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A NEW CLASS OF FOURIER BESSEL-JACOBI SERIES 
OF MEIJER'S G-FUNCTION 

1. Introduction 
In this paper, we introduce a new class of Fourier Bessel- Jacobi series of 

Meijer's (7-function ([3], pp. 206-222), and present a Fourier Bessel-Jacobi 
series of the class. 

The following formulae are required in the proofs. 
The integral ([2], p. 37, (2.2)]): 
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where 6 is a positive integer, p + q < 2(m + n), | argz| < (m + n — 1/2p — 
l/2g)7r, Re(<T + 2v + 46b j) > 0 (j = 1 , . . . , m). 

The integral ([1], p. 177,(2.1)): 
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where A is a positive integer, 2(m + n) > p + q, | argz| < (m + n — 1/2p — 
l/2q)n, Re/3 > -1, Re(p + Abj) > - 1 (j = 1,...,m). 

The orthogonality property of the Jacobi polynomials ([4], p. 285, (5), 
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and (9)): 
l 
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where Re a > —1, Re/3 > —1. 

The orthogonality property of the Bessel Functions ([5], p. 291, (6)) 
oo 
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2. Fourier Bessel-Jacobi series 
The Fourier Bessel-Jacobi series to be established is 
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valid under the conditions of (1.1), (1.2), (1.3) and (1.4). 
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Equation (2.2) is valid, since f(x, y) is continuous and of bounded vari-
ation in the region 0 < a; < oo, — 1 < y < 1. 

Multiplying both sides of (2.2) by (1 - 3/)0,(l + y)t3Fia'P\y)1 integrating 
with respect to y from —1 to 1, and using (1.2) and (1.3). Then multiplying 
both sides of the resulting expression by x ' 1 Ju+2v+i(x), integrating with 
respect to x from 0 to oo and using (1.1) and (1.4), the value of Cr<t is 
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obtained. Substituting this value of CTft in (2.2), the Fourier Bessel-Jacobi 
series (2.1) is obtained. 

Note: On applying the same procedure as above, we can establish three 
other forms of two-dimensional expansions of this class with the help of 
alternative forms of (1.1) and (1.2). 

Since on specializing the parameters Meijer's G-function yields almost 
all special functions appearing in applied mathematics and physical sciences. 
Therefore, the result presented in this paper is of a general character and 
hence may encompass several cases of interest. 
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