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COMMUTATORS IN ORTHOMODULAR POSETS

Introduction

In the theory of orthomodular lattices (abbreviated OML) a classical
theorem, proved by G. Bruns and G. Kalmbach [5], states that every finitely
generated OML decomposes into a direct product of a Boolean algebra and
a tightly generated OML. This classical decomposition theorem has been
generalized to OML’s in which the commutator of (not necessarily finite)
generating set exists [19], to OML’s with a finite set of commutators [13] and
to locally modular OML’s [6]. Commutators of finitely generated OML’s are
further studied in [3] and [17]. Relations between commutators and partial
compatibility are shown in [18], [19], [22] (see also [7] for another approach).

Relations between commutators and joint distributions of observables
are studied in [8]-[11], [20], [22].

In the present paper, orthomodular o-orthoposets (called logics) are
studied and the commutator of a logic is defined. It is shown that provided
the centre of a logic is complete, the logic decomposes into a direct product
of two factors, one of them being a Boolean algebra and the other having no
Boolean factor. Further, a transitive closure of a “c-compatibility” is intro-
duced. It is shown that a logic L with a complete centre decomposes into a
direct product of a Boolean algebra and a horizontal sum of so many logics,
how many equivalence classes of the transitive closure of ¢-compatibility (all
different from the centre) are contained in L.

1. Definitions and known results

In this part, we introduce some basic definitions and known results about
orthomodular posets. These results can be found in [1), [2], [16], [18], [21],
[22]. We follow [22] as concerns definitions and notations.

By a (quantum) logic we will mean a o-orthomodular poset (Def. 1.1.
in [22]). That is, L is a partially ordered set with a unary operation ' such
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that the following conditions are satisfied (the symbols A and V denote the
lattice operations of meet and join induced by <):

(i) L possesses a least and a greatest elements, 0 and 1, respectively, and
0#£1;

(ii) (a') = a;

(i)a<b=>a 2V,

(iv) calling a, b in L orthogonal (written a L b) if a < V', V/;y a; exists
in L for every subset (a;);en of pairwise orthogonal elements of L;

(v) a < bimplies b=a V (a' A D).

We note that (i)—(v) imply that ava' = 1for any a € L (dually aAa’ = 0).
Property (v) is the orthomodular law. In dual form (v) is

(v)b<La=b=aA(a'V)).

If L is a lattice (i.e., if it is closed under formation of finite suprema and
infima), then (iv) implies that L is a o-lattice (i.e., countable suprema and
infima exist in L, see [22], 1.3.9).

Two important examples of logics are Boolean o-algebra and the lattice
L(H) of all closed linear subspaces of a (real or complex) Hilbert space H.
Another example, which is not necessarily a lattice, is a concrete logic, that
is, a subset of the power set 2% of a nonempty set X, closed under formation
of set-theoretical complements and countable suprema of mutually disjoint
elements (see [22]).

In what follows, the symbol L is reserved for a logic. A subset M of L is
called a sublogic of L if M is closed under formation of orthocomplements
and countable suprema of mutually orthogonal elements. If M is a sublogic
of L and M is a Boolean o-algebra with the operations /, V, A inherited
from L, we call M a Boolean sublogic of L. A maximal Boolean sublogic of
L is called a block of L.

A pair (a,b), a,b € L, is called a compatible pair (or the elements a, b
are called compatible) if there exist three mutually orthogonal elements a;,
b1, cin L such that a = a; V¢, b = b; V c. We write a & b if (a,b) is a
compatible pair. We collect some important properties of the relation « in
the following proposition.

ProrosiTION 1.1. (i) Ifa @ banda =ay Ve, b=b; Vc with ay, by, ¢
mutually orthogonal then ay = aAb', by = a'Ab,c=aAb,aVb=a; Vb Ve.

