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SINGULAR LIMIT IN A PARABOLIC EQUATION

1. Introduction
Our aim here is to study the singular limit, when ¢ — 0, in a parabolic
problem

ue=e*Au+ f(t,u), z€ RCR t>0,
(1) u(0,z) = up(z) forz € 2,
Bu=0 for z € 012,

with a bounded smooth domain 2, ¢ > 0 and the boundary operator B of
either the Dirichlet type (B = Id) or the Neumann type (B = %, n is the
normal vector to 042). We want to estimate the difference between u and
the solution y = y(¢,z) of the limit problem

t=f(t7 ’ t>0,
g IR )

the central interest being estimates on bounded time interval [0,T]. The
problem of long time behaviour (when ¢ — 00) of a pair u, y has been con-
sidered previously, e.g. in [4, 7]. This paper has been prompted by recent
studies on the so-called "bistable” reaction-diffusion equation and the phe-
nomenon of transition layers (cf. [3, 8, 1, 12]). The simplest non-numerical
way to study the preliminary phase of creation of the layer structure for
the solution of (1) is to observe this phenomenon for the solution y of (2)
and to give the e-dependent estimates for the difference (u — y) suitable for
small €.

2. Assumptions

The function f considered here is assumed to be of the class C! with
respect to t and C? with respect to u on bounded subsets of [0,00) x R and
to have only three different zeros; f(t,£1) = f(¢,0) = 0 with f,(¢t,+£1) < 0
and f,(t,0) > 0. As a typical example of such f let us consider the function
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2(u — u®). We denote
m = sup fu(t,u)’ M = sup fuu(t, u),

where the supremums are taken over [0, 7] x [-1,1]. Let 82 € C*t# (Holder
space) with some p > 0. We further assume that the initial function
ug € C*+4(£2) satisfies the compatibility conditions:

ug(z) = 0 = Aug(z) for z € 812 in the Dirichlet case,

duo

on

DEFINITION. A function u € L*®((0,T) x £2) N L%(0,T;V) (V = H}(R2)

in the Dirichlet case, V = H!(£2) in the Neumann case) is said to be a weak
solution of (1) in D = (0,T) x 2, if the identity

(3) [[ luge — 2VuVe + f(t,u)g]ldzdt = — [ uog(0,2)dz
D 7

(z)=0 for z € 12 in the Neumann case.

holds for every ¢ € C'(D) with ¢(T,z) = 0 and, in the Dirichlet case,
¢(t,z) = 0 for z € 312. Weak solutions of the problem (2) are defined in a
similar way; we formally set ¢ = 0 in (3).

Remark 1. Aslong as we consider initial functions ug with values in the
interval [—1,1], it is a familiar consequence of the Maximum Principle and
the condition f(t,£1) = 0 that the values of the corresponding-solutions
u also belong to [—1,1]. Thus the form of f outside [—1,1] for such ug is
invalid.

We will assume in the sequel that the values of ug belong to [~1,1]. With
all this assumptions there is a unique global solution % to (1), moreover with
u¢, Au continuous in [0,00) x 2 (see [5,11]) and u¢,, belonging to L?(D)
([11], p. 513).

3. Introductory observation

Our first goal is to show that when ¢ tends to zero in (1) the correspond-
ing weak solution u¢ tends to the weak solution y of (2). Let us first observe
that for all ¢, |u®(%,z)| < 1. Next, by the Schwarz inequality

e [[ eVurVgdzdt < elleVu|lLap) | Vel L2(D)
D

hence the middle component in (3) will vanish when ¢ — 0, provided we
justify uniform in ¢ estimate of || Vu®||z2(p).

LEMMA 1. The quantity ||eVu||2(p) is bounded uniformly in ¢ for
€ € [0,¢0).
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Proof. To simplify notation we put u®* = u from now on. Multiplying
the equation in (1) by Au and integrating over D; = (0,t) x £2 we get

ff uAudz ds = €* ff (Au) dz ds + ff f(s,u)Audz ds

or integrating by parts, using the boundary condition and the estimate
Ju<m,

4) f Zux (t,z)dz — f Zu(,z dz + 2¢* ff (Aw)? dz ds
<2m ff Zuz (s,z)dzds, te(0,7T].

