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WEAK CONVERGENCE OF PROBABILITY 
MEASURES ALONG PROJECTIVE SYSTEMS 

In this paper the definition and some of the most basic properties, in-
cluding the counterpart of the Alexandroff's second theorem, of the weak 
convergence of probability measures along projective systems are given. The 
concept is motivated by the convergence mode of empirical measures which 
normally arise as observing finite trajectories of non-stationary stochastic 
processes. 

1. Introduction 
In some problems of probability theory and stochastic processes a net 

{Ha} of probability measures is not defined on a common measurable space, 
but rather on a projective system of measurable spaces. Since the proba-
bility measures are not necessarily compatible their convergence behavior is 
different from that of inverse limits of measure spaces and extension to a 
common underlying space may not be feasible everytime. 

In order to tackle with such situations more efficiently, some kind of 
formalism seems to be desirable. 

In section 2, an example of a sequence of probability measures on a 
standard projective system which has motivated the proposed definition of 
convergence is discussed. This particular sequence arises in relation with 
empirical characterisitic functionals and measures in sequence spaces. 

In section 3, we give the definition of "weak convergence along a projec-
tive system" in a set-up considerably more general than that of the example. 
Important properties of this type of convergence including the counterpart 
of the Alexandroff's characterization of the weak convergence (the portman-
teau theorem) and the interaction with tightness is discussed. 

2. Convergence of empirical measures in sequence spaces 
D E F I N I T I O N 2.1. The 11 characteristic functional" of a probability dis-
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tribution [I on (E, Be), where E is a real sequence space and Be its Borel 
(r-field is given by 

X " ( / ) : = / e x p ( i ( f , x ) ) d n ( x ) , f e F . 
E 

Here F will be 

i) the sequence space G if E satisfies E = G* ((.)*: continuous dual, 
ii) E* if i) does not hold. 

Some examples oi(E,F) pairs would be {li,co),(looJi),(lp,lq),(co,li) etc. 
(Co = {x € RN:limXj = 0}, } + J = 1). 

If E is reflexive i) and ii) yield the same F. Also for certain E spaces, 
the values of xM on G may uniquely determine its values on the whole E*, 
(e.g. E = h). 

The canonical projection onto the first n coordinates will be indicated by 
7rn. The projection of / i on ( R N , B N ) and its restriction to X~1(BN) are de-
noted by /zn and ~pn respectively. A superscript (.)° on a finite sequence will 
indicate argumentation to an infinite sequence will indicate argumentation 
to an infinite sequences by filling out the rest of the positions by zeros. 

Let (5, T, P) be a probability space and let 0 be an T Be measurable 
mapping of S into E. We may suppose that the random sequence 0(w) is 
generated by a non-stationary random process or by any other source which 
can be observed any number of times independently and under identical 
conditions. Such observations will yield a tableau of the following form: 

Vn V12 Vln ••• 
V21 V22 V2n ••• 

(2.i) ; ; ; . . . 
Vml Vm2 Vmn • • • 

where the rows represent the observed components of independent random 
sequences @m(cj) (m = 1,2, . . . ) . By assumption 0 and 0 m (m = 1,2, . . . ) 
induce the same probability distribution, say FI on (E, Be)- More generally 
we may think of 0 as a mapping from Q into RN such that one of the 
sufficient conditions for the induced probability measure to be concentrated 
on E is satisfied, (c.f. [8], Theorem 1.3.4). 

DEFINITION 2 . 2 . "The empirical distribution" A N M (W) associated with 
(2.1) is the random probability measure 

1 m 

7 7 1 : 3=1 
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defined on E, it~1(Bn)) and concentrated on m atoms ir~1irn0j(i2) ( j = 
1 , . . . , m). Thus Anm := 7rnAnm is concentrated on m points in Rn. 

The concept of empirical characteristic functional is introduced in [3]. 

DEFINITION 2 . 3 . "The empirical characteristic functional (e.c.f.l.)'" 
X n m ( / » w ) associated with (2.1) is defined by 

X»m(/,w):= J exp(t< {irnf)°,x >)Xnm(u,dx), f e F . 
E 

The e.c.f.l. can alternatively be expressed as 

(2.2) X»m(/,w)= J exp[»((jrB/).y)]A^(w,dy) 
R" 

^ m n 

j=l k=1 where (.,.) denotes the scalar product in finite dimensions. 
The characteristic functional of the projecton of fi is accordingly given 

by 

(2.3) Xn(f) := f exp(i<(irnf)0,x>djln(x) 
E 

= J exp[i((irnf).y)]]j,n(dy) f e F . 
R" 

We observe that, 

(2.4) x t t f ) = XM((Tn/)°) and lim XZ(f) = XM(/), f e F . n—*oo 

Now we can state the following Glivenko-Cantelli type theorem. 