(i)a<b=>aeb’

(i) acb& a o b

(iv) Assume that b — a; for all i € I, where I is any set. If the suprema
Vier®i> Vier(ai A D) ezist in L, then b & V, a; and (V;c;ai) Ab =



Commutators in orthomodular posets 447

Vier(ai Ab). Dually, if the infima \;c;a; and \;cj(a;V b) ezist in L, then
b Aierai and (Ajerai) Vo= A ai V).
(v)a=(aAb)V(and)=>aeb

Proof. Proofs of (i), (ii) and (iii) can be found in [22], 1.3.2, 1.3.4 and
1.3.5. (iv) can be proved in the same way as 1.3.8 in [22] (where the set I
is supposed to be countable). (v) Put c = aAb,a; = aAb'. From ¢ < b and
orthomodularity we have b = ¢V (¢’ A b). Hence with b, = ¢/ A b, ay, by, ¢
are pairwise orthogonal and e = a; V¢, b=b; Ve.

For a subset A of L we write

A°={beL:be—a foralac A}.

Clearly, A C A° (where A° = (A°)°), A C B = B¢ C A°, A%¢ = A°
for any A,B C L. The set L¢ is the centre of L. The centre L¢ of L is
a Boolean sublogic of L (it is equal to the intersection of all blocks, [22],
1.3.17). Moreover, L = L°¢ if and only if L is a Boolean o-algebra.

If L is a lattice, then every pairwise compatible subset of L can be
embedded into a Boolean sublogic of L. If L is not a lattice, the following
definition determines those subsets of L which can be enlarged to Boolean
sublogics of L:

DEFINITION 1.2. A subset A of L is called compatible (or the elements
of A are called compatible) if for any finite subset F of A, F = {ay,...,a,},
there is a finite subset G = {01,...,0p,} of pairwise orthogonal elements of
L such that every element in F is the supremum of some elements of G. The
set G is called an orthogonal covering of F.

It can be shown that if F' = {a;,a2}, then F is compatible in the sense
of Definition 1.2 if and only if a; < a; ({22], 1.3.19).

For any a € L, a # 0, the interval Ligq = {b € L : b < a} with
partial order inherited from L and with the relative orthocomplementation
b— b = b Aais alogic ([22], 1.3.12). It is easy to see that the following
statements hold.

PROPOSITION 1.3. Let a € L, a # 0. A finite subset F = {by,...,b,} of
L, where b; < a, t < n, is compatible in L if and only if F is compatible in
L[O’a].

For a € L, let us write al = a, a™! = a'. Put D = {-1,1}. Let F =
{a1,...,a,} be a finite subset of L. If for any d € D*,d = {d,,...,d,}, the
infimum

F(d)=a A---Aal
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exists in L, we call the element \/ ;. ;. F(d) the commutator of F' and write

com F = V af* Ao A el
deDn

PROPOSITION 1.4. Let F be a finite subset of L. Then F is compatible if
and only if all the elements F(d), d € D™ ezist in L and \/ 4 p. F(d) = 1
(i.e., com F' = 1). If F is compatible then {F(d) : d € D™} is the coarsest
covering of the set F U F', where F' = {a’' : a € F}.

Proof. See [22], 1.3.22.

PROPOSITION 1.5. Let A be a compatible subset of L. Then there is a
Boolean sublogic Ly of L such that A C Ly.

Proof. See [22], 1.3.23.

Clearly, in a Boolean logic every finite subset is compatible, hence the
converse of Proposition 1.5 also holds.

A logic L is called regular if for every pairwise compatible elements a, b,
cin L we have a & bV c. By Proposition 1.1 (iv), every lattice logic is reg-
ular. The following proposition characterizes those logics in which pairwise
compatibility coincides with compatibility.

PRrOPOSITION 1.6. A logic L is regular if and only if every pairwise com-
patible subset of L can be embedded into a Boolean sublogic of L.

Proof. See [22], 1.3.29.

2. Partial compatibility and commutators

In this section, we will introduce the notion of partial compatibility and
prove some basic statements. Then we will introduce the notion of a commu-
tator of a logic L with complete centre and prove a decomposition theorem.

DEFINITION 2.1. We say that a subset M of L is partially compatible
with respect to an element a of L if

(i) M & a (i.e., m « a for all m € M),
and

(ii) MAa={mAa:mé€ M} is a compatible set.
We will write m is p.c. a if M is partially compatible with respect to a.

