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ON THE REFLEXIVITY SYMMETRY AND TRANSITIVITY
OF THE TANGENCY RELATION OF SETS
OF THE CLASS A} x IN GENERALIZED METRIC SPACES

Introduction

In the present paper we consider the problem of the equivalence of the
tangency relation Ti(a, b, k, p) of sets of the class A; ;. in generalized metric
spaces.

Some sufficient conditions for reflexivity, symmetry and transitivity of
this relation have been given here.

Let Ey denote the family of all non-empty subsets of certain set £ and
I an arbitrary, non-negative real function defined on the Cartesian product
Eq x Fy.

The pair (E,!) will be called a generalized metric space (see [9]). Let a,b
are an arbitrary, non-negative real functions defined in the right-hand side
neighbourhood of the point 0 such that
(1) a(r) v 0 and b(r) o 0.

In [9] W. Waliszewski has introduced the following definition of the tan-
gency relation in the space (E,!):

(2) Tia,b,k,p)={(A,B): A, B € Ey, the pair (A, B) is (a, b)-clustered
at the point p of the space(E,!) and

1
FUANSI(p,T)a(r), BOSi(P T)ery) —=, 0},

where k is a positive real number and the set S;(p,r), is the so-called u-
neighbourhood of the sphere S;(p, ) with the centre at the point p and the
radius 7 in the space (E,).

Let o be a metric on the set set £ and A, B arbitrary sets of the family
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FEg. We shall denote

(3) o(A, B) = inf{o(z,y) : z € A,y € B},
diam, A = sup{o(z,y) : z,y € A}.

Let F, (see [6]) be the class of functions [ fulfilling the conditions:

(a) l: Ey x Eyg — (0,00),
(b)  there exist numbers m, M such that 0 < m < M < oo and

mp(A,B) <Il(A,B) < M diam,(AU B) for A, B € Ey,

(c) the function ! generates on the set E the metric Iy defined by formula:
lo(z,y) = I({z},{y}) for z,y € E.

Let F; denote the class of function ! fulfilling the conditions (a) and (b)
form=M=1.

It is easy to see that very function ! € F} generates on the set E the
metric p.

From the above definitions it follows that F; C F,.

We shall say that functions ly,l; € F, fulfil in the set A € Ey the
condition of the proximity of the spheres of order k£ at the point p € F with
regard to the metric p if

1
(4) T—kQ(A N S,(p,7), AN S,(p,7)) —, 0.

Let p € A', where A’ is the set of all cluster points of the set A € Ej.

We say that the set A € Ep has the Darboux property at the point p
of the metric space (E, g), if there exists a number 7 > 0 such that for an
arbitrary r € (0,7) the set AN Sy(p,7) # 0.

Let (see [6)])

(6) A;r={A€Eo:pe A’ and there exists a number A > 0 such that

limsup Q(x, y)k_ /\g(:z:, A)
[A,p;K]3(=,y)—(p,p) o*(z,p)

<0},

where o(z,A) = inf{o(z,y) : y € A}, k is an arbitrary fixed positive real
number and

(6) [A,p;k]={(z,9):2 € E,y € A and (2, 4) < ¢*(z,p) = 0"(,0)}-
We assume by definition

(7 A;,Dk ={A€ Ey: A€ A, and A has the Darboux property
at the point p of the space (E, g)}.
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1. Reflexivity of the tangency relation
Let a,b be non-negative, real functions defined in the right-hand side
neighbourhood of the point 0 fulfilling the condition (1).

THEOREM 1.1. If
1 1
(1.1) r—ka(r) rj(?‘" 0, T—kb(T) rj"' 0,

then for an arbitrary function | € F, the tangency relation Ti(a,b,k,p) is
reflezive in the class of sets Ap 2y 1.e. (A, A) € Ti(a, b, k,p) for A € A;”i7

Proof. Let us denote a = max(a, b). From here and from (1.1) it follows
that

1
1.2 —
(1) Falr) 3,0
Hence and from Lemma 1 of the paper [6] we have
1 . .
(1.3) s diam;(A N $i(p,7)a(r)) et 0 for Ae A%
Because

mo(z,y) < l({z},{y}) forz,y€ E, 1€ F,
then

(14) m dla'mo(A n Sl(p, T)a(r)) < dlamI(A n SI(P, T)a(r))’
From the fact that I € F, and from (1.4) we obtain

rlkz(A 0 51(P, Yatrys AN 5B, Do)
< AZ— diam ,((A N Si(p, 7)a(r)) U (AN Si(p, T)e(r)))
< 2% diamy (40 Si(p, Pagry) < o~ diami(A N 5i(,T)an)
From the last inequality and from (1.3) it follows that
(1.5) lkl(A N Si(p,7)a(r), AN Si(p, T)b(r)) o 0.

