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WEAK CONVERGENCE OF PROBABILITY
MEASURES ALONG PROJECTIVE SYSTEMS

In this paper the definition and some of the most basic properties, in-
cluding the counterpart of the Alexandroff’s second theorem, of the weak
convergence of probability measures along projective systems are given. The
concept is motivated by the convergence mode of empirical measures which
normally arise as observing finite trajectories of non-stationary stochastic
processes.

1. Introduction

In some problems of probability theory and stochastic processes a net
{pa} of probability measures is not defined on a common measurable space,
but rather on a projective system of measurable spaces. Since the proba-
bility measures are not necessarily compatible their convergence behavior is
different from that of inverse limits of measure spaces and extension to a
common underlying space may not be feasible everytime.

In order to tackle with such situations more efficiently, some kind of
formalism seems to be desirable.

In section 2, an example of a sequence of probability measures on a
standard projective system which has motivated the proposed definition of
convergence is discussed. This particular sequence arises in relation with
empirical characterisitic functionals and measures in sequence spaces.

In section 3, we give the definition of “weak convergence along a projec-
tive system” in a set-up considerably more general than that of the example.
Important properties of this type of convergence including the counterpart
of the Alexandroff’s characterization of the weak convergence (the portman-
teau theorem) and the interaction with tightness is discussed.

2. Convergence of empirical measures in sequence spaces

DEFINITION 2.1. The “characteristic functional” of a probability dis-
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tribution p on (E,Bg), where E is a real sequence space and Bg its Borel
o-field is given by

X“(f) == [ exp(i(f,z))du(z), feF.
Here F will be e

i) the sequence space G if E satisfies £ = G*((.)*: continuous dual,
ii) E* if i) does not hold.

Some examples of (E, F') pairs would be (I3, ¢), (lcos 1), (Ip,1g), (0, 1) etc.
(co={z€ RN:Ii}na:j =0},2+3%=

If F is reflexive i) and ii) yield the same F. Also for certain E spaces,
the values of x* on G may uniquely determine its values on the whole E*,
(e.g. E= ll)

The canonical projection onto the first » coordinates will be indicated by
7n. The projection of x4 on (R™,B") and its restriction to x,;}(B") are de-
noted by i, and T, respectively. A superscript (.)° on a finite sequence will
indicate argumentation to an infinite sequence will indicate argumentation
to an infinite sequences by filling out the rest of the positions by zeros.

Let (S, F, P) be a probability space and let ® be an F « Bg measurable
mapping of § into E. We may suppose that the random sequence O(w) is
generated by a non-stationary random process or by any other source which
can be observed any number of times independently and under identical
conditions. Such observations will yield a tableau of the following form:

M1 " Mn
M1 722 Mn
(2.1) : : :

Mm1 Nm?2 Nmn

where the rows represent the observed components of independent random
sequences O, (w) (m = 1,2,...). By assumption @ and 8, (m = 1,2,...)
induce the same probability distribution, say p on (E, Bg). More generally
we may think of @ as a mapping from {2 into RN such that one of the
sufficient conditions for the induced probability measure to be concentrated
on E is satisfied. (c.f. [8], Theorem 1.3.4).

DEFINITION 2.2. “The empirical distribution” Apn,(w) associated with
(2.1) is the random probability measure

Anm(w) = %EJ(w;lwan(w))
j=1
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defined on E, 7 1(B")) and concentrated on m atoms 7;17,0;(2) (j =
1,...,m). Thus A\pp, := TpAnm is concentrated on m points in RB™.
The concept of empirical characteristic functional is introduced in [3].

