRroPoOsSITION 0.2 (cf. [8]) Suppose that all assumptions of Proposition 0.1
are satisfied. Then for all h € K the operators Ty, commute on the set §
with the operator D.

We denote by X1, , the space of Ty ,-periodic elements, i.e. the space
(0.6) Xr,,={z€X:Trpz=zx}, heK.

1. In this section, K will stand either for the unit disk or for the complex
plane C. As before a function f € H(K) has the following expansion:

f(R)=) ash™ forallhe K.
n=0
Let Ty x = {Tyn}rex be a family of functional shifts for D € R(X)
induced by the function f.
The general form of the solution of the equation

(1.1) Dz=y
is given by the formula
(1.2) z=2z+ Ry,

where z € ker D is arbitrary and R € Rp is arbitrarily fixed (cf. [2]).
PROPOSITION 1.1. Suppose that f € H(K), f(0) = 1, D € R(X) and
dimkerD # 0. Let R € Rp be arbitrarily fized. Then the equation (1.1)
has a solution belonging to the space X, , (h € K) defined by Formula (0.6)
if and only if Ry € X, ,. If this condition is satisfied then Formula (1.2)
determines all solutions of Equation (1.1) which belong to the space Xt , .

Proof. Let z € X7,, be a solution of Equation (1.1). Then there exists
21 € ker D such that z = z; + Ry. Since Ty 421 = 21, therefore

z=Tipr = Tf,h(zl + Ry) =z1+ Ty rRy.
Hence,
21+ Ry =2+ Ty nRy,
i.e. Ry = Sy Ry.
Conversely, let Ry € Xr,,, then £ = 2z 4+ Ry, where z € kerD, is a
solution of Equation (1.1) and
Tf,ha: = Tf,h(z + Ry) = Tf,hz + Tf,hRy =z+Ry==z,

ie. .z € XT,_,..
Note that if f(0) = 1 and Ryy € X7, , for an operator R; € Rp then
the set

Rpy:={Ry:R€ Rp} C X7,, (h€K).
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Indeed, let R € Rp be arbitrarily fixed. Then there exist z € domD,
2,2 € ker D such that

Dz=y; z=24+Ry and z=2+Ryy.
We have
Typx=z1+Riy=z and Typz=2+TinRy.
Hence
TsnRy=Ry ie. Rye Xr,,.

Observe that, in general, Equation (1.1) may have not a solution in the
space X, , (h € K) although the right side of this equation is a member of
Xty ,, - For example, let 0 # h € K and 0 # 2z € ker D be arbitrarily fixed
and let the families Texp, iy Tcos,hy Ten,n be given (cf. [5]). Proposition 0.1
implies that

TexphRz=Rz+hz# Rz for RERp.

This and Proposition 1.1 together imply that the equation
(1.3) Dz ==z

has not a solution belonging to the space X, although ker D C X,

The following equalities (cf. Proposition 0.1)
Tcos,nRz =Rz, TppRz=Rz, 2z€kerD

and Proposition 1.1 together imply that every solution of the Equation (1.3)
belongs to X, ,, X1, ,, respectively.

xp,h? xp,h °

os,h ?

PROPOSITION 1.2. Suppose that f € H(K), f(0) # 1, D € R(X) and
dimker D # 0. Let an operator R € Rp be arbitrarily fized. Then Equation
(1.1) has a solution in the space X, ,(h € K) if and only if (Tyn— I)Ry €
ker D. If this condition is satisfied then the unique solution of Equation (1.1),
which belongs to X1, ,, has the form

r=2z+ Ry,
where 21 = z3/[1 - f(0)], 22 = (Tyn — I)Ry; h € K.

Proof. Let z € X1, be a solution of Equation (1.1). Then there exists
z1 € ker D such that z = z; + Ry. By the definition, we have

(1.4) z =Ty = Trn(z1 + Ry) = f(0)21 + Ty Ry

Hence,
(T — )Ry = [1 - f(0))z1 € ker D.
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Conversely, if (Ty,, — I)Ry = z; € ker D and z = z; + Ry, where z; =
z2/[1 - £(0)], then Dz = y and
Tyne = f(0)z1 + Ty nRy = f(0)z1 + 22 + Ry
=f(0)z14+(1-f(0)z1+Ry=21+Ry==x.
In order to prove the uniqueness of solutions to Equation (1.1) in the
space X, , , suppose that there exist z;,z; € X1,, such that Dz; = Dz,

= y. Formula (1.4) implies that there exists 2 € ker D such that 2 = z; + 2.
We have
Ty = Tf,hzg = Tf,h(:l:l + 2) = Tf'h:l:l + Tf,hz =2z + f(O)z.

Hence z = f(0)z. Our assumptions imply that z = 0, i.e. that 3 = z1.

Note that if f(0) # 1,h € K is arbitrarily fixed and there exists an
R, € Rp such that (T, — I)Ryy € ker D, then (T, — I)Ry € ker D for
al Re Rp.

Suppose that D € R(X), dimker D # 0 and F is an initial operator for
D corresponding to an R € Rp. Then the initial value problem

(1.1) Dz =y, ye kX,
(1.5) Fz =2, 2zckeD,
has the unique solution of the form

(1.6) z = 2 + Ry,

(cf. [2]).

