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A N ISOMORPHISM THEOREM FOR UNICYCLIC G R A P H S 

1. Introduction 
In the paper we follow the notation of Harary [1]. By a unicyclic graph we 

mean any connected graph with exactly one cycle. The graph isomorphism 
problem can be stated as follows: 

For given graphs G\ and Gi determine whether or not they are isomor-
phic and, if they are, derive any isomorphism of Gi onto Gi- Two graphs 
G\ = (Vi,Ei) and G2 = ( ^ , £ 2 ) are isomorphic (G1 = G2) if there exists a 
one-to-one mapping <j> of V\ onto V% such that 

(ui ,vi) G E\ whenever (<j>(ui),<j>(v 1)) e E2 , 

for every pair («1, Vi) of vertices in Vi. 
In this paper instead of testing isomorphism between two unicyclic 

graphs U\ and U2 we test isomorphism between some matrices M^ and 
MU2 corresponding to Ui and U2, respectively. The main theorem is true for 
unicyclic graphs with at least three so-called offshoots only. (By an offshoot 
we mean every component of the graph obtained from a unicyclic graph by 
deleting all the edges of the cycle.) In the last section there are some exam-
ples showing that the theorem is not true for graphs with less than three 
offshoots. In that sense the number "three" is best possible. 

Since the exact definition of the matrix Mu for a given unicyclic graph 
U is given in the next section let us only mention here that many questions 
concerning the structural properties of U (e.g. the length of the cycle, the 
number of offshoots or the cardinality of the set of leaves in the particular 
offshoot) can easily be answered by the use of the matrix Mu- Moreover 
such a matrix is usually small and it is rather surprising that it provides 
enough information to define a unicyclic graph U, up to isomorphism. 

2. Definitions and lemmas 
In order to state the main theorem we shall introduce some definitions 
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first. We denote by J(G) the set of all vertices of degree one in the graph G. 
In case G is either a tree or a unicyclic graph we call any vertex belonging 
to J(G) a leaf. We use U and Uv (p € Af, p > 3) to denote the set of all 
unicyclic graphs and the set of all unicyclic graphs with a cycle of length 
p, respectively. By Mn (n € N) we mean the set of all matrices n x n 
of non-negative elements. Finally, the notation (i = k, n) means "for every 
natural i from k to n". 

D E F I N I T I O N 1. Let A,B e Mn• We say that A is isomorphic to B 
(A ^ B) if there exists a permutation a of the set { l , . . . , n } such that 
A[i,j] = B[cr(i),a(j)] ( i , j = l ,n) . The matrix A is denoted by <r(B). 

D E F I N I T I O N 2. Let T be a tree with n leaves and let J(T) = { U I , . . . , U N } . 

Define 
M r M = | j r K « i ) if 

where /9t(«*;>«/) = l , n ) is the distance between the leaves Uk and ui 
in T. The matrix MT is called the matrix of distances between leaves in T. 

By Definition 1, it is obvious that for any tree T the matrix MT is 
symmetric and has zeros on the main diagonal. 

In 1965 Zarecky [3] using results of Smolensky [2] have proved the fol-
lowing: 

L E M M A 1 (Zarecky). Let Sv (is > 2) be a system of v(v — 1) natural 
numbers pij = pji (i,j = 1 ,i/,i ^ j). There exists a tree T with the set of 
leaves J(T) = {2/1,..., yu} satisfying the conditions priVi, Uj) — Pij (hj = 

^ j ) if and only if the system Sv has the following properties: 
. for any pairwise different indices i,j, k G {1, • • • the numbers 

Pij + Pik — Pjk ore even and positive 
and 

for any pairwise different indices i, j, k, I € {1,..., v} 
(2) two of the numbers p^ + pki, Pik + Pji and pu + pjk 

are equal to each other and the third one is not greater than them. 
If conditions (1) and (2) are satisfied and there exists a tree T' with the 

set of leaves J(T') = {y[,. .^yl) such that pT-{y\, y'j) = pij (i,j = 1, v, i ^ 
j ) then the trees T and T' are isomorphic and the isomorphism of T onto 
T' is defined by the correspondence between leaves with equal indices. The 
condition (2) for v < 3 and the condition (1) for v = 2 set no limitations to 
the numbers belonging to Su. I 

We shall focus on the part of Lemma 1 concerning the isomorphism 
problem. In the notation just introduced we can state the following obvious: 
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COROLLARY 1. Let T\ and T2 be trees. Then T\ = T 2 if and only if 

MTl = MT2. 

