

Tadeusz Konik

ON THE REFLEXIVITY SYMMETRY AND TRANSITIVITY
OF THE TANGENCY RELATION OF SETS
OF THE CLASS $A_{p,k}^*$ IN GENERALIZED METRIC SPACES

Introduction

In the present paper we consider the problem of the equivalence of the tangency relation $T_l(a, b, k, p)$ of sets of the class $A_{p,k}^*$ in generalized metric spaces.

Some sufficient conditions for reflexivity, symmetry and transitivity of this relation have been given here.

Let E_0 denote the family of all non-empty subsets of certain set E and l an arbitrary, non-negative real function defined on the Cartesian product $E_0 \times E_0$.

The pair (E, l) will be called a generalized metric space (see [9]). Let a, b are an arbitrary, non-negative real functions defined in the right-hand side neighbourhood of the point 0 such that

$$(1) \quad a(r) \xrightarrow[r \rightarrow 0^+]{} 0 \quad \text{and} \quad b(r) \xrightarrow[r \rightarrow 0^+]{} 0.$$

In [9] W. Waliszewski has introduced the following definition of the tangency relation in the space (E, l) :

$$(2) \quad T_l(a, b, k, p) = \{(A, B) : A, B \in E_0, \text{ the pair } (A, B) \text{ is } (a, b)\text{-clustered} \\ \text{at the point } p \text{ of the space } (E, l) \text{ and} \\ \frac{1}{r} l(A \cap S_l(p, r)_{a(r)}, B \cap S_l(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0\},$$

where k is a positive real number and the set $S_l(p, r)_u$ is the so-called u -neighbourhood of the sphere $S_l(p, r)$ with the centre at the point p and the radius r in the space (E, l) .

Let ϱ be a metric on the set set E and A, B arbitrary sets of the family

E_0 . We shall denote

$$(3) \quad \begin{aligned} \varrho(A, B) &= \inf\{\varrho(x, y) : x \in A, y \in B\}, \\ \text{diam}_\varrho A &= \sup\{\varrho(x, y) : x, y \in A\}. \end{aligned}$$

Let F_ϱ (see [6]) be the class of functions l fulfilling the conditions:

- (a) $l : E_0 \times E_0 \rightarrow (0, \infty)$,
- (b) there exist numbers m, M such that $0 < m \leq M < \infty$ and

$$m\varrho(A, B) \leq l(A, B) \leq M \text{diam}_\varrho(A \cup B) \quad \text{for } A, B \in E_0,$$

- (c) the function l generates on the set E the metric l_0 defined by formula: $l_0(x, y) = l(\{x\}, \{y\})$ for $x, y \in E$.

Let F_ϱ^* denote the class of function l fulfilling the conditions (a) and (b) for $m = M = 1$.

It is easy to see that every function $l \in F_\varrho^*$ generates on the set E the metric ϱ .

From the above definitions it follows that $F_\varrho^* \subset F_\varrho$.

We shall say that functions $l_1, l_2 \in F_\varrho$ fulfil in the set $A \in E_0$ the condition of the proximity of the spheres of order k at the point $p \in E$ with regard to the metric ϱ if

$$(4) \quad \frac{1}{r^k} \varrho(A \cap S_{l_1}(p, r), A \cap S_{l_2}(p, r)) \xrightarrow{r \rightarrow 0^+} 0.$$

Let $p \in A'$, where A' is the set of all cluster points of the set $A \in E_0$.

We say that the set $A \in E_0$ has the Darboux property at the point p of the metric space (E, ϱ) , if there exists a number $\tau > 0$ such that for an arbitrary $r \in (0, \tau)$ the set $A \cap S_\varrho(p, r) \neq \emptyset$.

