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AN ISOMORPHISM THEOREM FOR UNICYCLIC GRAPHS

1. Introduction

In the paper we follow the notation of Harary [1]. By a unicyclic graph we
mean any connected graph with exactly one cycle. The graph isomorphism
problem can be stated as follows: ‘

For given graphs G; and G5 determine whether or not they are isomor-
phic and, if they are, derive any isomorphism of G; onto G;. Two graphs
G1 = (W1, Ey) and G, = (V3, E;) are isomorphic (G 2 Gy) if there exists a
one-to-one mapping ¢ of V4 onto V; such that

(u1,v1) € Ey  whenever  (¢(u1),d(v1)) € Ea,

for every pair (uy,v1) of vertices in Vj.

In this paper instead of testing isomorphism between two unicyclic
graphs U; and U; we test isomorphism between some matrices My, and
My, corresponding to Uy and Uy, respectively. The main theorem is true for
unicyclic graphs with at least three so-called offshoots only. (By an offshoot
we mean every component of the graph obtained from a unicyclic graph by
deleting all the edges of the cycle.) In the last section there are some exam-
ples showing that the theorem is not true for graphs with less than three
offshoots. In that sense the number ”three” is best possible.

Since the exact definition of the matrix My for a given unicyclic graph
U is given in the next section let us only mention here that many questions
concerning the structural properties of U (e.g. the length of the cycle, the
number of offshoots or the cardinality of the set of leaves in the particular
offshoot) can easily be answered by the use of the matrix My. Moreover
such a matrix is usually small and it is rather surprising that it provides
enough information to define a unicyclic graph U, up to isomorphism.

2. Definitions and lemmas
In order to state the main theorem we shall introduce some definitions
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first. We denote by J(G) the set of all vertices of degree one in the graph G.
In case G is either a tree or a unicyclic graph we call any vertex belonging
to J(G) a leaf. We use Y and U, (p € N, p > 3) to denote the set of all
unicyclic graphs and the set of all unicyclic graphs with a cycle of length
p, respectively. By M, (n € N) we mean the set of all matrices n X n
of non-negative elements. Finally, the notation (i = k,n) means “for every
natural ¢ from & to n”.

DEFINITION 1. Let A,B € M,. We say that A is isomorphic to B
(A = B) if there exists a permutation o of the set {1,...,n} such that
Ali, 5] = Bo(3),0(5)] (4,5 = 1,n). The matrix A is denoted by o(B).

DEFINITION 2. Let T be a tree with nleaves and let J(T') = {u1,...,un}.
Define

o fer(uiuy) i i # 7,

Mrli, j] = {0 it i=j,
where pr(ug,u;) (k,! = 1,n) is the distance between the leaves u) and u;
in T. The matrix M7 is called the matrix of distances between leaves in T.

By Definition 1, it is obvious that for any tree T the matrix My is
symmetric and has zeros on the main diagonal.

In 1965 Zarecky [3] using results of Smolensky [2] have proved the fol-
lowing:

LEMMA 1 (Zarecky). Let S, (v > 2) be a system of v(v — 1) natural
numbers p;; = pji (1,5 = 1,v,1 # j). There ezists a tree T with the set of
leaves J(T) = {y1,...,¥.} satisfying the conditions pr(yi,y;) = pij (1,7 =
1,v,i # j) if and only if the system S, has the following properties:

) for any pairwise different indices i,j,k € {1,...,v} the numbers
pij + pik — pjk are even and positive
and
for any pairwise different indices i, j, k,l € {1,...,v}
(2) two of the numbers pij + pii, pik + pji and pu + pjk
are equal to each other and the third one is not greater than them.

If conditions (1) and (2) are satisfied and there ezists a tree T' with the
set Of leaves J(T,) = {y{a ) y:/} such that pT’(yz’"a y_;) = Pij (l’J = la_V77' 56
j) then the trees T and T' are isomorphic and the isomorphism of T onto
T' is defined by the correspondence between leaves with equal indices. The
condition (2) for v < 3 and the condition (1) for v = 2 set no limitations to
the numbers belonging to S,. [

We shall focus on the part of Lemma 1 concerning the isomorphism
problem. In the notation just introduced we can state the following obvious:
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COROLLARY 1. Let T1 and Ty be trees. Then Ty = T, if and only if
Mg, = My,.

Now we introduce some definitions for unicyclic graphs.

DEFINITION 3. For any cycle C, by a direction of C we mean any digraph
C* obtained from the cycle C by orienting its edges such that for every pair
of different edges zy and uv of C, if zy,uv € E(CY) then z # u.