As a first consequence of (4), using the Gronwall inequality, we get

(5) f Euii(t,z) dz < f Zug,‘ dze?™!
[ i n H

Next, from (4) and (5) we get

2¢? f f(Au)2da:d1'< f zu(,, dz(1+2m- en? 1)
= f Eu(,zl,dze’"
9 i

Basing on the property of the Newtonian potential [9], p. 235;
1/2
(3" Mhewss o) = 14klLaa
4,

valid for A € H}(12) and the estimate of intermediate derivatives (e.g. [9],
p. 171) we find that the expression ([|Ah[|7.g) + ||h||2L:,(_Q))1/2 defines an

equivalent norm on HZ(2). For arbitrary A € HZ(f2) we thus have an esti-
mate

(6) DA dxgc( [ (ahydz+ [ da:)
7 f 7] 2

(C = C(n, 2)) and, continuing our previous calculations, we find that

T T T
(M & [ [ uldedt<Ce® [ [(Auw)}dzdt+Ce® [ [ uldzdt
0 2 i 0

2 0o o
9 2 2mT 2
< 7 nf z‘:u(,x‘ dze’™" + CegT| 12|
(]192] denotes the measure of £2). The proof is completed.
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Remark 2. For the case of the Neumann boundary condition, instead
of (6) we will use an estimate ([4], p. 12)

(6) MIVRlIZ2(0) < 1ARl T2

valid for every h € H?(R2) with % = 0 on 412 and the smallest positive
eigenvalue A of —A with homogeneous Neumann boundary condition.

At this point the usual procedure would be to use the compactness ar-
gument for the family {u°} to be able to pass to the limit over a sequence
en — 0. Instead we will give a proportional to ¢ estimate in L2(D) (and other
L? spaces) for the difference u® — y, to justify the limit passage generally
when ¢ — 0.

We shall start with some remarks concerning the properties and smooth-
nes of the solution y(t,z).

Boundary condition for y. It is easy to see that the (zero order) com-
patibility conditions required for ug are automatically preserved by equation
(2) for y.

For the Dirichlet condition; u(zo) = 0, z¢ € 32, with our assumption
f(t,0) = 0 we find that the solution of (2) satisfies y(¢,z¢) = 0. For the Neu-
mann case, when zg € 02, the normal derivative of y satisfies the equation

%(%(t,xo)) fu(t,u(t, 930)) (t Zo)

(8) %(t, o) = %(O,xo)exp ( f fu(s,9(s,20)) ds) -0

which is equal to zero because g%(O,zo) =0.

The equation for y. It is clear that the dependence of y on z entres
through the dependence of y(0,z) on z. There is no other connection between
y(t,z1) and y(¢,z;) for t > 0.

We will now calculate the Laplacian of y. For f twice differentiable with
respect to ¥ we have

Ytz, = fy(tvy)yzn Yiz,z; = fyy(t,y)yz‘i + fy(t'; y)y:c‘:c.- )
so that
2
(9) 2 at Z y.’l:. fy(t’ y) Z y:ci b

(10) 54V = o) 2, + 10y
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Solving this system of equations we find an expression for ), ygi:
i

¢
(11) Eyi_.(t,z) = Z ugz‘(a:) exp (2 f fy(my9(7,2)) dr) ,
i i 0
and, with the use of (11), also for Ay

(12)  Ay(t,z) = (Auo(@) + [ fuu(ru(r2)) Y ud., (@)
0 1

- exp ( f fy(8,9(s,2)) ds) d-r) exp ( j fy(s,9(s,)) ds) .
0 0

Observe, that the solution y of (2) solves simultaneously the problem

ye = 2 Ay + f(t,y(t,2)) — €2 Ay,
(13) ¥(0,z) = uo(z), =€ 2,
By=0, =ze€0f.
The “free term” —¢2 Ay is given by (12).
We are now ready to formulate the estimate of w = u — y in LP spaces.

LEMMA 2. For every k € N the following estimate holds

9% -1 \/2
(14) “w(t,')”m*(n)$€||Vuo||sz(g)( . t) et

Proof. The function w solves the problem
{ we = e2Aw + f, (¢, W)w + € Ay,

(15) w(0,z)=0, =z€ 1,

Bw=0, =ze€df.

Multiplying the equation in (15) by e~™! (f, < m) we get the equation for
W = we—™t

(16) W, = AW + (fu — m)W + 2 A(ye™™).
Multiplying (16) by W?2*-1 and integrating over 2, we find

2llcjt fW”‘d <- 22’“ f Z(Wk)z dz

22k

—€ f E( e~ ™) WY (WH), de = —J) — Jz.

Now, from the Cauchy mequa.hty

|J2|<e22k f Z(Wk)2 dz+ < (2k 1) f Z((ye""”) )W k2 g,
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and further, from the Holder inequality (p = %, g=k) and (11)

|J2|5J1+§4i(2k—1)(f (Zuﬁxi)kd:x)l/k(sz"dz)l_l/k.
n 1 n

We achieve an estimate

jt f W2k (2, 2) dz < —k(2k—1)||Vu0||L2,,(m( f Wk (s, z)d:c)

1-1/k

or, when integrated

IW (2, NWias(ay < —(2’°—1)“V"0“L2*(n)t

where we note that W(0,z) = 0 in {2. The proof is completed.

For k = 1, integrating (14) over [0,T], we obtain proportional to ¢ esti-
mate of w in L?(D). This estimate together with Lemma 1 justify the limit
passage in (3) with € to 0. Weak solution of (1) tends to the weak solution
of (2) (being also strong solution of (2)).