THEOREM 2 .4 . Let f e F , then lim X £ M ( / ) = xM( / ) a-s- holds in the n,m—•oo 
following cases: 

i) (E , F) = (Rn, RQ), (R{?: The space of all sequences with finite lenght). 
ii) The elements of F are absolutely summable and 0 is a.s. bounded in 

loo norm. 
Besides in both cases the convergence is uniform on compact subsets of F. 

P r o o f , i) Let the lenght of / be v. Then for n > v, in view of (2.1), (2.2) 
and (2.4), Xnm(fi^) depends only on m and furthermore Xn(/) = XM(/)-
Hence the result follows from the strong law of large numbers by observing 
that 
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n 

(2.5) / exp (i J ] ) fkT,jk(uj) dP(u) = f exp(t(/.y)) = xi t( / ) • 
i? fl" 

ii) By (2.4) 3m such that |x£( / ) - X"(/)l < f for n > »i . On the other 
hand | Yl'kLn fkT]3^{u>)\ 5: YhV-n \fk\M and by assumptions it can be made 
arbitrarily small by properly selecting n. Thus there exists n^ such that 
except on a negligible set and for n > n2, 

e 
< 3 

2 11» I* 
|X»m (/,<•>) - Xn2m(/,W)| < ~ 5 3 | e X P ( l X ) / ^ M ) ~ 1 

j=1 n2+l 

independently of m. Let no = max(ni, «2). In view of (2.5), lim Xn0m(f,u) m—»00 
= Xn0(/) a-s- an<^ w e c a n f ix m o such that for m > mo |Xn0m(/>^) — 
Xn0(/)l < f a-s- Now if rc > no and m > mo: 

I X n m ( M ~ X"(/ ) | < |Xnm(/,w) " X»om(/,«)| + |Xn0m(/,") " X£0(/)l 

+ l x ^ ( / ) - x M ( / ) l < f + | + | = 

As the compact sets in i?^ can be identified by their finite dimensional 
projections, the uniformity of convergence follows from the theory of finite 
dimensional empirical characteristic functions. 

In case ii) let if be a compact subset of F. As | X n ( f ) ~ XM(/)|2 < 
2|1 — JE cos < hn,x > |dfi(x) where hn = / — n°f is the tail of / , the total 
boundedness of K implies that n 1 can be selected independent of / . The 
selection of 712 independently of / is also a consequence of total boundedness 
of K. 

On the other hand Xnm(f) Xn(f) (a.s.) as m —> 00 implies by 
Levy's continuity theorem that for every n, Xnm JI^ as m 00 (—>• 
denotes weak convergence). Since 7rn is continuous it follows that Anm = 

Anm K^fin = JIn a.s. for every n. Thus for nQ = max(ni ,n 2 ) , 
{^n0m}m=i i s weakly relatively compact and {Xn0m)m=i i s equicontinu-
ous. Hence the convergence Xn0m(/) - • XnO is almost surely uniform on K 
and mo can be fixed independent of / • . 

Here we are concerned with the convergence behaviour of Anm whenever 
we confine ourselves to (RN, Rg) duality. 

THEOREM 2.5. Let fj, be a probability measure induced on RN by & and let 
(RN , B'RN , fi') and ( R n , B n ,~p!n) (n = 1 ,2 , . . . ) be the completions of prob-
ability spaces (Rn,BRN,[I) and (RN, Bn ,~PN) respectively. If mn 00 as 
n —> 00 and B € Brn is a ¡x-continuity set, then lim Anmn ( f f n B ) = fi'(B) n—• 00 
a.s. where P-null set is independent of B. 
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* 

P r o o f . Let A nmi> (n = 1 , 2 , . . . ) be a set of arbitrary extensions of Anmn 

from 7T~1(Bn) to B'rN (such extensions always exist). Since Xnm„ ( / ) depend 
only on finite dimensional restrictions of measures, except a null set we have 
by Theorem 2.4. 

lim f exp(i < f , x >)Xnm (u,dx) — x M ( / ) ) f e R^. 
71—tOO J 

RN 

By the analogue of Levy-Cramer theorem (c.f. [8], Theorem 1.2.8) Anmn 

fi' a.s. as n —• oo. If B is finite dimensional set, then for large n : • 
TC^TnB = B and Xnmn(irnB) = A n m n ( B ) and the conclusion follows imme-
diately. 