DEFINITION 2.3. “The empirical characteristic functional (e.c.f.l)”
Xnm(f,w) associated with (2.1) is defined by

Rom(f,w)i= [ exp(i < (1af)°,2 >)Anm(w,dz), fEF.
5 .
The e.c.f.]l. can alternatively be expressed as

(22) Rnm(frw0) = [ expli((maf).y)Anm(w, dy)
o

= % ) exp (i > fkfljk(w))
j=1 k=1

where (.,.) denotes the scalar product in finite dimensions.
The characteristic functional of the projecton of p is accordingly given
by

(23) Xa(f) = [ exp(i < (1a)°,2 > dFip(2)
E
= [ expli((maf)-9)liin(dy) fEF.
R"

We observe that,
(24)  xa(f)=x*((7=f)°) and lim xi(f)=x*(f), feF.
Now we can state the following Glivenko-Cantelli type theorem.

THEOREM 2.4. Let f € F, then lim X% (f) = x*(f) a.s. holds in the
following cases: ,

i) (E,F) = (RN, RY), (R} : The space of all sequences with finite lenght).

ii) The elements of F are absolutely summable and O is a.s. bounded in

loo norm.
Besides in both cases the convergence is uniform on compact subsets of F.

Proof.i) Let the lenght of f be v. Then for n > v, in view of (2.1), (2.2)
and (2.4), Xnm(f,w) depends only on m and furthermore x4(f) = x*(f).
Hence the result follows from the strong law of large numbers by observing
that
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(25) [ exp (i) funin(@)) dPW) = [ exp(i(fy)) din(y) = X4(S) -
2 k=1 R"

ii) By (2.4) 3n; such that |x4(f) — x*(f)| < § for n > n;. On the other
hand | Y2, funik(w)] < Yre, |fx|M and by assumptions it can be made
arbitrarily small by properly selecting n. Thus there exists n, such that
except on a negligible set and for n > n,,

Ram (1) = Rnam ()] < %f}lexp (i3 i) -1 < &

n2+1
independently of m. Let ng = max(n1,n2). In view of (2.5), lim Xpom(f,w)

= xh,(f) as. and we can fix mp such that for m > mg |Xnom(f,w) —
x4, ()l < 5 a.s. Now if n > ng and m > my:

Ignm(fvw) - X“(f)l S Iinm(faw) - inom(faw)l + |5(\nom(f7w) - Xt:o(f)l

b ) =yt ()< 4 E g Em
XA =X DI<s+s+s=c.

As the compact sets in RY can be identified by their finite dimensional
projections, the uniformity of convergence follows from the theory of finite
dimensional empirical characteristic functions.

In case ii) let K be a compact subset of F. As |x“(f) — x*(f)|®? <
2|1 - [gcos < hn,z > |du(z) where h, = f — 73 f is the tail of f, the total
boundedness of K implies that n; can be selected independent of f. The
selection of n, independently of f is also a consequence of total boundedness
of K.

On the other hand Xnm(f) — Xx4(f) (a.s.) as m — oo implies by
Lévy’s continuity theorem that for every n, Apm — i, as m — 00 (—
denotes weak convergence). Since 7, is continuous it follows that A, =
w;lgfniw;"lﬁn = @, as. for every n. Thus for ny = max(ny,ns),
{Anom }X— is weakly relatively compact and {Xn,m}0-; is equicontinu-
ous. Hence the convergence Xn,m(f) = Xho is almost surely uniform on K
and mg can be fixed independent of f o.

Here we are concerned with the convergence behaviour of A,,, whenever
we confine ourselves to (RN, R}Y) duality.

THEOREM 2.5. Let u be a probability measure induced on RN by © and let
(RN, By, ') and (R™,B™ ) (n = 1,2,...) be the completions of prob-
ability spaces (RN,Bgv,u) and (R™,B™,[,) respectively. If m, — oo as
n — oo and B € Bgrw~ is a pu-continuity set, then nlirréo Anm, (T B) = p/(B)
a.s. where P-null set is independent of B.
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Proof. Let :\nm,. (n =1,2,...) be a set of arbitrary extensions of Anp,
from 7;1(B") to Bl (such extensions always exist). Since Xnm, (f) depend
only on finite dimensional restrictions of measures, except a null set we have
by Theorem 2.4.