Let (see [6])

$$(5) \quad A_{p,k}^* = \{A \in E_0 : p \in A' \text{ and there exists a number } \lambda > 0 \text{ such that} \\ \limsup_{[A,p;k] \ni (x,y) \rightarrow (p,p)} \frac{\varrho(x, y) - \lambda \varrho(x, A)}{\varrho^k(x, p)} \leq 0\},$$

where $\varrho(x, A) = \inf\{\varrho(x, y) : y \in A\}$, k is an arbitrary fixed positive real number and

$$(6) \quad [A, p; k] = \{(x, y) : x \in E, y \in A \text{ and } \varrho(x, A) < \varrho^k(x, p) = \varrho^k(y, p)\}.$$

We assume by definition

$$(7) \quad A_{p,k}^{*D} = \{A \in E_0 : A \in A_{p,k}^* \text{ and } A \text{ has the Darboux property} \\ \text{at the point } p \text{ of the space } (E, \varrho)\}.$$

1. Reflexivity of the tangency relation

Let a, b be non-negative, real functions defined in the right-hand side neighbourhood of the point 0 fulfilling the condition (1).

THEOREM 1.1. *If*

$$(1.1) \quad \frac{1}{r^k} a(r) \xrightarrow[r \rightarrow 0^+]{} 0, \quad \frac{1}{r^k} b(r) \xrightarrow[r \rightarrow 0^+]{} 0,$$

*then for an arbitrary function $l \in F_\epsilon$ the tangency relation $T_l(a, b, k, p)$ is reflexive in the class of sets $A_{p,k}^{*D}$, i.e. $(A, A) \in T_l(a, b, k, p)$ for $A \in A_{p,k}^{*D}$.*

P r o o f. Let us denote $\alpha = \max(a, b)$. From here and from (1.1) it follows that

$$(1.2) \quad \frac{1}{r^k} \alpha(r) \xrightarrow[r \rightarrow 0^+]{} 0.$$

Hence and from Lemma 1 of the paper [6] we have

$$(1.3) \quad \frac{1}{r^k} \text{diam}_l(A \cap S_l(p, r)_{\alpha(r)}) \xrightarrow[r \rightarrow 0^+]{} 0 \quad \text{for } A \in A_{p,k}^{*D}.$$

Because

$$m\varrho(x, y) \leq l(\{x\}, \{y\}) \quad \text{for } x, y \in E, \quad l \in F_\epsilon,$$

then

$$(1.4) \quad m \text{diam}_\epsilon(A \cap S_l(p, r)_{\alpha(r)}) \leq \text{diam}_l(A \cap S_l(p, r)_{\alpha(r)}).$$

From the fact that $l \in F_\epsilon$ and from (1.4) we obtain

$$\begin{aligned} & \frac{1}{r^k} l(A \cap S_l(p, r)_{a(r)}, A \cap S_l(p, r)_{b(r)}) \\ & \leq \frac{M}{r^k} \text{diam}_\epsilon((A \cap S_l(p, r)_{a(r)}) \cup (A \cap S_l(p, r)_{b(r)})) \\ & \leq \frac{M}{r^k} \text{diam}_\epsilon(A \cap S_l(p, r)_{\alpha(r)}) \leq \frac{M}{m} \frac{1}{r^k} \text{diam}_l(A \cap S_l(p, r)_{\alpha(r)}). \end{aligned}$$

From the last inequality and from (1.3) it follows that

$$(1.5) \quad \frac{1}{r^k} l(A \cap S_l(p, r)_{a(r)}, A \cap S_l(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From the Darboux property of the set $A \in A_{p,k}^{*D}$ at the point p of the space (E, l) , (see Lemma 2 of the paper [6]) it follows that the pair (A, A) is (a, b) -clustered at the point p of this space. From here and from (1.5) we have that $(A, A) \in T_l(a, b, k, p)$ for $A \in A_{p,k}^{*D}$.

2. Symmetry of the tangency relation

We shall say that the function $l \in F_\epsilon$ is symmetric if $l(A, B) = l(B, A)$ for an arbitrary sets $A, B \in E_0$.

Let l^* denote a certain symmetric function of the class F_ϱ .

THEOREM 2.1. *If*

$$(2.1) \quad \frac{1}{r^k} a(r) \xrightarrow[r \rightarrow 0^+]{} 0, \quad \frac{1}{r^k} b(r) \xrightarrow[r \rightarrow 0^+]{} 0,$$

and the functions $l, l^* \in F_\varrho$ fulfil in the sets $A, B \in A_{p,k}^{*D}$ the condition of the proximity of the spheres of order k at the point $p \in E$ with regard to the metric ϱ , then the tangency relation $T_l(a, b, k, p)$ is symmetric in the class of sets $A_{p,k}^{*D}$, i.e. if $(A, B) \in T_l(a, b, k, p)$ then $(B, A) \in T_l(a, b, k, p)$ for $A, B \in A_{p,k}^{*D}$.