If B is an infinite dimensional set, it will heve no interior with respect to 
Tikhonov's topology, thus fi'(B) = 0. As {iz~livnB} is decreasing sequence 

oo 
of universally measurable sets, letting C = p) ^n lirnB, we have B C C C 

n=l oo 
n ^nlirnB = B and thus lim fi'^w^WnB) = fi'(C) = 0. There exists n=l n- t o° 

a sequence {n*.} of positive integers and a decreasing sequence {Ck} of 
/¿'-continuity sets satisfying: 

1) Ck D *nt*nkB, 
2) limfc-^oo/x'(Cfc) = 0. 

* 

The double limit lim Anmn(Cfc) exists and is equal to zero. For there 
n,k—* oo 

are positive integers ko and no such that for k > ko and n > no we have 

|fx'(Ck) - ti'{B)| = /i'(Cfc) < f and |Anriln(Cfco) - n'(Ck0)\ < there-

fore |An r o n(C f c o) -fi'(B)\ < e. But A n m % ( C k ) < AnOT„(C fco) and n'(B) = 

* * 
0. Therefore limfc-x» Anmjk (Ck) = 0 and this implies Xnmn(Tr~1irnB) = 
Anm„ (rnB) 0 = fi'(B) a.s. •. 

Here supressing the almost sure behavior, the type of convergence de-
serves a special attention. Examples exhibiting the same type of convergence 
can be constructed also in the domain of cylindrical measures. 

3. Weak convergence of probability measures along a projective 
system 

Following the notation and the terminology of [7], we consider projective 
systems of Hausdorff topological spaces of the form 
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having the projective limit ft = l i m ( i 2 a , w a p ) with continuous canonical 
mappings i r a : f t fta. The right-filtering partially ordered set D and all 
other symbols are assumed to have their usual meaning and properties. 

In relation with such a projective system we consider two hypotheses: 
a) Hypothesis R\: fl""1, a € D tommute with the operation of forming 

the rim, i.e. if 7r"1(r(A)) = r(7r"1(A)) (r(A) = A n Ac). 
b) Hypothesis R-i'- For every a £ D, iraB C B a , where B and Ba are 

Borel cr-fields in ft and fta respectively, the former being with respect to 
the projective limit topology. 

Hypothesis R\ is possessed by many important projective systems includ-
ing those where each 7ra (a £ D) is an open mapping. (In this case hypoth-
esis R\ is actually equivalent to the stronger property it~r(8A) = A) 

(£(.): boundary)). This would be the case if for instance the projective limit 
topology coincides with the product topology. Some examples: 

1. { n ftt,nctp)acp:ai0 € D } where D is the family of all finite subsets 
teA 

of an index set T directed by inclusion, Qt{t € T ) are Hausdorff spaces 
and 7ra/3 the canonical projections. 

2. { ( N ^ N 1 N 2 ) N 1 C N 2
: N I , N2 G D} where D is the directed set of all finite 

dimensional subspaces N of a topological vector space F and N' is the 
(algebraic) dual. (The natural set-up for cilindrical measures). 

Hypothesis R2 would be ensured if for instance ft and fta (a £ D) 
are Polish spaces and B and Ba are replaced by cr-fields of sets which are 
measurable for the completion of probability measures on Borel sets, thus 
containing all universally measurable sets (c.f. [5], pp. 391). 

D E F I N I T I O N 3.1. Let V = {(fta,irap)a<p- <*,P S D } be a projective 
system of metrizable spaces with the projective limit ft = lim(i7a, Kap) 
furnished with the projective limit topology and let the cr-fields Ba and B, 
in fta and ft respectively, satisfy hypothesis R2. If { ( i a , a £ D} is a net 
of probability measures defined on measurable spaces ( f t a , B a ) , a £ D, we 
say that "/¿a converges weakly along the projective system V to a probability 

measure fj, on B" and denote f i a —> fi if for every /¿-continuity set B £ B 

]im fia( ir a B ) = n(B) 
a 

holds. 