nh—rnéo f exp(i < f,z >):\nmn(w,d:c) =x*(f), fe€RY.
RN

By the analogue of Lévy-Cramer theorem (c.f. [8], Theorem 1.2.8) Ann,
iy as.asn — oo. If Bis ﬁnite dimensional set, then for large n :

m-lr,B = B and /\nm”(wnB) Anm, (B) and the conclusion follows imme-
dJately
If B is an infinite dimensional set, it will heve no interior with respect to
Tikhonov’s topology, thus u'(B) = 0. As {7r‘17rnB} is decreasing sequence
of universally measurable sets, letting C' = ﬂ m-1r, B, we have B C C C
n=1

ﬂ 7;'r,B = B and thus lim p/(z;'7,B) = p'(C) = 0. There exists
n=1 n—+00
a sequence {nx} of positive integers and a decreasing sequence {Cy} of

u'-continuity sets satisfying:
1) Ck D) W;klﬂngB,
2) limg— oo p'(Ck) = 0.
The double limit hm /\nm (Ck) exists and is equal to zero. For there

n,k—
are positive integers ko and ng such that for k£ > kg and n > ny we have

W(CH) = (B = W(Ch) < § and [ham,(Ch) = W(Cho)| < §, there

fore |z\,,m"(Cko) - B (B)I < €. But /\nm (Cx) < /\nm"(C'ko) and p'(B) =

0. Therefore limg— oo Anm,(Ck) = 0 and this implies ,\nm” (r;lr,B) =
Anmg (7nB) = 0 = p/(B) a.s. o.

Here supressing the almost sure behavior, the type of convergence de-
serves a special attention. Examples exhibiting the same type of convergence
can be constructed also in the domain of cylindrical measures.

3. Weak convergence of probability measures along a projective
system

Following the notation and the terminology of [7], we consider projective
systems of Hausdorfl topological spaces of the form

{('Qaa Waﬁ)ajﬁ3 a,ﬂ € D}
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having the projective limit 2 = li‘r_n(.Qa,WO,p) with continuous canonical
mappings 74: 2 — §2,. The right-filtering partially ordered set D and all
other symbols are assumed to have their usual meaning and properties.

In relation with such a projective system we consider two hypotheses:

a) Hypothesis Ry:n;!, a € D commute with the operation of forming
the rim, i.e. if 771(r(A4)) = r(r71(A4)) (r(4) = AN A°).

b) Hypothesis Ry: For every a € D, noB C By, where B and B, are
Borel o-fields in {2 and {2, respectively, the former being with respect to
the projective limit topology.

Hypothesis R, is possessed by many important projective systems includ-
ing those where each 7, (@ € D) is an open mapping. (In this case hypoth-
esis R, is actually equivalent to the stronger property 7;1(64) = §(n;1A)
(6(.): boundary)). This would be the case if for instance the projective limit
topology coincides with the product topology. Some examples:

1. {II 2¢,7map)acs: @, B € D} where D is the family of all finite subsets
t€A

of an index set T directed by inclusion, 2,(t € T') are Hausdorff spaces
and m,p the canonical projections.

2. {(N',7mn,N,)N;cN,: N1, N2 € D} where D is the directed set of all finite
dimensional subspaces N of a topological vector space F' and N' is the
(algebraic) dual. (The natural set-up for cilindrical measures).

Hypothesis Ry would be ensured if for instance f2 and 2, (a € D)
are Polish spaces and B and B, are replaced by o-fields of sets which are
measurable for the completion of probability measures on Borel sets, thus
containing all universally measurable sets (c.f. [3], pp. 391).

DEFINITION 3.1. Let P = {(£2a,7Tap)a<s: @, 8 € D} be a projective
system of metrizable spaces with the projective limit 2 = lim({2,,Tqg)

furnished with the projective limit topology and let the o-fields B, and B,
in 2, and 2 respectively, satisfy hypothesis R;. If {y4, 0 € D} is a net
of probability measures defined on measurable spaces (£24,84), @ € D, we
say that “u, converges weakly along the projective system P to a probability

measure jt on B” and denote p, w7 i if for every p-continuity set B € B
lim po (7o B) = p(B)
holds.