From the Darboux property of the set A € A‘ at the point p of the space
(E,1), (see Lemma 2 of the paper [6]) it follows that the pair (4, A) is
(a, b)-clustered at the point p of this space. From here and from (1.5) we
have that (A, A) € Ti(a,b,k,p) for A € A;f,z

2. Symmetry of the tangency relation
We shall say that the function ! € F, is symmetric if /(A, B) = I(B, A)
for an arbitrary sets A, B € E,.
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Let I* denote a certain symmetric function of the class F,.

THEOREM 2.1. If
1 1
(2.1) T—ka(r) —. 0, —kb(r) =, 0,

and the functions I,1* € F, fulfil in the sets A,B € A‘D the condition of
the prozimity of the spheres of order k at the point p E E with regard to
the metric g, then the tangency relation Ti(a,b,k,p) is symmetric in the
class of sets Ap % i.e. if (A, B) € Ti(a,b,k,p) then (B, A) € Ti(a,b, k,p) for
A,B € A

Proof. Let (A, B) € Ti(a,b,k,p) for A,B € A"‘D Hence and from The-
orem 2 of the paper [6] it follows that (A4, B) € T,(b a,k,p). From here and
from Theorem 1 of this paper we obtain that (A, B) € T}-(b,a,k,p). Hence

1.
(2'2) T_kl (A N Se (p’ r)b(r)’ BN S (P, T)a(r)) r-—TO)"' 0.
From (2.2) and by symmetry of the function {* we have

1.
(2.3) _kl (B NS (p, T)a(,.), ANS (p, ’I‘)b(,.)) ——)+ 0.

From the Darboux property of sets A, B € A; at the point p of the space
(E, ¢) and the same of the space (E,I*) it follows that the pair (B, A) is
(a, b)-clustered at the point p of the space (E£,I*). From above and from (2.3)
it follows that (B, A) € Ti«(a,b,k,p). Hence and from Theorem 1 of the
paper [6] we get that (B, A) € Ti(a,b,k,p) for A,B € A3}

From the above theorem we have

COROLLARY 2.1. If the functions a,b fulfil the condition (2.1), then for
an arbitrary symmetric function | € F, the tangency relation T)(a, b, k,p) is
symmetric in the class of sets A;’Dk

Theorem 2.1 holds with sufficiently strong assumptions. These assump-
tions one can weaken by restriction of the class of function F, to the class
F;. Then we shall obtain

THEOREM 2.2. If the functions a,b fulfil the condition (2.1), then for an
arbitrary function | € F, the tangency relation Ti(a, b, k, p) is symmetric in
the class of sets A"D

Proof. Let (A, B) € Ti(a,b,k,p) for A, B € A2 Hence and from The-
orem 2 of the paper [6] we get that (A, B) € Ti(b,a, k, p).

Because the function o defined by formula (3) belongs to the class F;
then from here and from Theorem 3 of the paper [6] it follows that (A, B) €
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T,(b,a,k,p). Hence

(2.4) ,,._lkg(A N Se(Py T)s(r)s BN So(p,T)a(r)) o 0.
From the symmetry of the function g and from (2.4) we get
(2.5) ikg(B 0 So(Py7)a(r) AN So(p, T)b(r)) 0

Because by assumption the sets A, B € A;D have the Darboux property at
the point p of the space (E, g), then the pair (B, A) is (a, b)-clustered at the
point p of this space.

Hence and from (2.5) we get that (B, A) € Ty(a,d, k, p). From the above
and from Theorem 3 of the paper [6] it follows that (B, A) € Ti(a,b,k,p)
for A,B € A;;,L,)c

3. Transitivity of the tangency relation

We shall say that the function ! € F, have the triangle property or that
fulfils the triangle inequality (condition) if /(A,C) < I(A, B) + (B, C) for
an arbitrary sets A, B,C € E,.

Let I* be a certain function of the class F, having the triangle property.