Note. In the case of a Polish projective system with a Polish projective 
limit, B and Ba may be chosen as the <T-fields obtained by the completion 
of Borel probability measures \i and 7rQ(/i) respectively. 
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LEMMA 3.2. For the projective system of probability spaces described in 
Definition 3 .1 . : 

i) If B £ B is closed, then f ) Tr^naB = B. 
aeD 

i i) Consider a family {Ct}teT of compact measurable sets in Q where T 
is an arbitrary partially ordered index set such that Ct I C ^ 0 . Then 

lim/*(<?«) = inf n(Ct) = n(C). 

i i i) If B eB then f | ir^WaB = B = f ] n^WaB. 
aeD aeD 

iv) If hypothesis R\ is satisfied, then (it^A)0 = i r ' ^ A 0 ) , A £ Ba. 

P r o o f , i), ii): c.f. [7] pp. 127-128. _ _ 
iii) The second equality follows from B C HaW^iTaB C f l a 7 r ~ l i : a B = B. 

For the first equality, the inclusion B C r\aTr~1iraB is obvious. In order to 
prove the opposite inclusion let u> G Bc. Then there exists a neighborhood N 

k 
of the form N = Q jr".1^,. , Sai being open spheres in Qai (i = 1 , 2 , . . . , k) 

i=i 
such that u> G N and N D B = 0. Let ¡3 £ D be any index satisfying (5 > oti 
(t = 1 ,2 , . . . , k). We show that N fl ir^irpB is also empty. Otherwise if we 
let z G N 0 ir^irpB, then np{z} G itpB, thus there exists v £ B such that 
7173(1;} = •Kpiz). Now for i = l , . . . , k , 7rai{u} = ira.pwp{v} = vaipirp{z} = 
7ra, {2} G Sai. But then v is also in N which is a contradiction. Hence 
N n •Kp1itpB = 0 so that u G (n^npB)0 C ( f | 1*aB)c. 

aeD 
iv) 71-~lA = r(7T~1A) U (Tr-1^)0, on the other hand 7 r~ x A = •k~1{rA) U 

7T~1(A°) = r(7T~1A) U (7t~1(A0)). Comparison of the two expressions yields 
the result. 

PROPOSITION 3 .3 . Let ¡i be a tight probability measure on (i2,B) of Def-
inition 3 .1 . 

i ) If B 6 B is either closed or a ¡i-continuity set, then 

l im/i(7r^ir a5) = fi(B). 
a 

ii) If B £ B is a fi-continuity set, then 

]im fi[r{ir-\aB)] = 0 
a 

(r(.): the rim of a set). 

P r o o f , i) Given 6 > 0, let Q' be a compact subset of fi satisfying 
/i(/2') > 1 — j . By Lemma 3.2 -ii) and iii) fx is right-continuous along 
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I c ' t c B H ft'. T h u s t h e r e ex i s t s ato € D such t h a t for a y a o : 

0 < n ft') - fi(B n ft') < |. 

A s O < / i ( 7 T a 1 7 r a 5 ) - / i ( x a 1 7 r a 5 n / 2 ' ) < f a n d O < n(B)-fi(Br\ft') < f , we 

conc lude t h a t for a y a o : 0 < n ( / K o 1 ^ a B ) — n ( B ) < e, showing ¡ ¿ ( i r ^ X a B ) I 
n(B). Now cons ider t h e inequal i t ies 

H{B) < p^-KcB) < n(ir~lTTaB), aeD 

which i m p l y t h e desired conclus ion i f e i ther B is c losed or fi(B) = fi(B). 
i i ) B y p a r t i ) : 

l*(itfxaB) = fi[r( v-^cB) U ( j t - l * a B ) ° ] 

= fiWw-^cB)} + fiiix-^By) i n{B). 
B u t s ince (•K~1TraB)° D B° a n d fi(B) = fi(B°) i t follows t h a t 
l i m ^ T r " 1 * ^ ) ] = 0 . 

a 
Now we s t a t e t h e following version o f A l e x a n d r o i f ' s second t h e o r e m . 