Note. In the case of a Polish projective system with a Polish projective
limit, B and B, may be chosen as the o-fields obtained by the completion
of Borel probability measures p and 7, () respectively.
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LEMMA 3.2. For the projective system of probability spaces described in
Definition 3.1.:

i) If B € B is closed, then (| n;'n,B = B.
a€D
i) Consider a family {C:}ier of compact measurable sets in {2 where T

is an arbitrary partially ordered index set such that Cy | C # 0. Then
lign u(Ct) = iltlfﬂ(ct) = u(C).

iii) If B € B then () 7a 7raB B= (N n;'7B.
a€D a€D
iv) If hypothesis R, is satisfied, then (w;1A)° = 7;1(A°), A € B,.

Proof. i), ii): c.f. [7] pp. 127-128.

iii) The second equality follows from B C Na7;1maB C No7y 1r.B = B.
For the first equality, the inclusion E C Nam;1my B is obvious. In order to
prove the opposite inclusion let w € B°. Then there exists a neighborhood N
of the form N = n 75} Sa;, Sa, being open spheres in 24, (i =1,2,...,k)
such that w € N and NN B =0.Let 8 € D be any index satisfying 8 > a;
(t=1,2,...,k). We show that N N 7|'517|'ﬂB is also empty. Otherwise if we
let z€ NN 1rﬂ_l7rﬁB, then mg{z} € mgB, thus there exists v € B such that

mg{v} = mg{z}. Now for i = 1,...,k, 7o, {v} = 7o, 67s{v} = ma,6me{z} =
Ta; {2} € Sa,. But then v is also in N which is a contradiction. Hence

Nnny 7rgB @ so that w € (7r 'rsB)° C ( ﬂ Ta 7rc,,B)c

iv) n71A = r(r;1A) U (r71A)°, on the other hand 7;'A = n1(rA)U
171(A°) = r(x;1A) U (71 (A°)). Comparison of the two expressions yields
the result.

ProrosITION 3.3. Let p be a tight probability measure on (12, B) of Def-
inition 3.1.
i) If B € B is either closed or a p-continuity set, then

lim u(r;"xoB) = u(B).
ii) If B € B is a p-continuity set, then
lim y[r(7; 14 B)] =0
(r(.): the rim of a set).

Proof. i) Given € > 0, let 2’ be a compact subset of 2 satisfying
u(2') > 1 - £. By Lemma 3.2 -ii) and iii) p is right-continuous along
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Tz 1meB N 2. Thus there exists ag € D such that for a > ag:
0< p(ra'maBN ) - (BN Q') < %

As O < p(r3'mB)—p(r3'ma BNR') < £ and 0 < p(B)-p(BN') < £, we

conclude that for a > ag:0 < p(r5" 74 B)—u(B) < ¢, showing u(rz 7o B) |
u(B). Now consider the inequalities

#(B) < p(n3'moB) < p(n5'7aB), a€D

which imply the desired conclusion if either B is closed or u(B) = u(B).

ii) By part i):

u(x3'7aB) = lr(x3 1 B) U (372 B)°]
= plr(r3'7aB)] + pl(r5 76 B)°] | u(B).
But since (n;lmaB)° D B° and u(B) = u(B°) it follows that
lim[r(x;1x4B)] = 0.
[+

Now we state the following version of Alexandroff’s second theorem.

THEOREM 3.4. Let {us,a € D} be a net of probability measures on a
projective system P as described in Definition 3.1, satisfying furthermore

hypothesis R;. If 12 ts sufficiently rich (i.e. 71,02 = §24) and p is a tight
measure on {2, then the following are equivalent:

i) pa w;”,/"v aeD.

ii) Let f € C(2),8 € D and if a € D, a > 3, let F* and F? be the lifts
of f to 22 and 2 respectively, (i.e. f*(z) = f(7p, ), f?(z) = f(ngz)).
Then lim (/) = (/7).

ili) The same conditions as in ii), C(f2g) being replaced by the set of
bounded uniformly continuous functions.