Clearly, for any cycle C there are two different directions of C. In order to
simplify the notation we use the same symbol uv to denote both a directed
and undirected edge. It will not lead to misunderstandings. The set of all
pairs (U,Ct), where U € U and C*t is a direction of the cycle C in U
is denoted by Y*. Similary, U} denotes the set of all pairs (U,C*), where
U € U, and C* is a direction of the cycle C in U. In both above cases we shall
denote a pair (U,Ct) by U+t and write Ut € Ut (resp. Ut € U}) instead
of (U,C*) € Ut (resp. (U,C*) € U}). We shall also write “a direction in
U” instead of “a direction of the cycle C in U”.

DEFINITION 4. Let Ut € UY*. We define a path between vertices u,v €
V(U) to be a sequence of vertices {vg,...,v,}, v; € V(U) (¢ = 0,n), such
that

(3) Vo = U, Up =,
(4) vie1t; # vi-19; (4,5 = Ln,i # ),
(5) if v;_1v; € E(C) then v;_yv; € E(C*Y) (i=T1,n).

The length of a path in Ut € U* is equal to the number of edges of this
path. A path from u to v will be denoted by [u,v].

DEerINITION 5. Let Ut € Yt. The pseudodistance between vertices
u,v € V(U) in U*, denoted by py+(u,v), is the length of the shortest path
from u tovin U™,

Notice that the pseudodistance is not a metric in a graph Ut e U+.

DEFINITION 6. Let Ut € Yt and let J(U) = {uy,...,u}. The matrix
My+ € M, such that My+[¢, 7] is equal to the pseudodistance between
vertices u; and u; (3,5 = I,n) in U is called the matrix of pseudodistances
in U*.

Clearly, for any graph U € U there exist exactly two, up to isomorphism,
matrices of pseudodistances. These matrices correspond to the two different
directions in U.

DEFINITION 7. Let Ut € Z,l; for some p € N. Let us denote vertices

of the cycle by ci,...,c,. For every vertex ¢; (1 < i < p) we define the set
O; of all leaves u € J(U) such that there exists a path [u,¢;] not including
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any edge of the cycle. If, for any i (1 < ¢ < p), the set O; is not empty then
it is called the offshoot of U. The vertex ¢; is called the base vertex of the
offshoot O;.

DEFINITION 8. Let us define a relation # C M, x M,, as the smallest
transitive relation (the transitive closure) such that

(6) (VA,Be M,,) (A#Bif A~ Bor A~ BT).

3. The unicyclic graph theorem
In this section we state and prove the main theorem of this paper.

THEOREM. Let Uy,U; € U be graphs with at least three offshoots each.
Then Uy 2 U, if and only if My+#My+, where UF (i =1,2) is the graph
U; with a fized direction.

Proof. Necessity. Since the proof of necessity is trivial we only mention
here that if o is the isomorphism of U; onto U; and ¢4,...,¢, are vertices
of the cycle C; in Uy, and for example (without loss of generality) cic2 €
E(C), where C{ is the fixed direction in U; then either My # My (for

o(c1)a(c2) € E(CY)) or MUI+#M5+ (for a(c2)a(c1) € E(C})), where Cf
2
is the fixed direction in U;.
Sufficiency. By the definition of the relation #, MU1+ #MU2+ implies

that either Mys = My or MU1+ = (MU; )T. In fact, since the relation
# is the transitive closure, for every A, B € M, if A# B then there exist
Ajp,..., A € M, such that

A=A, B=A; and A; Ay, or AT~4,, (i=1,1-1).

Furthermore, because isomorphisms and transposes of matrices commute,
we obtain A 2 B or A~ BT. Let us consider two cases.

Case 1). MU1+ = MU;.
Let o be the isomorphism of M+ onto M, U} It means (see Definition 1)
1

that MU;" = O'(MU;-) def

permutation o and denote the obtained graph by UJ again. Now we have
got two graphs U;t and U, each with a fixed direction such that M is the
matrix of pseudodistances corresponding to both of them.

Let Ut € Ut be any graph such that M is its matrix of pseudodistances.
We shall prove some properties of Ut. Let M € M,,. Let us divide the set
{1,...,n} of indices of the matrix M into classes by the equivalence relation
R C{1,...,n} x{1,...,n} defined as follows:

M. Let us renumber leaves in U, according to the
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(¥i,j € {1,...,n}),
(iR) = ((Vk € {1,...,n})(M[i,k] - Mlk,i] = MUj, k] - Mk, j]))

.
- -

M

First we will show that R is in fact an equivalence relation on the set
{1,...,n}. It is obvious that R is reflexive and symmetric. In order to prove
transitivity of R we will first show that:

(®) (a pair (4, 7) satisfies the condition (7)) <=
(u; and u; belong to the same offshoot in the graph U*)

Proof of (8). Necessity. Assume on the contrary that u; and u; be-
long to different offshoots. Since U has at least three offshoots, there exists
k € {1,...,n} such that u;, u;, ur belong to pairwise different offshoots. Let
Cs,5Cs,,Cs, denote the base vertices of these offshoots, respectively. There
are two cases up to the orientation of the cycle in Ut (see Fig. 1).

a) b)
uj u;
a3 a3
/ * / *
ay oy
a ap
UJ "j
Figure 1.