THEOREM 3 . 4 . Let {/¿Q,a € D} be a net of probability measures on a 
projective system V as described in Definition 3.1, satisfying furthermore 
hypothesis Ri. If ft is sufficiently rich (i.e. naft = Qa) and y, is a tight 
measure on ft, then the following are equivalent: 

1) Pa —• fj., a e D. 
ii) Let f e C(ftp), (3 e D andif a e D,ay (3, let Fa andFn be the lifts 

of f to fta and ft respectively, (i.e. fa(x) = f(npax), fn(x) = f(wpx)). 
Then lim(/a) = f i ( f n ) . 

a>p 
iii) The same conditions as in ii), C(ftp) being replaced by the set of 

bounded uniformly continuous functions. 
iv) For f} 6 D, let F 6 Bp be a closed subset of ftp, then 

l i m s u p n a ( n p * F ) < ^ ( t t J 1 / 1 ) . 
a>() 

v) For f3 € D, let G € Bp be an open subset of ftp, then 

l i m i n f n a ( * p l G ) > n ( * p l G ) . 

P r o o f . 
a ) i)=>-ii): P r o c e e d i n g as in t h e p r o o f o f T h e o r e m 3 . 1 . [1], i t is sufficient t o 

consider / 6 C(ftp) sa t i s fy ing 0 < f(x) < 1 , x € ftp. L e t to < h <...< tm 

b e f ixed in such a w a y t h a t to < i n f f(x), tm > s u p ^ . f(x) a n d ti — < t Up 
(i = 1 , . . . , m ) . F o r a y f3 a n d t h e c losed se t s Fai = {x 6 fta'• fa(x) > *«'}> 
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we have 
to m 

] T ( t i - < i_i ) / i a (F a i ) < M / a ) < - ( ¡ - i K ( f a i i - i ) 
«=1 i=l 

where the upper and lower sums differ by less than e. On the other hand it 
is possible to determine ij so that the Borel sets F, = {w 6 ii: fn{u) > 
<,} become /i-continuous. As l imn a {F a i ) = l i m n a ( ^ a F i ) = n(Fi) and 

a a 
l im/ i a (F a ) , _ i ) = l imn a ( ir a Fi^i) = fi(Fi-i) , the implication follows from 

a or 

the fact that — ij_i)/x(Fj_i) and ^(t ,- - i,_i)/x(iri) which are upper 
and lower sums for fi(fn) also differ by less than e. 

b) ii)=>iii) is obvious. 
c) iii)=>iv): As F is a set there exists a sequence of open sets 

in Qp such that G? j F. If Gn = ir"1^)» t h e n Gn i x^F, so that 
there is no satisfying fi{Gn \ itpXF) < e for n > uq. Let n be any positive 
integer greater than no. There exists a uniformly continuous function / on 
Qp connecting F and Qp \ i.e.: 

1 if x e F 

/ ( « ) = { € [ 0 , 1 ] iixeGZ\F 
0 if x € Qp \ Gi. 

Let fa and f n be the lifts of / to any Qa (a >- ¡3) and Q respectively, denote 
also 7rJ*F by Fa. Then fia(fa) > fia(lF"fa) = Pa(Fa) and limsup/i a(f , a ' ) 

< U m s u p M a ( / « ) = f i ( f n ) < + ^ + 

d) iv)-Ov): Obvious. 
e) v)=»i): Let B be a /x-continuity set in B. By Proposition 3.3. i)-ii) 

there exists /?o € D such that for ¡3 y fa, {^(ir^irpB) — fi{B)\ < | and 
v H * p l * l 3 B ) \ < | are simultaneously satisfied. Now the subsequent appli-
cations of hypothesis i?2, Lemma 3.2. iv)-v) and hypothesis R\ yield 

/x(5°) < v [ { * p l * p B y X = fi^pHiwpBr)] < liminf 
ay ¡3 H 

< l iminf fia(np*wpB) < ]imsxipfia(ir^irpB) 

< lim sup ita(*£*fiB) < nfr^foB)] = PB)* U r(rpB))] 
ay/3 

< MCr^xpB) + n[r(itp1icpB)\ < fi(B) + | + | • 

Hence for /3 h Po-

H(B) < Umjnf tia(ir^irpB) < lim sup *pB) < fi(B) + e, 
at/3 K ay/3 
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as e > 0 is arbitrary and ~Ka are onto, this implies 

lim Hai^Ka-K^icpB) = fi(B) for all /3 y f3$ • 

For 6 > 0, there exists ao h A) such that if a ^ ao h P t. A) 

H(B) < HaiTc^npB) < n{B) + 6 , 

as (ia(irairp1'K()B) is decreasing in ¡3 

fi(B) < fia{xolirp1irl3B) = fia(iraB) < ¡J,(B) + 6. 