PROPOSITION 2.2. Let F = {a,,...,a,} be a finite subset of L. Then F
is p.c. a (a € L) if and only if all elements F(d)Aa =aS* A...Aa% Aa
(d € D*) ezist and

(*) V Fd)ra=a.

deDr
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A subset M of L is p.c. a if and only if every finite subset F' of M 1is
p.c. a.

Proof. Let F be p.c. a. Then F A a is compatible in the logic Lip,q
(see Proposition 1.3). Hence, by Proposition 1.4, comg qj(F A a) = a (where
comyg o denotes the commutator computed in Ljg,o)). An easy computation,
using F' < a, shows that comjp o)(F A a) = Vcpa F(d) A a. Conversely,
assume that a{* A...Aa% Aa (d € D’? exist and (*) holds. (We note that the
existence of the element F(d)Aa = af* A...Aa%" Aa does not mean that the
element F(d) = a?* A...Aa%" exists). By Proposition 1.1, af* A...Aad" Aa —
a;: for all < n and j € {—1,1}. Using Proposition 1.1 (iv), we get from (*)
that @ Aa = Vaepn F(d)AaAa! = V{denr:d;=5} a'A...Aad Aa, and again

by (%), (aira)V(aiAa) = V 4epn.g;=1} af'A.. -/\ai"/\aVV{deDn:d,:-l} af A
...A a3 Aa) =V cpa F(d) A a = a. Hence by Proposition 1.1 (v), a; < a
(i < n).
This gives
com(F Aa)= F(d)Aa
om(Fra)= V@)

and (*) implies that com oj(F Aa) = a. By Proposition 1.4, FAa is compat-
ible in Lo q), and by Proposition 1.3 this is equivalent to the compatibility
in L. Consequently, F' is p.c. a. The remaining part of the proof follows
directly by the definition of partial campatibility.

If L is a lattice then com F exists for every finite set F' (F' C L). By [22]
5.1.8, com F in a lattice logic is the greatest element with respect to which F’
is partially compatible. If L is not a lattice, then the commutator of a finite
subset of L need not exist. As an example, consider the Greechie diagram

d b

© P

p |

a ° c
Fig. 1
(We recall that, in a Greechie diagram, points represent atoms of L, smooth
lines join atoms belonging to a block of L and angles represent “pasting”
of two blocks in a common atom, see [12], [14], [22]). Let M = {a,b}. The
set of all lower bounds of a’ and b’ is {¢,d}, but ¢ and d are noncomparable
(because they are not contained in the same block). Therefore a' A b’ does
not exist, and hence also com(a, b) does not exist.
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In a special case when the commutator exists, it plays a similar role in
a o-orthomodular poset as in an OML. This will be shown in the following
proposition.

PropPoOSITION 2.3. Let F = {a;,...,a,} be a finite subset of L and let
com F' ezist. Then the following hold:

() If Fisp.c.a(a€ L) thena < com F.

(ii) F is p.c. com F.

(iii) If L is regular, then a < com F and a — F imply that F is p.c. a.

Proof. (i) If F is p.c. a, then by (*) of Proposition 2.2,

a>(comF)Aa> V Fd)Aa=a,
deD»

hence a < com F.

(i) Since a{* A...Aad o a; (i < n, d € D), by Proposition 1.1 (iv)
we get com F' & F and

comF = V af* A...Aa% AcomF,
deDn

hence by Proposition 2.2, F'is p.c. com F'.

(iii) Let L be regular and let @ < F and ¢ < com F. Let b € F, Then
a, b, com F' are pairwise compatible. By regularity of L, ¢ & b A com F,
a < b'Acom F. Since {bAcom F' : b € FUF'} is a compatible set, regularity
implies that @ < af* AcomF A ...A a% A com F = F(d) for any d € D".
By Proposition 1.1 (iv),

a=aAcomF = V F(d)Aa,
deDn

and by Proposition 2.2, F is p.c. a.

PROPOSITION 2.4 (see also [18]). Let F be a finite subset of L and let
a € L. Thenif F is p.c. a, also F*¢ is p.c. a.