Now we introduce some definitions for unicyclic graphs. 
DEFINITION 3 . For any cycle C, by a direction of C we mean any digraph 

C+ obtained from the cycle C by orienting its edges such that for every pair 
of different edges xy and uv of C, if xy,uv G E(C+) then i / u . 

Clearly, for any cycle C there are two different directions of C. In order to 
simplify the notation we use the same symbol uv to denote both a directed 
and undirected edge. It will not lead to misunderstandings. The set of all 
pairs (U,C + ) , where U € U and C + is a direction of the cycle C in U 
is denoted by Similary, denotes the set of all pairs (U,C+), where 
U € Hp and C+ is a direction of the cycle C in U. In both above cases we shall 
denote a pair (¿7, C+) by U+ and write U+ € U+ (resp. U+ G U+) instead 
of ( U , C + ) G U+ (resp. (U,C+) € W+). We shall also write "a direction in 
U" instead of "a direction of the cycle C in Un. 

DEFINITION 4 . Let U+ € We define a path between vertices u, v € 
V{U) to be a sequence of vertices {«o,. . . , vn}> u,- € V(U) (i = 0, n), such 
that 
( 3 ) v0 = u,vn = v, 

( 4 ) v ^ v i ^ V j ^ V j ( i , j = I i ± j ) , 

(5) if Vi-M e E{C) then e E(C+) (z = I"«). 
The length of a path in U+ € li+ is equal to the number of edges of this 
path. A path from u to v will be denoted by [u,v]. 

DEFINITION 5. Let U+ € U+. The pseudodistance between vertices 
u, v € V(U) in U+, denoted by v), is the length of the shortest path 
from u to v in U+. 

Notice that the pseudodistance is not a metric in a graph U+ € U + . 
DEFINITION 6. Let U+ € U+ and let J(U) = {« i , . . . , un}. The matrix 

Mu+ € A4n such that M(j+ [i, j] is equal to the pseudodistance between 
vertices U{ and uj ( i , j = l , n ) in U+ is called the matrix of pseudodistances 
in U+. 

Clearly, for any graph U € U there exist exactly two, up to isomorphism, 
matrices of pseudodistances. These matrices correspond to the two different 
directions in U. 

DEFINITION 7. Let U+ € U+ for some p e M. Let us denote vertices 
of the cycle by c i , . . . , cp. For every vertex ct- (1 < i < p) we define the set 
Oi of all leaves u € J(U) such that there exists a path [u,Cj] not including 
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any edge of the cycle. If, for any i (1 < i < p), the set Oi is not empty then 
it is called the offshoot of U. The vertex Cj is called the base vertex of the 
offshoot 0{. 

DEFINITION 8. Let us define a relation # C Mn x Mn as the smallest 
transitive relation (the transitive closure) such that 

( 6 ) ( V A , B E Mn) (A#B if A = B oi A = BT). 

3. The unicyclic graph theorem In this section we state and prove the main theorem of this paper. 

T H E O R E M . Let Ui, Ui Eli be graphs with at least three offshoots each. 
Then U\ = U2 if and only if MU+#MU+, where U? (i = 1^2) is the graph 
Ui with a fixed direction. 

P r o o f . Necessity. Since the proof of necessity is trivial we only mention 
here that if a is the isomorphism of U\ onto U2 and Cj ̂  • • • y Cp cLI*6 vertices 
of the cycle C\ in Ui, and for example (without loss of generality) c\c2 € 
E (C i ) , where is the fixed direction in U\ then either M t /+#M f /+ (for 
*(CI)<7(C2) E E{Ct)) or Mv+#MT (for a(c2)a(c 1) E E{C+)), where C+ 1 2 
is the fixed direction in U2 • 

Sufficiency. By the definition of the relation Mv+ #MV+ implies 
that either Mv+ = Mv+ or M[/+ Si ( M U + ) T . In fact, since the relation 
# is the transitive closure, for every A,Be Mn if A#B then there exist 
A i , . . . , At € Mn such that 

A = Ai,B = At and A{ S Ai+1 or Aj ^ Ai+1 (•i = 1,1-1). 

