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ON MULTIDIMENSIONAL WIRTINGER’S TYPE
DISCRETE INEQUALITIES

1. Preliminaries

In this paper we give one example of discrete inequality for functions of
n independent variables which can be treated as some generalization of the
discrete analogy of Wirtinger’s inequality. We present one theorem which
contains as a special cases both result obtained by Pachpatte in [2].

In the paper we shall use the following notions. Throughout the paper
n is fixed positive integer greater than one. N denotes the set of positive

integers and R the set of reals.
N;:={1,...,t} foranyte€ N,
m:= (ml,mg,...,mn), m; € Nyi=1,...,n.

In the sequel the following cartesian product will be used .

k n
N¥:= Y N; Nm:= X Nm, (=Nmy XNy X oo X Ny )
=1

i=1

n k
Noggi= X Nmg1; Ngi= X N (= N X Np XX Np).
i=1

i=1
A(n,k) :={@=(a1,--.,ax) E Nf:ay <az <... < a;}.
Let r € N and C be any subset of N, x N,. We denote
C.s:={(t9):(i,8) €C}; C,, :={(s,5):(s,5) € C}
(1) ¢,:=C.,+C,.—C,NC,.

for any fixed s € N, (here A denotes the cardinal of the set A).
Let T = (z;,...,2,). For any function g : N® — R we define the differ-

ence operators A}, i € N, as follows
AYg(Z)=g(z1,. .y Zi+ 1,0y T0) — G2y e ey Tiy ey Ty).
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Of course Alg(Z) is some new function, say G : N* — R, therefore for G
we can find A}. Let for example ¢ < j < n. Then

AJGE) = G(z1,...,3j+1,...,23) = G(T1,. .., Tjy .., Tn)
= Alg(z1,...,z+1,...,2,) — Dlg(z1,...,%5, .., T0)
=[g(z1y- s zi + 1, T4, .-, 25+ 1,00, 25)
e 2 T P THR PR RS 4y |
- [g(zl,...,xi + 1,x5+1,...,:€j,...,$n)
—9(Z1y e oy By Tig 1y s Tjyee ey Tn)]
It is not difficult to define A}G(Z) in the case j < 4. The above opera-
tor in relation to the function g(z) is called second order difference and is
denote by A? g(Z). Therefore A? ;9(Z) = A}(Alg(Z)). It can be observed

that A? .g(Z) = A?,9(Z). Following this way we can define higher order
dlﬁerences by the recurrence formula

AL 9@ = AL(AL 9(2))
for j > 1 and il,...,i, € N,.
If we express A] i _g(Z) as the sum of 25 terms everyone of which

states function g for smta,ble values of the variables z1,...,2, then we shall
see that

A.‘?l v--w"jg(i) = Ai;l ,...,kjg(f)

where (ki,...,k;) is arbitrary permutation of the sequence (4, ...,1;).

Let @ € A(n, k), instead of A¥ . (%) we shall write AXg(Z)
> 9@ := E Z E 9(¥1, 92, - - Yn)-
YEN= vi=lyz=1  y,=1

We shall say, a real valued function g defined on Ny 77 is of the class
P(m) if
) {g(l,zg,...,zn)z...=g(a:1,...,a:,._1,1)=0
g(my+1,z3,...,25)=...= g(Z1,...,Tn-1,Mr + 1) =0
for all 1 € Ny, 41,---,%n € Npnp 41
‘Suppose G(Z) = A}, ;. g(Z) for some 1 < iy < ... < i; < n, and let
s€ N\ {i1,...,i;}. Then

(3) Y. AGE) = D [G(z1,--1%s+1,...,20) = (315, T4y -+, Tn)]

z,=u T,=u

=G(Z1y.yv+ 1,0 ,20) = G(21, .00y Uyen oy Ty).
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If w = 1 then G(z4,...,1,...,2,) = 0 as the result of G is then difference of
elements all equal zero. Similarly if v = m, then G(z1,...,ms+1,...,2,) =
0. Therefore by (3) we get

(4) iAlG(i)=G(x1,...,v+1,...,xn)
z,=1

and

(5) i AlG(Z) = —G(21y- -y Uy o, Tn).

Furthermore ;

E Alg(F) = g(z1,...,v+ Lyeees@n) = 9(310 005ty Tn)

gives -

(6) ZAg(z) 9(z1,...,v+1,...,2,)
z,=1

and

(M 2 Alg(T) = —g(Z1y- vy UyennyZTn).