Proof. Let F = {a1,...,a,} be p.c. a. Let b € F°° (b ¢ F). We prove
that F'U {b} is p.c. a. Owing to Proposition 2.2, we have to prove that

a= V aft A...Aalr AbIH1 Ag,

deDn+1
d=(dy,...,dn,dn41). Since F is p.c. a, we have
(%) a= V a*A...Aa% ANa= v F(d)Aa.
deDn+1 deDn

As F(d)Aa € F° and b € F°°, we have F(d)Aa -~ b (d € D™). By
Proposition 1.1. (iv),
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( V F(d)/\a) Abi = \] Fld)Aanbi,je{-1,1}.
deD" deD»

From this, using (*) and the equality a = (a A b) V (a A b') we derive the
desired result.

Now we will proceed by induction. Assume that F U {b;,...,b,} is p.c.
a, where by,...,b, € F°. Let b,y € F°. Since F° = (FU {b1,...,b,})%,
by the first part of the proof we obtain that F U {b,...,bn, b1} is p.c. a.
Consequently, every finite subset of F'¢ is p.c. a, and hence F°¢ is p.c. a.

For a subset M of L define
P(M)={a€L:Misp.c.a}.
Clearly, P(M) C M¢ and for every a € P(M), M A a is compatible.

PRroOPOSITION 2.5. Let (¢;)ien be pairwise orthogonal sequence of ele-
ments of L such that g; € P(M) (i € N). Then \;cy ¢: € P(M).

Proof. Since M¢ is a sublogic of L (see [22] 1.3.16), and P(M) C M°,
we obtain that \/;cy ¢ € M°. Let F = {ay,...,a,} C M. Since F is p.c. ¢;
(¢ € N), (%) of Proposition 2.2. holds with a replaced by ¢; (¢ € N). From
F < g¢; and Proposition 1.1. (iv) we have a; A (V;cn @) = Vien(@i A a5).
Using (*) we get

ajA(ti)=Va,-/\( V F(d)/\qe>

ieN i€EN deDn

V v af’ /\.../\ai",/\ qi,

iEN {deD":d;=1}

where the last equality follows by the fact that F(d) A ¢; < a; (d € D").
Hence the set {a®* A...Aad Ag : d € D", i € N} forms an orthogonal
covering of the set {a; A (V;en @) @ 7 < n}, and hence the latter set is
compatible. This proves that F is p.c. V/;cy & for every finite subset F of
M, which concludes the proof.

Recall that a o-ideal in a Boolean algebra B is a subset P of B such that
(i)a€ Pand b < aimply b€ P, and (ii) a; € P (i € N) = \/;ya: € P.

THEOREM 2.6. For any logic L, the set P(L) is a o-ideal in L°. In
addition, ifa € P(L) and b< a, b € L, then b € P(L).

Proof. We have P(L) C L°. Let a € P(L)and b < @, b € L. Since LAa
is compatible and b A a = b, we have b & c A a for any ¢ € L. Since a € L°,
we have c = (cAa)V(cAa'). Now cAd' < a’' < b imply that cAa’ & b.
Therefore by Proposition 1.1 (iv), b « c for every ¢ € L, i.e. b € L°. Since
LAb=LAbAa C LAa,and a € P(L), LAbis compatible. Hence b € P(L).
Now let (a;)ien C P(L). Put by = ay, bpt1 = @np1 A (V< ai)'. By the
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first part of the proof, b; € P(L) (i € N). In addition, V;.xbi = V;cy @is
and since (b;);en are mutually orthogonal, by Proposition 2.5, \/;.ya; =

VieN b; € P(L).

Recall that in an orthomodular lattice L an element a € L is called
central abelian if @ € L° and the interval Lo is a Boolean algebra. In
analogy with this, we will call the elements in P(L) central abelian elements
of the logic L.

A logic L is separable if every set of pairwise orthogonal elements in
L is at most countable. A separable logic which is a lattice is a complete
lattice (see [22] 2.5.2 f). In what follows we will consider a logic L with a
complete centre L¢, i.e., L¢ is a complete Boolean algebra. For example, if
L is separable, or if L° is separable, then L° is complete.