Proposition 1.1 implies the following

THEOREM 1.1. Suppose that D € R(X),dimker D # 0, F is an initial
operator for D corresponding to an R € Rp, f € H(K) and f(0) = 1. Then
a necessary and sufficient condition for the initial value problem (1.1), (1.5)
to have solutions in the space X, , is that Ry € Xr,, (h € K). If this
condition is satisfied then a unique solution of the problem ezists and is of
the form (1.6).

Proposition 1.2 implies the following

THEOREM 1.2. Suppose that D € R(X), dimker D # 0, F is an initial
operator for D corresponding to an R € Rp, f € H(K) and f(0) # 1. Then
a necessary and sufficient condition for the initial value problem (1.1), (1.5)
to have solutions in the space Xt, ,(h € K) is that

20 = (Tf,h - I)Ry.

If this condition is satisfied then a unique solution of the problem ezists and
is of the form

z = (1-£(0))"(Tsn— f(O))Ry.
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2. Let X be the set of all polynomials defined on K and with coefficients
in C. The set X is a linear space over C, if the multiplication by a scalar
and the addition are defined in usual way. Let X,, will stand for the set of
all polynomials of order m € Ny belonging to the space X.

Suppose that we are given families Texp,K, Tcos,K’ Tch,K, Tsin,K, Tah,K-
Similarly as in [5] we write:

SI\’ = Texp,K y CK = lcos,K

chig :=Tenk, Sk :=Tsink,

shg = Tsn,x -
Let {ax} be a sequence, where a; € C and a; # 0 for every k € Ny. Define
linear operators D, R as follows:

D1=0, Duw*t= ak/ak+1wk,
ka = ak+1/akwk+1, keNyg, we K,
where 1 =1 on K.
Cleary, the operators D, R are uniquely determined on the whole space

X, ie. D,R € Lo(X). It is easy to show that D € R(X) and R € Rp.
An initial operator F for the operator D corresponding to R has the form

(cf. [7])
(Fz)(w)=12(0), ze€X.
Observe that

ker D = X,
(2.1) DX, C Xn-1, n €N,
(2.2) RX,, C Xm+1 , m € Ng.

Let z € X,,, m € Ng. Consider elements Sz, cxz, chpz, spz, shpx for
h € K. We have (cf. [5])

(2.3) Spx = i(j!)‘lthjx,
§=0
(2.4) chE = io(j!)‘lhj cos(jr/2) DIz,
chpz = io(j!)“lhjl cos(jr/2)| Dz, |
(2.5) ShT = i(j!)"hj sin(jn/2) D'z,

i=0
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m
shaz =) _(51)7'h|sin(j7/2)| Dz .
=0
ProrosITION 2.1. For all 0 # h € K the space of Si-periodic elements
Xs, coincides with Xo = ker D.

Proof. Let n € N and z € X,, are arbitrarily fixed. Consider S,z for an
arbitrary 0 # h € K. By Formula (2.3) we obtain

LY I
Sz =z+z3—!-D’z.
Jj=1

This and Inclusion (2.1) together imply that Syz = z+z,, wherez; € X,,;.
In the case n = 1 we have z; # 0. Indeed, let z = t;w + ¢ty € X1, where

to, t; € C (1, # 0). We have

z1 = Shz — z = hDz = hD(tp + tyw) = (htyap/a1)l #0.

Thus the equation S,z = z is not solvable for z ¢ ker D. Since ker D =

Xo,.we conclude that the space of S,-periodic elements X, = Xo.
Propositon 1.1., Inclusion (2.2) and Proposition 2.1. together imply

THEOREM 2.1. The equalion
(2.6) D=y, yeX((0#heKk),
has not Sy -periodic solutions.

In similar way we can obtain

PROPOSITION 2.2. The space of cp-periodic (chy-periodic) elements is of
the form
X, =XoUXy: (Xen, =XoUXy),
where 0 # h € K. ’
THEOREM 2.2. Let 0 # h € K. Equation (2.6) has a ch-periodic (chy-
periodic) solution if and only if y € ker D = X,.

PRrROPOSITION 2.3. The space of sy- periodic (shy-periodic) elements con-
tains only the zero element.

Proof. Let h € K be arbitrarily fixed. Formula (2.5) implies
shz=0 forzeXp

and
n

J .
SHT = Z%'—sin(jwﬂ)D’m forr € X,, n€N.
j=1""
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This and Inclusion (2.1) together imply

snXo = {0},

$1Xn C Xp-1, m€EN.

Since for all k,m € Ng, k # m X, N X, = 0, we conclude that
X,, = {0}.

Similarly, we can obtain that X,;, = {0}.
Observe that Formula (2.7) and Inclusion (2.2) together imply

(2.8) (sh - I)RXm C Xm+1, me€ No .

A similar inclusion holds for shy.
Proposition 1.2 and Formula (2.8) together imply

(2.7)

THEOREM 2.3. Equation (2.6) has only a trivial s,-periodic (shy-
periodic) solution.

An immediate consequence of Theorems 2.1, 2.2, 2.3 and Propositions
1.3, 1.4 is the following

COROLLARY 2.1. Let 0 # h € K. The following initial boundary value
problem

Dz =y, 0£yeX,
Fz =2z, z9€kerD
(i) has not Sy,-periodic, sj,-periodic, shy-periodic solutions,
(ii) has a cp-periodic, chy-periodic solution if and only if y € ker D.
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