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A NEW CLASS OF FOURIER BESSEL-JACOBI SERIES
OF MEIJER’S G-FUNCTION

1. Introduction

In this paper, we introduce a new class of Fourier Bessel-Jacobi series of
Meijer’s G-function ([3], pp. 206-222), and present a Fourier Bessel-Jacobi
series of the class.

The following formulae are required in the proofs.

The integral ([2], p. 37, (2.2)]):
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where 4 is a positive integer, p+ ¢ < 2(m + n), |argz| < (m+n—1/2p —
1/2q)m, Re(o + 2v +46b;) >0 (j = 1,...,m).
The integral ([1], p. 177,(2.1)):
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where X is a positive integer, 2(m + n) > p+ ¢, |argz| < (m+n—-1/2p —
1/2¢)x, Re > —1, Re(p+ Abj) > -1 (j =1,...,m).
The orthogonality property of the Jacobi polynomials ([4], p. 285, (5),
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and (9)):
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where Rea > —1, Re 8 > —1.
The orthogonality property of the Bessel Functions ([5], p. 291, (6))

if m = n;
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2. Fourier Bessel-Jacobi series
The Fourier Bessel-Jacobi series to be established is
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valid under the conditions of (1.1), (1.2), (1.3) and (1.4).
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Equation (2.2) is valid, since f(z,y) is continuous and of bounded vari-
ation in the region 0 < z < 00, -1 < y< 1.

Multiplying both sides of (2.2) by (1 - y)*(1 + y)ﬁP.(‘a’ﬁ )(y), integrating
with respect to y from —1 to 1, and using (1.2) and (1.3). Then multiplying
both sides of the resulting expression by £ 1J,42441(z), integrating with
respect to z from 0 to oo and using (1.1) and (1.4), the value of C,; is
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obtained. Substituting this value of C, ; in (2.2), the Fourier Bessel-Jacobi
series (2.1) is obtained.

Note: On applying the same procedure as above, we can establish three
other forms of two-dimensional expansions of this class with the help of
alternative forms of (1.1) and (1.2).

Since on specializing the parameters Meijer’s G-function yields almost
all special functions appearing in applied mathematics and physical sciences.
Therefore, the result presented in this paper is of a general character and
hence may encompass several cases of interest.
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