Furthermore, because isomorphisms and transposes of matrices commute, 
we obtain A ^ B or A = BT. Let us consider two cases. 

C a s e 1). MJJ+ Si Mu+. 
Let a be the isomorphism of MTJ+ onto M r /+. It means (see Definition 1) 1 2 

that Mv+ = a(Mu+) = M. Let us renumber leaves in U^ according to the 
permutation a and denote the obtained graph by £/2+ again. Now we have 
got two graphs Uand U^ each with a fixed direction such that M is the 
matrix of pseudodistances corresponding to both of them. 

Let U+ 6 U+ be any graph such that M is its matrix of pseudodistances. 
We shall prove some properties of U+. Let M e Mn. Let us divide the set 
{1, . . . , n} of indices of the matrix M into classes by the equivalence relation 
TZ C {1, . . . , n} x {1, . . . , n} defined as follows: 
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(Vi,i G { 1 , . . . , » } ) , 
( i U j ) ((VA; G { 1 , . . . , n})(M[i, ft] - i] = M [ j , *] - M[k,j])) . 

-V" 
(7) 

First we will show that 1Z is in fact an equivalence relation on the set 
{ 1 , . . . , » } . It is obvious that 1Z is reflexive and symmetric. In order to prove 
transitivity of 1Z we will first show that: 

(8) 
(a pair (i, j ) satisfies the condition (7)) 
(u,- and Uj belong to the same offshoot in the graph U+) 

P r o o f of (8). Necessi ty . Assume on the contrary that Ui and Uj be-
long to different offshoots. Since U+ has at least three oifshoots, there exists 
k € { 1 , . . . , n} such that u;, uj, u\t belong to pairwise different offshoots. Let 
cS l ,c 4 2 ,cS 3 denote the base vertices of these offshoots, respectively. There 
are two cases up to the orientation of the cycle in U+ (see Fig. 1). 

4) 

Figure 1. 

In the case a), denote cti=p(cSl, cS2), a 2 =p(c a 2 , c,3) and a3=p(cS3, cS l). 
Then 

M[i, fc] — M[k, i] = a i + <22 — «3 and M [ j , fc] — M[k, j] = a2 — — o>i. 

Thus c*i + a2 — <*3 = — a3 ~ «1 a ^d therefore a \ — 0. It is a contradiction 
because, by the assumption, u,- and Uj belong to different offshoots. 

In the case b) we proceed analogously. 
Sufficiency. Let u,- and Uj belong to the same offshoot, say 0\. The 

proof of sufficiency is divided into two cases. 

C a s e a). Uk G OBy the definition of the pseudodistance we trivially 
g e t : M[i,k] - M[k,i\ = 0 = M[j,k]~ M[k,j], 
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0 ¿¿) 

Figure 2. 

C a s e b). Uk & 0\. Two subcases are possible (see Fig. 2). 
Since they are analogous, we consider the case i) only. Clearly, M[i, fc] — 
M[k, i] = ai — «2 = M[j, A;] — M[k,j]. The proof of (8) is completed. 

Transitivity of the relation TZ is now immediate. By (8), if iTZj and jlZk 
then the vertices U{ and Uj belong to the same offshoot and so do u j and 
Uk. Thus Ui and uk (and clearly Uj as well) belong to the same offshoot, so 
by (8), illk. 