We use the customary convention

(®) 3.3 6@ =

=1 =1
if for any 7 € N; there is z; = 0.
We denote

® DrE)={ Y I2ka@R)

acA(n,k)

Now we recall two elementary inequalities which hold for real numbers.
Let C be any subset of N, X N,, and consider the sum E(, j)ec did; where
di, t = 1,...,r are real constants. In this sum every element d; appears
¢; — times, where c: is defined by (1). For arbitrary product d;d; we have
did; < 3(d? + d?). Therefore 3 ; ;e didj < 3(; syec 7(d2 + d3). "Hence by
the remark we have just given, we obta.m

(10) Y did; <Z Led(d?).

(i,j)eC
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Let now d;, ¢ = 1,...,r be any nonnegative real numbers, and p > 1. If
we put in the Holder’s inequality

;dtb, < (;df)”p(;bz)”q

b; = 1, and next we use monotonicity property of the function f(z) = z?

we obtain
(;dt)p < Tp/q(;dg)-

Since p/q = p — 1 therefore we have

(11) (zr:d,)p < pp1 zr:(dt)p.
t=1 t=1

Let us see that inequality (11) remains true for the casep = 1.If p € (0,1)
then the function f(z) = z? is a concave function on the set [0, 00) therefore
by Petrovié’s inequality (see e.g. [1]) we have

Er:(dt)” > (‘: d,)p + (r = 1)0P.
t=1 t=1

Hence
T

(12) (Ed,)p < i(dt)P.

t=1

2. The main result
THEOREM. Let

Ps, $=1,...,r be positive real numbers,
C C N, x N, any fized subset, m = (my,...,my),
fsy s=1,...,r belong to the class P(m).

Then
13) > ) IL@IPLE)IP <

TEN=(i,j)EC

T ~2p,
< pa?()] A X3 1stse@rs
g=1

aEA(n,k) TENFH

<> 3al2(})] T By 3 1D

EGN-"T
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for all T € Nz, and arbitrary k € N,,, where
k

e = max Hm
TEA(n,k) ;- @s?

- Ak = { [(25] —2p'—l(ek)2pq if pg 2 1/2
ex if pq € (0,1/2),

Ak,q . z.qu Z 1
- —Pq
Big = [(Z)] Ay i pg € (0,1)
¢q, |D¥(.)| are defined by (1) and (9) respectively.

Proof. Let us take arbitrary ¢ € N,, k € N,, @ € A(n,k), T =
(z15...,2Zn) € N For any § = (y1,...,yn) we denote

fy‘a' = (zlv o3 Tay—19YaysTag+1r- -y Tap~1rYaprTap+1y -+« 9zn)-
Hence by (4)

T4, -1 Ta, -1
kg fe—
E : E : Azf4(ZYs)
y¢1=1 llo,‘=1
zg, -1 Tap_1—1 z,,—

=X X [E BL,(BE2 oy Jo(5T))

y¢1=1 yok 1=1 !Ia,,—l

zal_l Top_1—

= E Z Aah sar_ Ja(Z1s e s Yag_ar oo s Tagy ooy Tn)-

Yor=1  Va,_,=1
Following this way by (4) and (6) we obtain

Taq—1 Tap -1

(15) Y Y Ak (T = ().

y¢1=1 !la,‘=1

Let us observe that by (8) equality (15) holds if z,, = 1 for some a;.
Let now b = (b1,...,b;), 2 < k be such that

a; <b<b<...<b, < a;

and for every s € N, there exists j € Ny such that b, = a;. Let us take
by = a;,, b2 = a;,,...,b, = a;,. We calculate the sum

I.l -1 mbl mb‘ I,k

(16) )T P E Z A5 fo(ZF5)-

Ya, =1 Yoy =T,y by =%b,
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For this by (4) we have
Ta, -1

E Agfq(ﬁi) = A{:l,l . T lfq(zh ceos¥Yb, v v Yar_1rTap1+ls- 0y zn)-
=1

Summing as long as the first inner sum will be Z:b‘=$b we obtain the
following form of the summation expression
Tap — M,
(17) E E al, ,a,'fq(zl,'"7ya.~,7za.~‘+17°°'7$n)-
Yo, =Tp,

Of course 1f b, = aj then ¢, = k and till now we make no summation, so in
this case (17) coincides with (16). Now by (5) we obtain

my,
.: —_ s_l
Yo Ahe falYaiy e ) = = AT e,
Yo, =Tb,
Proceeding this way, every time we must calculate the sum 7 w, =25, W Bet

by (5) the factor (—1) before the main expression, if the summation is of
the form E::';: the sign does nor change. In both the cases the order of
difference decreases and the last variable of the function fq which was till
denoted by y; would be now z;. Since we have z sum of the type with m,,
as the upper limit of summation therefore we get finally

z zf Z Ak (775) = (1) £,(@).