THeoreM 3.1. If
1 1
(2.1) -ﬁa(r) —, 0, ﬁ-b(r) v 0,

and the functions l,1* € F, fulfil in the sets A,B,C € A;,l,)c the condition
of the proximity of the spheres of order k at the point p € E with regard
to the metric g, then the tangency relation Ti(a,b,k,p) is transitive in the
class of sets A;’Dk, i.e. if (A, B) € Ty(a,b,k,p) and (B,C) € Ti(a,b, k,p) then
(A,C) € Ti(a, b,k,p) for 4,B,C € A3R

Proof. Let (A, B) € Ti(a,b,k,p) and (B,C) € Ti(a,b,k,p). Hence and
from Theorem 1 of the paper [6] it follows that

(3‘2) (AaB) € Tl“' (aa b, k,P),
and
(3 3) (B C) € Tl‘(a b k,P),

for an arbitrary sets A, B,C € A”'P From the condition (3.2) and from
Theorem 2 of the paper [6] we get

(3.4) (A, B) € Ti-(a,a,k, p).

Hence and from (3.3) we have

1.
(3'5) ’I'_kl (A n Sl‘ (P, T)a(r), Bn Sl‘ (P, r)b(r)) r—>_0)+ 01
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and
(36) (B 05t (8 r)agey» C 0 5 (8 o) =, 0.
From the triangle inequality for the function {* it follows that
*(AQ S=(p,7)a(r)s C N Si= (D, T)e(r))
SI(AN S (p,T)a(r), BN Ste(p,7)a(r))+
+1*(B N S5+ (p,T)a(r)> C N Si= (9, T)s(r))-
Hence and from (3.5) and (3.6) we get

1
(37) FE (A0S (2,7)a(r), € N S (2, 7o) =2, 0.

From the Darboux property of the sets A,C € Ey at the point p of the
space (E,p) it follows the Darboux property of these sets at the point p
of the space (E,l*) (see Lemma 2 of the paper [6]), and the same the fact
that the pair (A,C) is (a,b)-clustered at the point p of this space. Hence
and from Theorem 1 of the paper [6] it follows that (A,C) € Ti(a,b, k,p)
for A,C € A3%.

From thls theorem there follows immediately

COROLLARY 3.1. If the functions a, b fulfil the condition (3.1), then for an
arbitrary function | € F, having the triangle property the tangency relation
Ti(a,b,k,p) is transitive in the class of sets A3Q

If in consideration of the problem of the transitivity of tangency relation
Ti(a,b,k,p) we shall confine ourself to the class F;, then we get

THEOREM 3.2. If the functions a,b fulfil the condition (3.1), then for an
arbitrary function | € F; the tangency relation Ti(a,b,k,p) is transitive in
the class of sets A;,Dk

Proof. Let us assume that

(3.8) (A, B) € Ty(a,b,k,p),
and
(3.9) (B,C) € Ti(a, b, k, p),

for A,B,C € A3R.
From Theorem 2 of the paper [6] and from (3.9) it follows that

(3°10) (B,C) € Tl(b’ b’ k’p)'
Let us denote
(3.11) d,(A,B) = diam,(A U B) for A, B € E,.
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The function d, evidently belongs to the class F;. Hence and from (3.8),
(3.10) and from Theorem 3 of the paper [6] we get that (A, B)€Ty,(a,b,k,p)
and (B,C) € Ty,(b,b, k, p).

From above it follows that

(3.12) rikdg(A N Se(P,7)atr)s BN Se(p:m)s(ry) —2,0-
and

(3.13) 'r_lk‘da(B N Se(P,m)(r)) € N Se(P )er)) —2, 0.
Because

d,(A,C) < dy(A,B)+d,(B,C) for A,B,C € Ey and B # 0,
therefore from here and from the Darboux property of the set B € Ey we
have
(3.14) do(ANS (P, T)a(r)’ C N Se(p, T)b(r)) <

< dO(A n SQ(P’ r)a(r)’ Bn Se(Pa r)b(r))+
+ do(B N So(p, m)e(r)s C 0V So(p, Mo(r))-
Hence, from (3.12) and (3.13) we get

1
(3'15) r_kde(A n SQ(P, r)a(r)a cn So(P, r)b(r)) rj0)+ 0.

From the Darboux property of the sets A,C € Ej it follows that the pair
(A, C) is (a,b)-clustered at the point p of the space (E, ). From above and
from (3.15) we get that (A,C) € Tq,(a,b, k, p). Hence and from Theorem 3
of [6] it follows that (A,C) € Ti(a,b,k,p) for A,C € A;_Dk.

From Theorems 1.1, 2.2 and 3.2 we get immediately

COROLLARY 3.2. If
1 1
r—ka(r) A 0 and r—kb(r) o 0,
then for an arbitrary function |l € F; the tangency relation Ti(a,b,k,p) is

equivalence relation, i.e. is reflezive, symmetric and transitive in the class
=D
of sets A7
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