Proof. Let $(A, B) \in T_l(a, b, k, p)$ for $A, B \in A_{p,k}^{*D}$. Hence and from Theorem 2 of the paper [6] it follows that $(A, B) \in T_l(b, a, k, p)$. From here and from Theorem 1 of this paper we obtain that $(A, B) \in T_{l^*}(b, a, k, p)$. Hence

$$(2.2) \quad \frac{1}{r^k} l^*(A \cap S_{l^*}(p, r)_{b(r)}, B \cap S_{l^*}(p, r)_{a(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From (2.2) and by symmetry of the function l^* we have

$$(2.3) \quad \frac{1}{r^k} l^*(B \cap S_{l^*}(p, r)_{a(r)}, A \cap S_{l^*}(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From the Darboux property of sets $A, B \in A_{p,k}^{*D}$ at the point p of the space (E, ϱ) and the same of the space (E, l^*) it follows that the pair (B, A) is (a, b) -clustered at the point p of the space (E, l^*) . From above and from (2.3) it follows that $(B, A) \in T_{l^*}(a, b, k, p)$. Hence and from Theorem 1 of the paper [6] we get that $(B, A) \in T_l(a, b, k, p)$ for $A, B \in A_{p,k}^{*D}$.

From the above theorem we have

COROLLARY 2.1. *If the functions a, b fulfil the condition (2.1), then for an arbitrary symmetric function $l \in F_\varrho$ the tangency relation $T_l(a, b, k, p)$ is symmetric in the class of sets $A_{p,k}^{*D}$.*

Theorem 2.1 holds with sufficiently strong assumptions. These assumptions one can weaken by restriction of the class of function F_ϱ to the class F_ϱ^* . Then we shall obtain

THEOREM 2.2. *If the functions a, b fulfil the condition (2.1), then for an arbitrary function $l \in F_\varrho^*$ the tangency relation $T_l(a, b, k, p)$ is symmetric in the class of sets $A_{p,k}^{*D}$.*

Proof. Let $(A, B) \in T_l(a, b, k, p)$ for $A, B \in A_{p,k}^{*D}$. Hence and from Theorem 2 of the paper [6] we get that $(A, B) \in T_l(b, a, k, p)$.

Because the function ϱ defined by formula (3) belongs to the class F_ϱ^* then from here and from Theorem 3 of the paper [6] it follows that $(A, B) \in$

$T_\varrho(b, a, k, p)$. Hence

$$(2.4) \quad \frac{1}{r^k} \varrho(A \cap S_\varrho(p, r)_{b(r)}, B \cap S_\varrho(p, r)_{a(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From the symmetry of the function ϱ and from (2.4) we get

$$(2.5) \quad \frac{1}{r^k} \varrho(B \cap S_\varrho(p, r)_{a(r)}, A \cap S_\varrho(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

Because by assumption the sets $A, B \in A_{p,k}^{*D}$ have the Darboux property at the point p of the space (E, ϱ) , then the pair (B, A) is (a, b) -clustered at the point p of this space.

Hence and from (2.5) we get that $(B, A) \in T_\varrho(a, b, k, p)$. From the above and from Theorem 3 of the paper [6] it follows that $(B, A) \in T_l(a, b, k, p)$ for $A, B \in A_{p,k}^{*D}$.

3. Transitivity of the tangency relation

We shall say that the function $l \in F_\varrho$ have the triangle property or that fulfils the triangle inequality (condition) if $l(A, C) \leq l(A, B) + l(B, C)$ for an arbitrary sets $A, B, C \in E_0$.

Let l^* be a certain function of the class F_ϱ having the triangle property.