From this we have

Fay — Mb, Tay -1
(18) 1£,(2)] < Z Z oY AL fo(7TR))-
by =Th, a; =1

Inequality (18) holds for each sequence b of the properties described above.
Let us remark that k-dimensional cube {1,...,mq, } x... X {1,...,mq, }
can be decomposed by the point Z into 2% separable cubes

{1,..,20, =1} x {1,..,20, — 1} x ... X {1,...,2,, — 1},
{Zayye-osma } X {1,...,20, — 1} x ...x {1,...,24, — 1},...,
{Zayye--yMay} X {Zagyev-yMag}t X oo . X {1,024, — 1},...,
{ZayyerosMay} X {Zagy- o yMay} X oo X {Zayye oy Mg, }

and on every of these cubes the estimation (18) holds. Some of these cubes
can be void sets if any of z,, is equal 1. In this case the estimation (18)
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remains true, because by (8) the sum on the right side of (18) is equal zero
and the same is with the left hand side (because if z,, = 1 then f, € P(Wn)
implies fy(Z) = 0). Therefore we have

mg, Mgy mg,

(19) @< Y Y D 188 f(ET)

Va;=1¥%a,=1 Yap =1

The cardinal of the set A(n, k) is (7). For every point @ € A(n, k) estimation
(19) holds. Hence we get
m,l m,k
e (PDReis XY Y 184w
TEA(n,k) ¥ay=1 ¥4, =1
for all T € Ns. From (20) there follows
Ma, Mg,

e @rs2()] { S X - 3 sk aEmi)

BEA(nk) ¥ay3=1  ya,=1

Applying (21) we get from (10)

(22) E Lf@)IP (@) < E "cqlfq(z)l Pe
(i,5)eCc

1 n
S @]TLE, X X etaema) ™
q=1 GEA(nKk) Yoy, =1 y4, =1
Applying k + 1 times (12) in the case 2p, € (0,1) and (11) in the case
2p; 2 1 we get
Mg, mg,
[ Y 3.3 atnE)
a€A(n,k) Vo, =1 Ya, =1
Moy May
Yo X Y | Bk fET)I
EEA(ﬂ,k) y¢1=1 Ya, =1
or

ma, ma,

Y XY 1akheEm)

TEA(n,k) va, =1 Yo, =1

Mg mok

s(:) S ()™ 3 3 |akEmI

acA(n,k) s=1 Ya, =1
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respectively. Therefore by (22) we obtain

@) Y > Is@FSHE)IE
TENF(1,5)eC

SE§ O] T %Y sk

TEN7F TEA(n,k) ¥a, =1 Yo, =1
or by (14)
(24) Yo Y IA@FIfHE)IP

S ()

May May
YT NS sk e
TENZTEA(n,k) !l¢1=l Ya, =1

in the both considered cases respectively. Let us see that

May Ma,

)OS DU DITPES D PAC- 3 A e s

TENZFBEA(nk) ¥a3=1  va, =1
k
= Y [IIma] X 1255@0.

FE€A(nk) s=1 TE€N

This equality together with (14) used in (23) and (24) leads us to the first
estimation in (13). To obtain the second one we shall apply inequalities (11)
or (12) to the sum 3z 4(n k) | OF fo(Z)|*Ps as follows

> |A§fq(5)|2h={[ ) |A§fq(i)|2p.]1/p'}”"

TEA(n,K) TEA(n,k)

O™ ratn@e) = [0 @

aCA(n,k)
in the case p, € (0,1). Similary we proceed in the case p, > 1. Q.E.D.

Remark. Note that the presented result contains as special cases both
inequalities obtained by Pachpatte in [2]. Namely if n = 2, r = 3, C =
{(1,2),(2,3),(3,1)}, £ = 2, p1,p2,p3 > 1 we obtain Theorem 1; if r = 3,
k=1,C ={Q1,2),(2,3),(3,1)}, p1,p2,p3 > 1 Theorem 2 of the mentioned
work. Furthermore the proof seems to be clear than this in [2]. For dis-
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crete inequalities of this type for function of one independent variable see
references contained therein.
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