4. Main estimates
We are ready to give estimates of the difference u — y more accurate than
in Lemma 2.

mi

THEOREM 1. For the difference w the following estimate holds
e™t —1
|Aug| + E uge, M te™,
i L=(n)

m
with fy < m and fy, < M for (t,z) € [0,T] x [-1,1] (when m = 0 then the
in (17) should be replaced by t).

The proof follows directly from Proposition 1 if we apply it to W solving
(16) and use the immediate estimate of £2 Ay following from (12).

Application. Consider the standard nonlinearity f(z) = 1(z — 23). We
may ask how large 7 should be to allow y(t,z¢) to grow from value 0,1 for
t = 0 to value 0,9 for t = 7. The problem

(17) lw(t, L=(a) < &

e™ -1
term o

1
ye=350- ¥*),  ¥(0,z9) = 0,1,

is solvable by
0,01t !/
t,zo)= | ———
¥(t, 20) (0,99+0,01et) ’
hence 7 = 6,045. The behaviour of y reflects the behaviour of u (for our
special f). For this f we have m = %, M = 3, hence for t = 6, as a
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consequence of (17):

6e3
L (1)

(18)  |u(6,20) — ¥(6,0)| < 62|||Au0| + 5,65 - 1)
i

(6€® 2 120,5). For ¢ < 1073 it is reasonable to have the right side in (18)
of the order 0,1 (this is, of course, a requirement on ug). Hence, for such
¢ and ugp we have u(6,z¢) > y(6,z9) — 0,1 > 0,8, so that u(t,zo) growth
from value 0,1 for ¢t = 0 to (at least) value 0,8 for ¢t = 6. Similar estimates
will be made for the points z; at which ug is negative. We thus see how, in
a relatively short time (7 = 6), the initial variation ug(z¢) — ug(z1) = 0,2
has been increased to the value u(6,z9) — u(6,2z;) > 1,6. This is just a
phenomenon of creation of layer structure for the solution u. The graph of
u(t,-) consists of parts either close to +1 or close to —1 and a number of
sharply sloping connections between these different parts.

We proceed now to the proof of a version of the Maximum Principle used
in Theorem 1. The presented proof is a simplification and generalization of
that in [6], p. 500.

Consider the equation
(19) ve =Y (aij(t, )0z, ), + a(t,2)0 + f(2, %)
i
z € 2,t € (0,T] (T £ +00), with continuous coefficients fulfilling the

requirements; a(t,z) < 8 (8 > 0 is a constant), f bounded in [0,7T] x 2 and
the main part in (19) weakly elliptic

(20) > ot 2 0.

(t x) Eel"
Let v satisfy the Dirichlet or Neumann condition
Byv=0 forzedf2, v(0,z)=vo(x) forze .

We may then formulate

PRrOPOSITION 1. The following estimate for the solution v of (19) holds
21) (@ le(a) < (lvollz=(a) + oIB, 1£(s,)e™ || ooy t)e”

Proof. If 8 > 0, then we may multiply (19) by e~?* to get the equation
for the function w(t,z) = v(t,z)e"P*

(22) wy = E(aij(t, z)wz,- )::; + (a(t, z) - ﬂ)w + f(t’ z)e—ﬁt .

i,J
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Multiplying (22) by w?*-1 (k = 1,2,3,...), integrating over £ and by parts
in the ﬁrst component, we get

2Ic 7 fwz"da:— —(2k-1) f w2k 2z:au(t T W, Wy, d

i

+ f(a(t,z)_ﬂ)wzkdz+ ff(t,x)e-ﬁt,ka—l dz .
2 2

Omitting non—pos1t1ve components and using the Hélder inequality
(p=2k, ¢g= 21: 1) we find that

% [ w(¢,2)dz < 2k| £(2, -)e-f’t||me,|rz|1/2’°( [ w*(t,2)dz
n [}

)1—1/21:.

Solving this differential inequality we obtain
(23) llw(t, Mzas(ay < llvollzaay + M) 21,

where M(t) = supgg, < [|/(8,)€™P?|| Leo(2)- Passing in (23) with k to 400
and returning to the proper function v we get (21). The proof is finished.

Remark 3. It is possible to get uniform in ¢ estimates for various norms
of the solution u of (1). We will propose an example of such estimate.

Assuming convexity of {2 (for the significance of this assumption compare
[2], p. 65) and the Neumann condition for u, then using the inequality

(24) E“I-‘I:’ Ug; cos(n,z;) <0 forz € 912
4
proved in [2], p. 59, it is simple to reach the following estimate

(25) f ( Z uz,(t, z)) kd-"’ < f ( E ug,i) kdze”‘"“
a i 2 i
k=1,23,... (cf. [5], Lemma 2.5 for similar proof).
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