THEOREM 3.1. *If*

$$(2.1) \quad \frac{1}{r^k} a(r) \xrightarrow[r \rightarrow 0^+]{} 0, \quad \frac{1}{r^k} b(r) \xrightarrow[r \rightarrow 0^+]{} 0,$$

and the functions $l, l^* \in F_\varrho$ fulfil in the sets $A, B, C \in A_{p,k}^{*D}$ the condition of the proximity of the spheres of order k at the point $p \in E$ with regard to the metric ϱ , then the tangency relation $T_l(a, b, k, p)$ is transitive in the class of sets $A_{p,k}^{*D}$, i.e. if $(A, B) \in T_l(a, b, k, p)$ and $(B, C) \in T_l(a, b, k, p)$ then $(A, C) \in T_l(a, b, k, p)$ for $A, B, C \in A_{p,k}^{*D}$.

Proof. Let $(A, B) \in T_l(a, b, k, p)$ and $(B, C) \in T_l(a, b, k, p)$. Hence and from Theorem 1 of the paper [6] it follows that

$$(3.2) \quad (A, B) \in T_{l^*}(a, b, k, p),$$

and

$$(3.3) \quad (B, C) \in T_{l^*}(a, b, k, p),$$

for an arbitrary sets $A, B, C \in A_{p,k}^{*D}$. From the condition (3.2) and from Theorem 2 of the paper [6] we get

$$(3.4) \quad (A, B) \in T_{l^*}(a, b, k, p).$$

Hence and from (3.3) we have

$$(3.5) \quad \frac{1}{r^k} l^*(A \cap S_{l^*}(p, r)_{a(r)}, B \cap S_{l^*}(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0,$$

and

$$(3.6) \quad \frac{1}{r^k} l^*(B \cap S_{l^*}(p, r)_{a(r)}, C \cap S_{l^*}(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From the triangle inequality for the function l^* it follows that

$$\begin{aligned} l^*(A \cap S_{l^*}(p, r)_{a(r)}, C \cap S_{l^*}(p, r)_{b(r)}) \\ \leq l^*(A \cap S_{l^*}(p, r)_{a(r)}, B \cap S_{l^*}(p, r)_{a(r)}) + \\ + l^*(B \cap S_{l^*}(p, r)_{a(r)}, C \cap S_{l^*}(p, r)_{b(r)}). \end{aligned}$$

Hence and from (3.5) and (3.6) we get

$$(3.7) \quad \frac{1}{r^k} l^*(A \cap S_{l^*}(p, r)_{a(r)}, C \cap S_{l^*}(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From the Darboux property of the sets $A, C \in E_0$ at the point p of the space (E, ϱ) it follows the Darboux property of these sets at the point p of the space (E, l^*) (see Lemma 2 of the paper [6]), and the same the fact that the pair (A, C) is (a, b) -clustered at the point p of this space. Hence and from Theorem 1 of the paper [6] it follows that $(A, C) \in T_l(a, b, k, p)$ for $A, C \in A_{p,k}^{*D}$.

From this theorem there follows immediately

COROLLARY 3.1. *If the functions a, b fulfil the condition (3.1), then for an arbitrary function $l \in F_\varrho$ having the triangle property the tangency relation $T_l(a, b, k, p)$ is transitive in the class of sets $A_{p,k}^{*D}$.*

If in consideration of the problem of the transitivity of tangency relation $T_l(a, b, k, p)$ we shall confine ourself to the class F_ϱ^* , then we get

THEOREM 3.2. *If the functions a, b fulfil the condition (3.1), then for an arbitrary function $l \in F_\varrho^*$ the tangency relation $T_l(a, b, k, p)$ is transitive in the class of sets $A_{p,k}^{*D}$.*

Proof. Let us assume that

$$(3.8) \quad (A, B) \in T_l(a, b, k, p),$$

and

$$(3.9) \quad (B, C) \in T_l(a, b, k, p),$$

for $A, B, C \in A_{p,k}^{*D}$.

From Theorem 2 of the paper [6] and from (3.9) it follows that

$$(3.10) \quad (B, C) \in T_l(b, b, k, p).$$

Let us denote

$$(3.11) \quad d_\varrho(A, B) = \text{diam}_\varrho(A \cup B) \text{ for } A, B \in E_0.$$

The function d_ϱ evidently belongs to the class F_ϱ^* . Hence and from (3.8), (3.10) and from Theorem 3 of the paper [6] we get that $(A, B) \in T_{d_\varrho}(a, b, k, p)$ and $(B, C) \in T_{d_\varrho}(b, b, k, p)$.