The relation 1Z defines a partition of the set { l , . . . , n } of indices of 
the matrix M into t classes . .,Ft. This partition corresponds to the 
partition of the set of leaves in the graph U+ into offshoots. More precisely, 
indices i,j belong to the same class if and only if corresponding leaves U{ 
and Uj belong to the same offshoot in U+. Hence, we shall identify a class 
Fs with a set of leaves belonging to an offshoot 0S (5 = l , f ) . In order to 
streamline the notation we use the symbol cs (s = l , i ) to denote a base 
vertex of an offshoot 0 S and conversely an offshoot corresponding to a base 
vertex cs is denoted by 0„ (s = l , i ) . We have established so far that U+ 

has got t offshoots, where t > 3. 
Now let us consider any triple Si, S2, S3 £ { 1 , . . . , i} such that s\ ^ S2 'fi 

s 3 ^ and let i,j, k 6 { l , . . . , n } be any indices such that i € FSl,j € 
FS2 and k € FS3. We define p as follows: 

p = |M[i,j] + M[j, k} + M[k, i] - M[j,»] - M[k,j] - M[i, *]|. 

Now we show that p is a well-defined number equal to the length of the 
cycle in the graph U+. Actually, up to the orientation of the cycle, two cases 
are possible (see Fig. 3). 

Let Q{ d= pu+(ui,caJ, cxj =f pu+(uj,cS2), ak
 d= pu+(uk,cS3). 
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C a s e a). cS3 € [c S l ,c S 2] 

Figure 3. 

Define ¡31 = pu+(cSl,cS3), ft = Pu+(cs3, c , 2) , ft = Pu+(cS 2 , c S l ) . Then 

p = |ft + ft + /?3 j = the length of the cycle . 

Case b). cS3 € [cS 2 ,cS l] . 
Similarily, define ft = pu+(cS3,cSl), ft = pu+(cS2,cS3), ft = ^ ( c ^ j c , , ) . 
Then 

p = | - ( f t + ft + ft)| = the length of the cycle . 
Since p does not depend on the indices i, j, it is well-defined. We have 

obtained that U+ G ZV+. 
Now consider any € 0 S l , Uj G 0 S 2 , Ufc G 0 S 3 , where O a i , O a 2 , 0 a 3 are 

the offshoots of U+ and si ^ ^ S3 ^ s i , and let 

W(i,j, k) = M[i,j] + M[j, *] + M[k, i] - M[j, i] - M[k,j] - M[i, k]. 

Notice that 

(9) 
(cS3 g [cSl,ci2]) 

(cS3 e [c , 2 ,c S l ] ) 

(W(i,j,k) = P), 

(W(i,j,k)=-p). 

Now for every index i of the matrix M (i G F m i , 1 < m\ < t) let us 
define a number 

n r c r m - ¡l/2(M[k,i\ + M[i,j]-M[k,j]) i f W(iJ,k)=-p, 
1>~\l/2(M[j,i] + M[i,k]-M[j,k]) i f W(i,j,k) = p 

(see Fig. 4), where j G Fm2 and k G Fm3 are any indices such that mj 
2 / ^ 3 / mi, 1 < m2,m3 < i, (which of course implies i ^ j k ji i). 

The number DIST(i) (i = 1, n) is well defined and equal to the distance 
between the leaf u,- and the vertex c m j , where Ui G 0 m i in the graph i7+. 

Now let /1 (1 < 11 < n) be any fixed element of and ls (1 < ls < n) 
be any element of Fs (s = 2, t). Then 

Pu+(ci,cs) = M[luls] - DIST(h) - DIST(ls) (s = V ) -



524 J. Mandziuk 

W(i,j,k) = -p W(i, j, k)=p 

Figure 4. 

Therefore, if we fix the vertex ci on the cycle of length p then we uniquelly 
determine the positions of the base vertices ca of the offshoots 03 (s = 2, t). 

Let us introduce the ordering relation -< on the set {Fi,..., Ft} defined 
as follows: 

(10) Fi <Fr (r = V ) , 

( 1 1 ) ( F i < F j ) ^ (pu+(cuci) < Pu+icuCj)) ( i , j = 27i). 

Now renumber the classes Fi,...,Ft according to the order -< and reorder 
the rows and thè columns of the matrix M simultaneously in such a way that 
the succesive rows (resp. columns) correspond to indices belonging to the 
successive classes Fi,...,Ft. At the same time let us renumber the leaves 
in the graph U+ in the same way as we have renumbered the rows and the 
columns of the matrix M. 

Now the matrix M has the form depicted in Fig. 5. 

