

S. D. Bajpai

A NEW CLASS OF FOURIER BESSEL-JACOBI SERIES
 OF MEIJER'S G -FUNCTION

1. Introduction

In this paper, we introduce a new class of Fourier Bessel-Jacobi series of Meijer's G -function ([3], pp. 206–222), and present a Fourier Bessel-Jacobi series of the class.

The following formulae are required in the proofs.

The integral ([2], p. 37, (2.2)):

$$(1.1) \quad \int_0^\infty x^{\rho-1} J_\nu(x) K_\nu(x) G_{p,q}^{m,n} \left[zx^{4\delta} \middle| \begin{matrix} a_p \\ b_q \end{matrix} \right] dx \\ = \frac{2^{3/2\delta-5/2} \delta^{\rho-3/2}}{(2\pi)^{\delta-1/2}} G_{p+4\delta,q}^{m,n+3\delta} \left[\frac{z(2\delta)^{4\delta}}{2^{-2\delta}} \middle| \begin{matrix} \Delta(2\delta, 1 - \frac{\rho}{2}), \Delta(\delta, 1 - \frac{\rho}{4} - \frac{\nu}{2}), \\ a_p, \Delta(\delta, 1 - \frac{\rho}{4} + \frac{\nu}{2}), \\ b_q \end{matrix} \right],$$

where δ is a positive integer, $p + q < 2(m + n)$, $|\arg z| < (m + n - 1/2p - 1/2q)\pi$, $\operatorname{Re}(\sigma + 2\nu + 4\delta b_j) > 0$ ($j = 1, \dots, m$).

The integral ([1], p. 177, (2.1)):

$$(1.2) \quad \int_{-1}^1 (1-y)^\sigma (1+y)^\beta P_u^{(\alpha, \beta)}(y) G_{p,q}^{m,n} \left[z(1-y)^\lambda \middle| \begin{matrix} a_p \\ b_q \end{matrix} \right] dy \\ = \frac{2^{\beta+\sigma+1} \Gamma(\beta + u + 1)}{\lambda^{\beta+1} u!} \\ \times G_{p+2\lambda, q+2\lambda}^{m+\lambda, n+\lambda} \left[z 2^\lambda \middle| \begin{matrix} \Delta(\lambda, -\sigma), a_p, \Delta(\lambda, \alpha - \sigma) \\ \Delta(\lambda, \alpha - \sigma + u), b_q, \Delta(\lambda, -1 - \beta - \sigma - u) \end{matrix} \right],$$

where λ is a positive integer, $2(m + n) > p + q$, $|\arg z| < (m + n - 1/2p - 1/2q)\pi$, $\operatorname{Re} \beta > -1$, $\operatorname{Re}(\rho + \lambda b_j) > -1$ ($j = 1, \dots, m$).

The orthogonality property of the Jacobi polynomials ([4], p. 285, (5),

and (9)):

$$(1.3) \quad \int_{-1}^1 (1-x)^\alpha (1+x)^\beta P_n^{(\alpha, \beta)}(x) P_m^{(\alpha, \beta)}(x) dx \\ = \begin{cases} 0, & \text{if } m \neq n, \\ \frac{2^{\alpha+\beta+1} \Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{n! (\alpha+\beta+2n+1) \Gamma(\alpha+\beta+n+1)}, & \text{if } m = n; \end{cases}$$

where $\operatorname{Re} \alpha > -1$, $\operatorname{Re} \beta > -1$.