From above it follows that

$$(3.12) \quad \frac{1}{r^k} d_\varrho(A \cap S_\varrho(p, r)_{a(r)}, B \cap S_\varrho(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

and

$$(3.13) \quad \frac{1}{r^k} d_\varrho(B \cap S_\varrho(p, r)_{b(r)}, C \cap S_\varrho(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

Because

$$d_\varrho(A, C) \leq d_\varrho(A, B) + d_\varrho(B, C) \text{ for } A, B, C \in E_0 \text{ and } B \neq \emptyset,$$

therefore from here and from the Darboux property of the set $B \in E_0$ we have

$$(3.14) \quad \begin{aligned} d_\varrho(A \cap S_\varrho(p, r)_{a(r)}, C \cap S_\varrho(p, r)_{b(r)}) &\leq \\ &\leq d_\varrho(A \cap S_\varrho(p, r)_{a(r)}, B \cap S_\varrho(p, r)_{b(r)}) + \\ &\quad + d_\varrho(B \cap S_\varrho(p, r)_{b(r)}, C \cap S_\varrho(p, r)_{b(r)}). \end{aligned}$$

Hence, from (3.12) and (3.13) we get

$$(3.15) \quad \frac{1}{r^k} d_\varrho(A \cap S_\varrho(p, r)_{a(r)}, C \cap S_\varrho(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0.$$

From the Darboux property of the sets $A, C \in E_0$ it follows that the pair (A, C) is (a, b) -clustered at the point p of the space (E, ϱ) . From above and from (3.15) we get that $(A, C) \in T_{d_\varrho}(a, b, k, p)$. Hence and from Theorem 3 of [6] it follows that $(A, C) \in T_l(a, b, k, p)$ for $A, C \in A_{p,k}^{*D}$.

From Theorems 1.1, 2.2 and 3.2 we get immediately

COROLLARY 3.2. *If*

$$\frac{1}{r^k} a(r) \xrightarrow[r \rightarrow 0^+]{} 0 \text{ and } \frac{1}{r^k} b(r) \xrightarrow[r \rightarrow 0^+]{} 0,$$

then for an arbitrary function $l \in F_\varrho^$ the tangency relation $T_l(a, b, k, p)$ is equivalence relation, i.e. is reflexive, symmetric and transitive in the class of sets $A_{p,k}^{*D}$.*

References

- [1] A. Chądzyńska, *On some classes of sets related to the symmetry of the tangency relation in a metric space*, Ann. Soc. Math. Polon., Comm. Math. 16(1972), 219-228.
- [2] S. Gołąb, Z. Moszner, *Sur le contact des courbes dans les espaces métriques généraux*, Colloq. Math. 10(1963), 305-311.

- [3] J. Grochulski, T. Konik, M. Tkacz, *On the tangency of sets in metric spaces*, Ann. Polon. Math. 38(1980), 121-131.
- [4] J. Haanties and Nottrot, *Distance geometry. Directions in metric spaces*, Torision, Indag. Math. 17(1955), 405-410.
- [5] T. Konik, *On the symmetry and transitivity of tangency relation in a metric space*, Bull. Soc. Sci. Lett., Łódź, 27,4(1977), 1-9.
- [6] T. Konik, *On the compatibility of the tangency relations of sets of the class $A_{p,k}^*$ in generalized metric spaces*, Demonstratio Math. 19,1(1986), 203-220.
- [7] T. Konik, *On the tangency of sets of some class in generalized metric spaces*, Demonstratio Math. 22,4(1989), 1093-1107.
- [8] S. Midura, *O porównaniu definicji styczności łuków prostych w ogólnych przestrzeniach metrycznych*, Rocznik Nauk. Dydakt. WSP w Krakowie, zeszyt nr 25(1966), 91-122.
- [9] W. Waliszewski, *On the tangency of sets in generalized metric spaces*, Ann. Polon. Math. 28(1973), 275-284.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY
A. Dęglera 35,
42-200 CZESTOCHOWA, POLAND

Received March 4, 1991.