iv) For € D, let F € Bg be a closed subset of 25, then

lim sup pa(75) F) < p(n;' F).
a>g ¢

v) For B € D, let G € Bg be an open subset of (23, then

. -1 -1

hgltlgfua(wpa G) 2 u(r5"G).
Proof. }
a) i)=ii): Proceeding as in the proof of Theorem 3.1. [1], it is sufficient to

consider f € C(2p) satisfying 0 < f(z) <1,z € 2. Let tp < t; < ... < tp
be fixed in such a way that ¢y < ifl)lf f(z);tm > supg, f(z)and t; —ti-y <
B

(¢ =1,...,m). For a > f and the closed sets Fy; = {z € £2,: f*(z) 2> ti},
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we have
Z(ti —ti1 )/‘a(Fai) S ﬂ'a(fa) S E(ti - ti—l ),u'a(Fa,i-l)
=1 =1

where the upper and lower sums differ by less than €. On the other hand it
is possible to determine t; so that the Borel sets F; = {w € 2: f?(w) >
t;} become u-continuous. As ]itxzn po(Foi) = ligl po(TaF;) = p(F;) and
lign po(Foi-1) = licI'n po(raFic1) = p(Fi—1), the implication follows from
the fact that Y (¢; — t;—1)u(Fi—1) and Y (t; — ti~1)p(F;) which are upper
and lower sums for pu(f?) also differ by less than e.

b) ii)=>iii) is obvious.

c) iii)=>iv): As F is a G5 set there exists a sequence of open sets G?
in 2 such that G2 | F. If G, = 7n;1(G#), then G, | WEIF, so that
there is ng satisfying pu(Gp \ WEIF ) < € for n > ng. Let n be any positive
integer greater than ng. There exists a uniformly continuous function f on
25 connecting F and 25 \ G2, i.e.:

0 ifre \ Gg.
Let f* and f7 be the lifts of f to any £2, (a > () and 2 respectively, denote
also w5, F by F*. Then pa(f*) 2 pa(lrf*) = pa(F°) and lim sup po(F*)
’ axp
< Hmf;’lp pa(f*) = w(F?) < W(Lp1p) + #lg\ayrp) S BTG F) + e

d)_iv)ﬁv): Obvious.
e) v)=>i): Let B be a u-continuity set in B. By Proposition 3.3. i)-ii)
there exists Gy9 € D such that for 8" > Sy, I}l(ﬂ'Elﬂ'pB) — u(B)| < 5 and

p[r(wElw,gB)] < § are simultaneously satisfied. Now the subsequent appli-
cations of hypothesis Rz, Lemma 3.2. iv)-v) and hypothesis R, yield

w(B°) < p{(n5 mpB)°)'= plrz*((msB)°)] < lim inf palm5a((T5B)°)]

< limi -1 < -1
< hgltlgf Ha(Tg,TaB) < hrf;gp Ha(mg,msB)

1 ifzeF
f(z) = {G[O,l] ifzeGE\F

< limsup Ha(5ampB) < p[n; (x5 B)) = plx;'((xsB)° U r(xsB))]

< u(x3'xsB) + plr(x;'xsB) < W(B) + 5 + .
Hence for 8 > By:
p(B) < liminf po(r517sB) < limsup pa(m5473B) < u(B) + ¢,
azh axzp
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as € > 0 is arbitrary and 7, are onto, this implies
liiénﬁpa(wawp_lwa) =u(B) forall B> 0.
For § > 0, there exists ag > Gy such that if a > ag > 8 > Go
W(B) < pa(ran; gB) < u(B) +9,
as ua(wawEIwgB) is decreasing in 3

W(B) < pa(amy ' mpB) = pa(maB) < p(B) + 4.

THEOREM 3.5. Let the projective system P as described in Definition 3.1
have a separable, metrizable projective limit. Further assume that for each
€ > 0 there ezists a compact subset K. of 2 such that po(raKy) > 1 —¢
for every a € D is satisfied by a net {yy}aep of probability measures. Then
{ta} has a subnet converging along the projective system P.