Ki I I I 

K2 

Kt 

Ki K2 . . . Kt 

Figure 5. 
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Let 
MAX d=f 1 + max M\i, j ] . 

ije{ 1 n} l ' - / J 

Let 6 i , . . . , bP denote the successive vertices of the cycle in U+ and let 
¿>i = ci and &1&2 € E(C+), where C + is the direction in U+. 

Remove the edge bpb\ from the graph U+ and add paths of length MAX 
with end-vertices in bp and . Let a and ¡3 be the other ends of these paths 
(see Fig. 6), and denote by T the tree obtained this way, i.e. 

pT(bP,a) = pT(bu0) = MAX. 

According to the above construction applied to U+ we change the matrix 
M (and obtain the matrix M') in the following way: 

1°). We add the (n + 1 )'th and the (n + 2)'th rows and columns corre-
sponding to the vertices a and ¡3, respectively. 

2°). We put 
M[i,n +1] = DIST(i) + Pu+(cai,bp) + MAX = M[n + l,i] (i = I~ra), 
M[n + 2,i] = MAX->rpu+{bucSi) + DIST(i) = M[i,n + 2] (i = 1 ,n), 
M[n + 1, n + 1] = M[n + 2, n + 2] = 0, 
M[n + 2 , n + l ] = p - l + 2 MAX = M[n + 1, n + 2], 

where cSi is a base vertex of an offshoot 0Si such that u,- € 0Si (i = 1, n). 
3°). We define M' as follows: 

M'H 7i _ / M[i,j] if i < j, ( _ , 
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The matrix M' is the matrix of distances between leaves in the tree T 
(see Fig. 6), i.e. M' = Mr (see Definition 2). 

Now let us come back to the graphs U* and U^ . Since U+ was any such 
graph that M was its matrix of pseudodistances we can step by step apply 
the above construction to the graphs U* and TĴ  . 

Let T\ and T2 be the trees obtained from the graphs U* and U f , re-
spectively. Then M' = MTl and M' = Mt2, and by Corollary 1, Tx ^ T2. 

Now, cut out the paths of length MAX from 7\ and T2 and add one left 
edge to each of the resulting graphs. The obtained graphs are isomorphic to 
U\ and U2, respectively. Since T\ = T2, we are done in the case 1). 

C a s e 2). Mv+ Si (M [ /+)T . 
Let us notice that transposing of the matrix Mt/+ is equivalent to chang-

ing the direction on Vi - Then the proof from case 1) can be applied. Details 
are left to the reader. I 

Examples 
The following examples show that the assumption about existence of 

three offshoots in the graphs U\ and U2 cannot be weakend. 
1°). If U\ and U2 have no offshoots at all then they are just cycles so 

clearly U\ ^ U2 for cycles of different length. 
2°). If U\ and U2 have the exactly one offshoot each then even if the 

lengths of the cycles in U\ and U2 are equal, the graphs may still not be 
isomorphic, though Mv+ = Mv+ (see Fig. 7 and Fig. 8). 

ut v} 

Figure 7. 
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Uf 

ut 
Figure 8. 

Mu+=Mu+ Pu+(ci,c2) = pu+{c1,c2) > 0 

Figure 9. 

3°). Similar example applies for the case of U\ and U2 with exactly two 
offshoots each (see Fig. 9). 

4°). Let both U\ and U2 have the cycle of length p, where p is the even 
number. Following the construction of classes F\,..., Ft from the proof of 
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On = Oi, O12 = 02 « i / c i / i a p +(c1,c2) = p +(c2,c1) = p/2 
2 2 

(«1, h) = Pv+ («2, ¿ i ) = p / 2 + 2 = Pu+ ( i i , S2) = ( i 2 , i i ) 

Figure 10. 

Theorem we can invent a "mixed" example (see Fig. 10), where Mv+ = 
M J J + , whereas U\ has got one offshoot and Ui has got two offshoots. Clearly, 
the above "mixed" example cannot be constructed for graphs with cycles of 
odd length. 

Acknowledgment. Special thanks are due to dr Z. Lone for his help in 
improvement of this paper. 
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