THEOREM 2.7. Let L be a logic with complete centre L¢. Then the supre-
mum \/ P(L) ezists and belongs to P(L). Moreover, L is isomorphic to the
direct product Ly o X Lo,) where ¢ = \/ P(L). The logic Ly  is a Boolean
algebra, and Lo 1) has no nonzero central abelian element.

Proof. As L¢ is complete, the supremum ¢ = \/ P(L) exists and belongs
to L°. Let a € L be fixed. We have a « d for all d € P(L). Moreover,
aAd<d,and hence aAd € P(L) C L° by Theorem 2.6. As L° is complete,
we have VdeP(L) a A d exists and belongs to L°. By Proposition 1.1 (iv),
ahc=VyeppyaAde L Hence L Ac C L° which entails that c € P(L).
From ¢ € L€ it follows that L is isomorphic to Ljp ¢ X Lo,¢')- Now LAc = Lig
is compatible in Ljp ), hence it is a Boolean algebra. Assume that 0 # ¢; is a
central abelian element in L . We show that ¢; € P(L) and since ¢; L c,
we have a contradiction. As ¢; < ¢’ and ¢; < d for any d € Ly o], it follows
that ¢; € L°. As c; is central abelian in L o), theset LAe; = LAc' Ay
is compatible. This implies that ¢; € P(L).

If L is a logic with complete centre L¢, we will define the commutator of
L by com L = \/ P(L). This definition is a generalization of the commutator
in an orthomodular lattice. We note that if M is a proper subset of a logic L,
then the supremum of P(L) need not exist even if L is finite. Let us consider
again the logic L with the Greechie diagram on Fig. 1. We can easily see
that P({a,b}) = {c;d}, but ¢ V d does not exist in L. By Proposition 2.3, if
the commutator of a finite set F in L exists, then com F = \/ P(F).

3. Transitive compatibility and horizontal sums of logics

In this section, we will study relations between horizontal sums and
equivalence classes of the transitive closure of so-called ¢c-compatibility.
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DEFINITION 3.1. Let L be a logic and let the centre L¢ of L be trivial,
i.e. L¢ = {0,1}. We say that L admits a decomposition into horizontal sum
(or a horizontal decomposition) if there is a system {L; : ¢ € I} satisfying
the following conditions:

() L= Uier Lis

(ii) L; is a sublogic of L (i € L),

(iii) L; # L° (1 € I),

(iv) LinL; ={0,1} i £ j (3,7 € I),

(v)0<a<1foranya€ L and for any a,b € L\ {0,1} we havea < b
if and only if there is iy € I such that a,b€ L;, and a < bin L;,.

If L admits a decomposition {L; : ¢ € I'} into a horizontal sum, we shall
write L = B;¢rL;.

LEMMA 3.2. Let L = B;erL;. The sets L;\{0,1} (¢ € I) form a partition
of L\ {0,1} (in the usual set-theoretical sense).

The proof follows directly from the definition.

Let {L; : i € I} and {M; : j € J} be two horizontal decompositions of
a logic L. We will say that the decomposition {L; : ¢ € I} is a refinement
of the decomposition {M; : j € J} if the partition {L;\ {0,1}:7 € I}is a
refinement of the partition {M; \ {0,1}:j € J}.

Now we introduce a definition of a c-compatibility as follows: the ele-
ments a, b of L are c-compatible (written a < b) if either (i) a,b € L® or (ii)
a g L b¢ L° and a & b. Clearly, the relation < is reflexive and symmetric.
Let ~ denote the transitive closure of c-compatibility, i.e., @ ~ b if there are
elements ey,...,e, in L such that e; = a, e, = b and €; & €41 (i < n).
Then ~ is an equivalence relation. Clearly, one of the equivalence classes is
the centre L°¢ of L. In what follows we will denote by 7 the family of all
equivalence classes of the relation ~ different from L°.

ProprosITION 3.3. Let T U {L¢} be the family of all equivalence classes
of the relation ~ in L. Then for every subfamily S of T the set Ly =
Ures T U L° is a sublogic of L.