THEOREM 3 .5 . Let the projective system V as described in Definition 3 . 1 
have a separable, metrizable projective limit. Further assume that for each 
e > 0 there exists a compact subset Ke of ft such that fJ.a(ftaKa) > 1 — £ 
for every a £ D is satisfied by a net {fia}aeD of probability measures. Then 
{fia} has a subnet converging along the projective system V. 

P r o o f . Let JIa be the image of fia on i r^Ba , i.e. f l a o 7T"1 = fia and let 
/J* (a € D) be any set of extensions of Jia to (ft,B). Such extensions always 
exist but may consist of measures which are only finitely additive. On the 
other hand ft can be imbedded topologically into a compact metric space ft. 
For any let ma be the measure on ft defined by ma(B) = ft) for 
all Borel subset of ft. The net {m a} has a subnet, say.{mjva}ae.D converging 
weakly to a a-additive measure u on ft. For any index a, denote C£,a = 
•K~x-KaKe which is compact in ft. Let /? be a fixed index, then by the ordinary 
weak convergence of measures and the fact that C£)a j : 

v{C€j) > lim sup mNa (Ce,p) > lim sup mNa (Ce,Na) ay/3 a>0 
= lim sup fiNa (nNa Ke)> 1 - e . 

ayp 

By considering a sequence en J. 0, this set of inequalities implies along the 
same lines as in the proof of Theorem 6.7., [6], that there exists a measure 
fi on ft such that v(B) = fi(B D ft) for any Borel subset B C ft. Let now 
F be any closed subset of ftp. There exists a closed set D in ft such that 
ir^F = D fl ft. As mjva —* v on ft, we have lim sup (D) < v(D). This 

a 
is the same thing as stating: lim sup Jij^a(irp lF) < ¡¿ (n^F) . 

Now for Nay/3a: 

lim sup -¡?Na (TT p X F ) = lim sup fiNa i r ^ F) 
a a 

= lim sup HNa(*pNaF) < n { ^ p l F ) . 
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Then by Theorem 3.4. -iv) fiNa + ¡i. 

THEOREM 3 . 6 . Let each fta be a separable metric space in the projective 
system V described in Definition 3.1 and let also n be a tight measure on ft. 
Then fia n if and only if: 

lim sup a>:P fe A 
/ r dfla - J f" dn = 0 

na n 
for every (3 € D and every uniformly bounded family of functions A C 
C(ftp) which is equicontinuous at each point of ftp. 

P r o o f . ' If ' part is obvious by taking A = { / } and applying Theo-
rem 3.4. -ii). For the 'only if ' part we first note that given fi £ D, there 
exists an infinite ^ -par t i t ion {Aj}j i x of ftp such that {ir^1 Aj}'jtl is a 
^-partition consisting of /i-continuity sets, furthermore x, y (E Aj, f € A 
|f(x) — f(y)| < 6 ( j = 1 ,2 , . . . ) . To see this, let x G ftp and let Sr(x) be an 
open sphere centered at x with boundary Br(x) and the radius r > 0 being 
fixed by using the equicontinuity of the family A, so that | f(x) — f(y)\ < e 
for all y € Sr(x) and / 6 A. As 7rJ15 r(x) = (J 7r71(5 r/(x)) there exists 

0 < r ' < r 
0 < S(x) < r such that 7rJ1(55(x)) is a //-continuity set in ft. By this ob-
servation and proceeding as in the proof of Lemma 6.5, [6], we arrive at the 
conclusion that a partition {Aj}j2.1 with the asserted properties exist. We 
also note that the family of functions { f a : f € A}, { f n : f 6 A} obtained 
by lifting A from ftp to fta (a y ¡3) and ft respectively, are also uniformly 
bounded and equicontinuous in their domains. 

Let Xj € ftp1 A j ( j = 1 ,2 , . . . ) be any fixed sequence of points. For a y (3 
let (J.a,D be the discrete measure concentrated in the set {iraXj:j = 1 ,2 , . . .} 
and given by n a < D (E) = JZj E e B a (Ie• the indicator 
of E). Similarly we define fid(B) = Ylj I b { x { A j ) . 