Proof. Let i, be the image of i, on #;1B,,i.e. B 07 ! = p, and let
fiy, (o '€ D) be any set of extensions of fi,, to ({2, B). Such extensions always
exist but may consist of measures which are only finitely additive. On the
other hand 2 can be imbedded topologically into a compact metric space f2.
For any 5}, let m, be the measure on {2 defined by mq(B) = (BN £2) for

all Borel subset of £2. The net {mq} has a subnet, say. {my, }aep converging
weakly to a o-additive measure v on 2. For any index «, denote C, o =
7517y K, which is compact in Q. Let [ be a fixed index, then by the ordinary
weak convergence of measures and the fact that C, o |:

v(Ce¢p) 2 limsup mp, (C.g) 2> limsup mpy,(Cen, )
. arp arf
=limsup pun, (TN K ) > 1—€.
axp

By considering a sequence ¢, | 0, this set of inequalities implies along the
same lines as in the proof of Theorem 6.7., [6], that there exists a measure

p on 2 such that v(B) = u(B N ) for any Borel subset B C 2. Let now
F be any closed subset of 23. There exists a closed set D in {2 such that
7r51F =DNRN. As my, — v on {2, we have lim sup my, (D) < v(D). This

is the same thing as stating: lim sup fiy_ (1r51F) < p(wb‘lF).
o
Now for N, > 3°:
lim sup fiy, (wElF) = limsup iy, (75 755, F)
[+ 1 a

= limsup p, (n5x, F) < p(r5'F).
NazB
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Then by Theorem 3.4. -iv) un, =5 p.

THEOREM 3.6. Let each {2, be a separable metric space in the projective
system P described in Definition 3.1 and let also p be a tight measure on (2.

Then po “=% u if and only if:
J 7 dpa— [ 1% dp
2 2

for every 8 € D and every uniformly bounded family of functions A C
C(£2g) which is equicontinuous at each point of (23.

lim sup =0

azf feA

Proof. ‘If’ part is obvious by taking A = {f} and applying Theo-
rem 3.4. -ii). For the ‘only if’ part we first note that given 8 € D, there
exists an infinite Bg-partition {4;}52; of 25 such that {r;'A4;}%2, is a
B-partition consisting of u-continuity sets, furthermore z,y € A;, f € A =
|f(z) - f(y)] < € (5 =1,2,...). To see this, let z € 25 and let S,(z) be an
open sphere centered at z with boundary B,.(z) and the radius 7 > 0 being
fixed by using the equicontinuity of the family A, so that |f(z) — f(¥)| < €

for all y € S(z) and f € A. As w;lSr(z) = U WEI(B,-I(:L‘)) there exists
0<Lri<Lr

0 < é(z) < r such that 75(Ss(z)) is a p-continuity set in £2. By this ob-
servation and proceeding as in the proof of Lemma 6.5, [6], we arrive at the
conclusion that a partition {4;}32, with the asserted properties exist. We
also note that the family of functions {f: f € A}, {f?: f € A} obtained
by lifting A from 25 to £2, (a > () and {2 respectively, are also uniformly
bounded and equicontinuous in their domains.

Let z; € 7r51A_,- (7 =1,2,...) be any fixed sequence of points. For a >
let po,p be the discrete measure concentrated in the set {r,z;:7 =1,2,...}
and given by po,p(E) = 3-; IE(ﬂ'azj)ﬂa(ﬂ'ﬁ_alAj), E € B, (Ig: the indicator
of E). Similarly we define pa(B) = 3_; IB(zj);t(wp'l(Aj).