In the case a), denote ay=p(cs,,¢s,), x2=p(Cs,,Cs,) and az=p(cs,, €5, ).
Then

Mli, k] — M[k,i]= 01+ a3y —a3 and M[j,k]- Mk,jl=az— a3 — 0.

Thus oy + a3 — a3 = as —az — a; and therefore a; = 0. It is a contradiction
because, by the assumption, u; and u; belong to different offshoots.

In the case b) we proceed analogously.

Sufficiency. Let u; and u; belong to the same offshoot, say O;. The
proof of sufficiency is divided into two cases.

Case a). ux € O;. By the definition of the pseudodistance we trivially
get: M[i,k] — M[k,i] = 0= M[j, k] - M[k,J].
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i) ii)
Uk ug

a ay

al g

Figure 2.

Caseb). ux € O1. Two subcases are possible (see Fig. 2).
Since they are analogous, we consider the case i) only. Clearly, M[i, k] —
M[k,i] = a1 — ay = M[j, k] — M[k, j]. The proof of (8) is completed.

Transitivity of the relation R is now immediate. By (8), if {Rj and jRk
then the vertices u; and u; belong to the same offshoot and so do u; and
ug. Thus u; and ux (and clearly u; as well) belong to the same offshoot, so

by (8), iRk.
The relation R defines a partition of the set {1,...,n} of indices of
the matrix M into t classes Fi,..., F;. This partition corresponds to the

partition of the set of leaves in the graph U* into offshoots. More precisely,
indices 7, j belong to the same class if and only if corresponding leaves u;
and u; belong to the same offshoot in U*. Hence, we shall identify a class
F, with a set of leaves belonging to an offshoot O, (s = 1,%). In order to
streamline the notation we use the symbol ¢, (s = 1,t) to denote a base
vertex of an offshoot O, and conversely an offshoot corresponding to a base
vertex ¢, is denoted by O, (s = 1,t). We have established so far that U+
has got t offshoots, where t > 3.

Now let us consider any triple sq, 2,83 € {1,...,t} such that s; # s; #
s3 # s and let 7,5,k € {1,...,n} be any indices such that i € Fy,,j €
F,, and k € F,,. We define p as follows:

Now we show that p is a well-defined number equal to the length of the

cycle in the graph U*. Actually, up to the orientation of the cycle, two cases
are possible (see Fig. 3).

def def def
Let a; = py+(uis ¢sy), @5 = pu+(j,¢5,), @k = pu+(u, €s4)-
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Case a). ¢;, € [€s5y,Cs,)-

a) b)

u j uj

) B2
/ uk / “k

B3y Bs

B B

v .
Figure 3.
Define 81 = py+(cs,,€s3);, B2 = pu+(€ssys,)s B3 = pu+(Csy, sy ). Then
p = |01 + B2 + B3] = the length of the cycle.

Case b). ¢,, € [cs,, €5, ]
Si}rlnilarily, define B1 = py+(s;,€s,), B2 = pu+(€s;,€s3)s B3 = pu+(€sys€s,)-
Then

p = |=(B1 + B2 + B3)| = the length of the cycle.

Since p does not depend on the indices 1, j, k, it is well-defined. We have
obtained that Ut € U}.

Now consider any u; € Os,, uj € Oy, ux € O,,, where O,,,0,,,0,, are
the offshoots of Ut and s; # s # s3 # 81, and let

W(laJ’k) = M[l,]]'*' M[Jv k] + M[kal] - M[],l] - M[k,J] - M[Zak] .
Notice that

9) {(683 € [es1y¢5,]) <= (W(s,5,k) = p),

(033 € [6327631]) g (W(‘t,j,k) = —P)-
Now for every index ¢ of the matrix M (i € F,,,,1 < my < t) let us
define a number :
1/2(M[],l]+M[‘l,k]—M[],k]) if W(l’]’k):'p
(see Fig. 4), where j € F,, and k € F,,, are any indices such that m; #
my # m3 # my, 1 < my,m3 < t, (which of course implies 7 # 7 # k # 1).
The number DIST(i) (i = 1, n) is well defined and equal to the distance
between the leaf u; and the vertex ¢,,,, where u; € Op,, in the graph U*.
Now let /; (1 <3 < n) be any fixed element of F} and I; (1 < I, < n)
be any element of F; (s = 2,t). Then

pu+(e1,¢s) = My, 1, — DIST(l1) — DIST(l) (s=2,1).
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/ -/

Uk

Figure 4.