Since n^1 A j are /x-continuity sets and fia ^—tfi: 

fta^a^Aj) = fla(^plAj) n(irplAj), (a>/3)i 
so that 

lim sup sup 
a fGA na n 

J f a d n a , D - J fndtxD 
n 

< M lim sup I M * plAi) ~ P(*plAi)\ = 0 • 
3 

Thus the following estimates are easily obtained as in the proof of Theo-
rem 6.8., [6]: 
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lim sup sup 
feA 

J f a d f i Q - J f n dfi\ 
n n ' 

< lim sup < sup f f a d f i a - f f a d f i a t D 

<*>P l / e ^ £ 

+ sup \ J f n d f i - J f n d / i D \ 
feA 

+ sup 
fen 

n n 

J f a d f i a , D — J f a d i i D \ \ < 2 c . 
•> r> I / na n 

4. Some applications 
Since probability distributions in abstract spaces can be characterized 

solely by their characteristic functional (Fourier transforms), it is natural 
to expect that their empirical versions (i.e. e.c.f.l. of Definition 2.3.) should 
provide tools necessary for dealing with the estimation problems in such 
spaces. _ 

The convergence property in Theorem 2.4 can be rephrased as: "AnTnj> 
converges weakly to fx' along the projective system V — { R n , n n i T l 3 : ni , «2 € 
N } n . The empirical measures and e.c.f.l. may arise in connection with the 
partially observed trajectories of identical, discrete-time non-stationary 
stochastic processes as described by (2.1) in Section 2. A process of this 
kind will induce in general, an unknown probability measure on the set 
of trajectories which is usually a suitable sequence space, in order to test 
certain hypotheses that can be postulated about the unknown probability 
measure (such as being Gaussian etc.), some functionals of e.c.f.l. can be 
introduced. Two examples of such functionals would be 

( 4 . 1 ) Y n m ( f ) := m ^ i x n m i K n f ) - x i i ( r « / ) ) , / € F , 

(4.2) Z n m { f ) := m ^ { \ x n m ( S - i ^ n f ) ) \ 2 - e"<*-''*»'>}, f e F . 
^ —1 /2 

where in (4.2), Snm Is the simple covariance matrix and / ) ) the 
Mahalonobis transform of Xnm • Y n m and Z n m can be regarded as double se-
quences of stochastic precesses (fields) with the generalized index set F , the 
first one being complex- valued and the latter real-valued. Such a stochastic 
process interpretation leads to convergence results (invariance principles) 
which are stronger than those given in Theorem 2.4. 

Under suitable conditions and for fixed dimension n, the process Y n m 

converges weakly (in the ordinary sense) as m —• oo to a complex- valued 
n-variate Gaussian random field Y n , which is the Fourier transform of an 
n-variate Brownian bridge process, (c.f. [2]). Similarly Z n m converges weakly 
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to a real-valued continuous-path Gaussian process Zn, (c.f. [2]). In both of 
these weak convergences / (or irnf if F ^ Rq ) is considered to be restricted 
to some compact sets Rn of the form Kn = [—T,T]n (T > 0). 

Now if both the dimension n and the number of observations m in-
crease without bound, we have to consider the weak convergences of the 
processes described above within the framework of a projective system, i.e. in 
the sense of weak convergence along projective systems. Specifically we de-
fine for the multicubes Kn — [—T,T\n, (T > 0) the projection mappings 
7 n i n 2 :C(K n : t ) C(Kni) (m < n2) by: 

(lnin3g)(xi,...,xni) = fif(xi,,...,xni,0,...,0) for all g € C(R - n2) 
(a similar definition applies to complex-valued functions to yield 7 n i n 3 ' 
C2(Rn3) —• C2(Rni)). Let L>X (resp. be the probability measure in-
duced by the process Yn (resp. Zn) on C2(Kn) (resp. C(Kn)). Let also 
(C2(Koo), Bc*(Kot)i l /Y) (resP- ^ R ^ B C ^ K « , ) , vZ) be the unique projective 
limit of the following projective system of Gaussian probability spaces: 

VY = {(C2(Rn),Bc2{Kn),^,7n1n3)n1<n3:n1n2 € N} 
(resp. V z = {(C(iirn),5c(A:>),i'f,7nan2)n1<n2:rMn2 € N}). 

Then utilizing Theorem 3.5, it can be shown that for any sequence mn such 
that m„ —• 00 as n —• 00, the probability measures induced on C2(Rn) 
(resp. C(Rn) by the process Ynmn (resp. Z n m n ) have subsequences converg-
ing weakly to vY (resp. vz) along the projective system VY (resp. Vz)), 
(c.f. [4]). 
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