Since 7r51A_,' are p-continuity sets and p, w=? J7%

l‘a(waﬂ'ElAj) = ﬂa(”E;Aj) - /"(WEIAJ'L (a > ﬂ)’
so that

J f*dpap - ffnd#D|

2, n
< Mlimsup Y |pa(m504;) - u(rs 45)| = 0.
j

lim sup sup
o JEA

Thus the following estimates are easily obtained as in the proof of Theo-
rem 6.8., [6]:
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lim sup sup
axfB feA

J fodpa— [ 17du
n

0

< lim sup { sup

[ rdpa— [ f*dpap
24

axp \seals
+sup| [ f7dp- ff“duD!
fEA Q Q
+oup| [ fduop = [ 17dup|} <2c.
fen 2 P

4. Some applications

Since probability distributions in abstract spaces can be characterized
solely by their characteristic functionals (Fourier transforms), it is natural
to expect that their empirical versions (i.e. e.c.fl. of Definition 2.3.) should
provide tools necessary for dealing with the estimation problems in such
spaces. _

The convergence property in Theorem 2.4 can be rephrased as: “A..,,
converges weakly to p’ along the projective system P = {R™, Ty n,: 1,02 €
N}”. The empirical measures and e.c.fl. may arise in connection with the
partially observed trajectories of identical, discrete-time non-stationary
stochastic processes as described by (2.1) in Section 2. A process of this
kind will induce in general, an unknown probability measure on the set
of trajectories which is usually a suitable sequence space. in order to test
certain hypotheses that can be postulated about the unknown probability
measure (such as being Gaussian etc.), some functionals of e.c.fl. can be
introduced. Two examples of such functionals would be

(4.1) Yoam(f) = ml/z(fnm("nf) — Xa(mnf)), feF,
(4.2)  Zam(f) = mM{|Rnm (Sl H(wa )P — e~ I} fe F.

where in (4.2), Sy, is the simple covariance matrix and 52(5,:,}/ 2(rn f)) the
Mahalonobis transform of Xym. Ynm and Z,,,, can be regarded as double se-
quences of stochastic precesses (fields) with the generalized index set F, the
first one being complex- valued and the latter real-valued. Such a stochastic
process interpretation leads to convergence results (invariance principles)
which are stronger than those given in Theorem 2.4.

Under suitable conditions and for fixed dimension n, the process Yy,
converges weakly (in the ordinary sense) as m — oo to a complex- valued
n-variate Gaussian random field Y,,, which is the Fourier transform of an
n-variate Brownian bridge process, (c.f. [2]). Similarly Z,,, converges weakly
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to a real-valued continuous-path Gaussian process Z,, (c.f. [2]). In both of
these weak convergences f (or 7, f if F # R{’) is considered to be restricted
to some compact sets K, of the form K, = [-T,T]* (T > 0).

Now if both the dimension n and the number of observations m in-
crease without bound, we have to consider the weak convergences of the
processes described above within the framework of a projective system, i.e. in
the sense of weak convergence along projective systems. Specifically we de-
fine for the multicubes K, = [-T,T|*, (T > 0) the projection mappings
7‘"-1'"2:(’.(Kﬂ2) - C(Knl) (nl < n2) by

(Yryna9)(Z15 -3 Zn,) = (%1551 Zn,y,0,...,0) for all g € C(K — ny)

(a similar definition applies to complex-valued functions to yield v n,:
C*(Kn,) — C*(Kny,)). Let vY (resp. vZ) be the probability measure in-
duced by the process Y, (resp. Z,) on C*(K,) (resp. C(K,)). Let also
(C*(K o), Beyk,), vY) (resp. C(Koo), Be(k.,), ¥Z) be the unique projective
limit of the following projective system of Gaussian probability spaces:

PY = {(Cz(Kn)’BC’(K.)’V:, Ynyng Jny<ngt M1M2 € N}
(resp. Pz = {(C(Kn), BC(K,.)a Vf, 7ﬂ1ﬂ2)ﬂ-1<ﬂ2: ning € N}) .

Then utilizing Theorem 3.5, it can be shown that for any sequence m,, such
that m, — oo as n — oo, the probability measures induced on C*(K,)
(resp. C(Ky,) by the process Yn,,, (tesp. Znm, ) have subsequences converg-
ing weakly to vY (resp. vZ) along the projective system PY (resp. P?)),

(c£. [4]).
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