Proof. We have to prove that (i) a € L, implies a' € Ly, (ii) {a; : ¢ €
N} C Ly and a; L aj, ¢ # j (4,5 € N) imply V;cyai € Ly. (i) If a € Ly,
a @ L then a' ¢ L° hence a ~ a', and therefore a’ € L;. If a € L¢ then
also a’' € L% i.e., a € L;.

(ii) Let {a; : i € N} be a sequence of pairwise orthogonal elements in
L,. Two cases can occur: (a) V;cyai € L° and (b) V,cya; ¢ L°. In case
(a) there is nothing to prove. In case (b) there must be at least one j € N
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such that a; ¢ L°. Since a; < V/;cy ai, we obtain that a; S Vien @i, so that
ViEN a; € Ll-

PROPOSITION 3.4. Let L be a logic with complete centre L¢. Let there be
T1,T, € T, Ty # T,. Then for any a € Ty, b € T, the elements aV b and
a A b ezist in L and belong to L°.

Proof. Let d be an upper bound of @ and b. Assume that d ¢ L¢. Then
d> a,d > bimply that d S a, d & b, which contradics the supposition
a € Ty, b € T;. Hence all upper bounds of a and b are in L°. Since L€ is a
complete Boolean sublogic of L, the infimum of all upper bounds exists and
belongs to L°. The proof for a A b is dual.

COROLLARY 3.5. If the centre L¢ of L is complete and a € Ty, b € T3,
where T} and T, are distinct elements of T, then com{a, b} ezists and belongs
to L°.

PROPOSITION 3.6. Let the centre L¢ of L be complete and let Ty, T, € T,
Ty # T,. Then com L = com{ay,as}, where a; € T; (¢ = 1,2) are arbitrary
elements.

Proof. If a; € T, i = 1,2, then {a1,a2}° = L°. By Proposition 2.3 (ii),
{a1,az} is p.c. com{a;,az} and by Proposition 2.4, L = {ay,a3}°¢ is p.c.
com{a;,a;}. Hence com{a;,a;} € P(L). Now if d € P(L), then d €
P({a1,a2}), and by Proposition 2.3 (i), d < com{a,,as}. Hence com{a;,as}
=VP(L)=com L.

ProprosITION 3.7. Let L be a logic and let Ty, T, € T, Ty # T3. If for
anya €Ty1,b€ T, avb=1 (or, dually, a ANb=0) then L¢ = {0,1}.

Proof. Let therebeac€ L% c#0,c# 1. Letavb=1foranya € T},
b € T,. We have, by Proposition 3.3,aVe € T3 UL, bV e € Ty U L°. The
following cases occur:

(a) aAc € L’ bAc € L°. Then aAc' € T1, bA ' € T,. Indeed, if
aANc€ L thena=(aAc)V(aAc) € L a contradiction. The equality
(aAc')V(bAC') =1 implies that ¢/ = 1, which contradicts the supposition.

(b) aAc €Ty, bAc € L¢ (or, symmetrically, a A ¢ € L, b A c € T3).
Then b A ¢’ € T, and therefore (a A ¢) V (bAc’) = 1. This implies that that
c=cA((anc)V(bAC')) = aAce Ty, which contradicts ¢ € L°.

(c)anceTi,bAc€Ty. Then1=(aAc)V(bAc)<c,a contradiction.

The case when a Ab = 0 for any a € T7, b € T; can be proved dually.

THEOREM 3.8. Let L (L # {0,1}) be a logic with L° = {0,1}. Let {L°}U
{T; : i € I} be the partition of L induced by the relation ~ of transitive
closure of c-compatibility. Put L; = L°UT; (i € I). Then {L;:i €I} isa
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horizontal decomposition of L. Moreover, for any horizontal decomposition
{M;:j€J} of L, {L;:i €I} is a refinement of {M; :j € J}.

Proof. First we prove that L = B;¢sL;. Evidently, (i), (iii) and (iv) of
Definition 3.1 hold. Further, Proposition 3.3 implies (ii). To prove (v), let
a,b€ L\ {0,1} and a < b. Then a & b, and therefore there is a iy € I such
that a,b € T;,. The rest of (v) follows by Proposition 3.3.