The orthogonality property of the Bessel Functions ([5], p. 291, (6))

$$(1.4) \quad \int_0^\infty x^{-1} J_{\nu+2n+1}(x) J_{\nu+2m+1}(x) dx \\ = \begin{cases} 0, & \text{if } m \neq n, \\ (4n+2\nu+2)^{-1}, & \text{if } m = n, \operatorname{Re} \nu + m + n > -1. \end{cases}$$

2. Fourier Bessel-Jacobi series

The Fourier Bessel-Jacobi series to be established is

$$(2.1) \quad x^\rho (1-y)^\sigma K_{\nu+2v+1}(x) G_{p,q}^{m,n} \left[zx^{4\delta} (1-y)^\lambda \middle| \begin{matrix} a_p \\ b_q \end{matrix} \right] \\ = \frac{2^{\sigma+3/2\delta-3/2} \delta^{\rho-3/2}}{(2\pi)^{\delta-1/2} \lambda^{\beta+1}} \\ \times \sum_{r=0}^{\infty} \sum_{t=0}^{\infty} \frac{(\nu+2r+1)(\alpha+\beta+2t+1) \Gamma(\alpha+\beta+t+1)}{\Gamma(\alpha+t+1)} J_{\nu+2r+1}(x) P_t^{(\alpha, \beta)}(y) \\ \times G_{p+4\delta+2\lambda, q+2\lambda}^{m+\lambda, n+3\delta+\lambda} \left[\frac{z(2\delta)^{4\delta} 2^\lambda}{2^{-2\delta}} \middle| \begin{matrix} \Delta(2\delta, 1-\frac{\rho}{2}), \Delta(\delta, \frac{1}{2}-\frac{\rho}{4}-\frac{\nu}{2}-r), \Delta(\lambda, -\alpha-\sigma), \\ a_p, \Delta(\delta, \frac{3}{2}-\frac{\rho}{4}+\frac{\nu}{2}+r), \Delta(\lambda, -\sigma) \\ \Delta(\lambda, t-\sigma), b_q, \Delta(\lambda, -1-\alpha-\beta-\sigma-t) \end{matrix} \right],$$

valid under the conditions of (1.1), (1.2), (1.3) and (1.4).

$$(2.2) \quad f(x, y) = x^\rho (1-y)^\sigma K_{\nu+2v+1}(x) G_{p,q}^{m,n} \left[zx^{4\delta} (1-y)^\lambda \middle| \begin{matrix} a_p \\ b_q \end{matrix} \right] \\ = \sum_{r=0}^{\infty} \sum_{t=0}^{\infty} C_{r,t} J_{\nu+2r+1}(x) P_t^{(\alpha, \beta)}(y).$$

Equation (2.2) is valid, since $f(x, y)$ is continuous and of bounded variation in the region $0 < x < \infty$, $-1 < y < 1$.

Multiplying both sides of (2.2) by $(1-y)^\alpha (1+y)^\beta P_u^{(\alpha, \beta)}(y)$, integrating with respect to y from -1 to 1 , and using (1.2) and (1.3). Then multiplying both sides of the resulting expression by $x^{-1} J_{\nu+2v+1}(x)$, integrating with respect to x from 0 to ∞ and using (1.1) and (1.4), the value of $C_{r,t}$ is

obtained. Substituting this value of $C_{r,t}$ in (2.2), the Fourier Bessel-Jacobi series (2.1) is obtained.

Note: On applying the same procedure as above, we can establish three other forms of two-dimensional expansions of this class with the help of alternative forms of (1.1) and (1.2).

Since on specializing the parameters Meijer's G -function yields almost all special functions appearing in applied mathematics and physical sciences. Therefore, the result presented in this paper is of a general character and hence may encompass several cases of interest.

References

- [1] S. D. Bajpai, *Some expansion formulae for Meijer's G-function*, Vijnana Parishad Anusandhan Patrika, 11-3 (1968), 177-191.
- [2] S. D. Bajpai, *Expansion formulae for the products of Meijer's G-function and Bessel functions*, Portugal. Math. 33 (1974), 35-41.
- [3] A. Erdélyi, *Higher transcendental functions*, Vol. 1., McGraw-Hill, New York 1953.
- [4] A. Erdélyi, *Tables of integral transforms*, Vol. 2., McGraw-Hill, New York 1954.
- [5] Y. L. Luke, *Integrals of Bessel functions*, McGraw-Hill, New York 1962.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BAHRAIN
P.O.Box 32038
ISA TOWN, BAHRAIN

Received April 4, 1991.