Therefore, if we fix the vertex ¢; on the cycle of length p then we uniquelly
determine the positions of the base vertices ¢, of the offshoots O, (s = 2,1).

Let us introduce the ordering relation < on the set {F},..., F;} defined
as follows:

(10) F <F (r=7373),
(1) (R<F) < (pus(er,c) < psler,ei) (=50

Now renumber the classes Fi,..., F; according to the order < and reorder
the rows and thé columns of the matrix M simultaneously in such a way that
the succesive rows (resp. columns) correspond to indices belonging to the
successive classes Fj,...,F;. At the same time let us renumber the leaves
in the graph Ut in the same way as we have renumbered the rows and the
columns of the matrix M.

Now the matrix M has the form depicted in Fig. 5.

K;

K2

K1 Kz ° ° ° Kt
Figure 5.
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Let
def ..
MAX =1 max Mli,j].
+ i,j€{1,...,n} [ ]]
Let by,...,b, denote the successive vertices of the cycle in Ut and let

by = ¢ and b1b; € E(Ct), where C* is the direction in U*.

Figure 6.

Remove the edge b,b; from the graph U+ and add paths of length MAX
with end-vertices in b, and b;. Let a and 3 be the other ends of these paths
(see Fig. 6), and denote by T the tree obtained this way, i.e.

p1(bp, @) = p1(b1,0) = MAX .
According to the above construction applied to U+ we change the matrix
M (and obtain the matrix M') in the following way:
1°). We add the (n + 1)"th and the (n 4+ 2)'th rows and columns corre-
sponding to the vertices a and 3, respectively.
2°). We put :
M[i,n+1} = DIST(i)+ py+(cs;, bp) + MAX = M[n+1,i] (i =1,n),
M[n+2,i|= MAX +py+(b1,¢s,)+ DIST(i) = M[i,n+2] (i=1,n),
M{n+1,n+1]=M[n+2,n+2] =0,
Mn+2,n+1]=p—-14+2MAX = M[n+1,n+ 2],
where ¢,, is a base vertex of an offshoot O,, such that u; € Oy, (i = 1, n).
3°). We define M' as follows:

e o M i i<q, .. |
M["’]‘{M[j,i] i i>j (Wi=lLnt2),
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The matrix M’ is the matrix of distances between leaves in the tree T
(see Fig. 6), i.e. M’ = Mt (see Definition 2).

Now let us come back to the graphs U;t and U3 . Since U+t was any such
graph that M was its matrix of pseudodistances we can step by step apply
the above construction to the graphs Ujf and U;.

Let Ty and T, be the trees oh:tained from the graphs Uj" and U}, re-
spectively. Then M' = My, and M' = Mr,, and by Corollary 1, T) = Ts.

Now, cut out the paths of length M AX from 7; and T> and add one left
edge to each of the resulting graphs. The obtained graphs are isomorphic to
Uy and Uy, respectively. Since Ty = T, we are done in the case 1).

Case 2). MU1+ g (MU;,)T.
Let us notice that transposing of the matrix M, u} is equivalent to chang-

ing the direction on U;. Then the proof from case 1) can be applied. Details
are left to the reader. 2

Examples

The following examples show that the assumption about existence of
three offshoots in the graphs U; and U; cannot be weakend.

1°). If U; and U, have no offshoots at all then they are just cycles so
clearly Uy % U, for cycles of different length.

2°). If U; and U, have the exactly one offshoot each then even if the
lengths of the cycles in U; and U, are equal, the graphs may still not be
isomorphic, though My+ = My+ (see Fig. 7 and Fig. 8).

vt v}

7 7

Figure 7.
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u y ut y

Figure 8.

77

Py (e1,¢2) = PU+(01102) >0

Figure 9.

3°). Similar example applies for the case of U; and U; with exactly two
offshoots each (see Fig. 9).

4°). Let both U; and U; have the cycle of length p, where p is the even
number. Following the construction of classes F,..., F; from the proof of
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Uy v

y :
I\ \

o) -7}

011 204, 01220, b1 #c1#62 py+(c1,c2) = p 4 (c2,01) = p/2
2 2
PU1+(51, 62) = PU1+ (62,81) =p/2+2= pU;(ﬁh 63) = pU;- (62,61)

Figure 10.

Theorem we can invent a “mixed” example (see Fig. 10), where M+ =
1
M, U whereas Uy has got one offshoot and U, has got two offshoots. Clearly,

the above “mixed” example cannot be constructed for graphs with cycles of
odd length.
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