Now let {M; : j € J} be another decomposition of L into a horizontal
sum. If J = {41}, the statement is obvious. If there are at least two elements
J1, j2 in J, then there are a,b € L such that a € M;, \{0,1},5 € M;,\{0,1}.
Assume that a ~ b. Then there are e;,...,¢e, in L such that e; = a,e, = b
and e; & ;41 (i < n). But ¢; S e (i < n) implies, by induction using (v)
of Definition 3.1, that (e;)i<n are all contained in Mj;,\{0,1} in contradiction
with b € M;, \ {0,1}.

LEMMA 3.9. Let L = B x Lo, where B is a Boolean algebra. Then the
following hold:

(i) (a,b) L (¢, d) ((a,b),(c,d)€ L) a Lcandb L d.

(i) (a,8) & (cyd) & b > d.

(iii) (a,b) € L° & b € L§.

(iv) (a,b) & (c,d) & b & d in L.

(v) (a,b) ~ (c,d) & b~ d in Ly.

Proof. (i), (ii) and (iii) follow directly from the definition of direct
product and compatibility of all elements in B. (iv) If (a,b) € L¢, (¢,d) € L*,
the statements follows from (iii). If (a,b) € L€, (c,d) ¢ L°, we use (ii) and
(iil). (v) follows from (iv).

THEOREM 3.10. Let L be a logic with complete centre L. Then L =
Lig,q X Lo, ], where c is the commutator of L. The factor Ly o is a Boolean
o-algebra and the factor Lig,1} admits a horizontal decomposition {L; : i €
I}, where L; = (L°UT;)ACcy and {T; : i € I} U L® is the family of all
equivalence classes of the transitive closure of c-compatibility in L.

Proof. By Theorem 2.7, L = Ljg,q X Lo, and L, is a Boolean
o-algebra. By Lemma 3.9, the system {T; Ac' : i € I} U {L°Ac'} is the
family of all equivalence classes of the relation ~ in Lig ¢].

If I contains only one element, the statement of the theorem holds. Let
there be at least two elements a,b € Ljg,~) such that a ~ b does not hold.
Then comyg, o(Lio,c1)) = comyg ) {a, b} = 0, since by Theorem 2.7, Lo, ] has
no nontrivial central abelian element. Therefore for any a,b € Ljp,» such
that a ~ b does not hold, we have aAb = 0. By Proposition 3.7, the centre of
Ly, is L° A c' = {0,c'}, and by Theorem 3.8, Ljp - admits the horizontal
decomposition {L; : ¢ € I}.
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ExaMPLEs. Let H be a Hilbert space and let L(H) denote the OML
of all closed subspaces of H. Let X be a finite set with even cardinality
and denote by L.yen(X) the concrete logic of all subsets of X with even
cardinality.

1.Let L = L(H),dim H = 2. Then L°® = {0,1} and a ~ b implies = a'.
Hence L is the horizontal sum of an infinite number of 4-element Boolean
algebras {0,1,a,a'}.

2.Let L=L(H),dim H > 3. Then L° = {0,1} and a ~ b holds for any
a,b € L(H). Indeed, assume that a,b € L\ L¢ and let z, y be vectors in
H such that z € a, y € b. Let ¢ be the subspace of H generated by z and
y. Thenc g L¢,cAha#0,cAb#0anda S alAc,aAcSe,co bAc,
bAcSb.

3.Let L = Leyen(X). Thena < b(a,b € L)if and only if aNb € Leyen(X)
(see [22]). If card X > 4, then L¢ = {0,1}. If card X = 4, then it is easy to
see that a ~ b if and only if a & b for a,b g L°. From this we conclude that
L is the horizontal sum of three 4-element Boolean algebras.

4. Let L = Leyen(X), card X > 6. Then L® = {0,1} and a ~ b for any
a,b € L\ L°. Indeed, if a N b consits of two elements, then a « b, hence
a ~ b. If anb contains only one element, say z, then we take y € a\ (anb),
z€b\(anb)and v € X\ (aUb). Then ¢ = {z,y,z,v} € L,and a ~ b via c.
If anb contains at least three elements, a ~ b through a two-element subset
ofanb.
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