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COMMUTATORS IN ORTHOMODULAR POSETS 

Introduction 
In the theory of orthomodular lattices (abbreviated OML) a classical 

theorem, proved by G. Bruns and G. Kalmbach [5], states that every finitely 
generated OML decomposes into a direct product of a Boolean algebra and 
a tightly generated OML. This classical decomposition theorem has been 
generalized to OML's in which the commutator of (not necessarily finite) 
generating set exists [19], to OML's with a finite set of commutators [13] and 
to locally modular OML's [6]. Commutators of finitely generated OML's are 
further studied in [3] and [17]. Relations between commutators and partial 
compatibility are shown in [18], [19], [22] (see also [7] for another approach). 

Relations between commutators and joint distributions of observables 
are studied in [8]-[ll], [20], [22]. 

In the present paper, orthomodular <j-orthoposets (called logics) are 
studied and the commutator of a logic is defined. It is shown that provided 
the centre of a logic is complete, the logic decomposes into a direct product 
of two factors, one of them being a Boolean algebra and the other having no 
Boolean factor. Further, a transitive closure of a "c-compatibility" is intro-
duced. It is shown that a logic L with a complete centre decomposes into a 
direct product of a Boolean algebra and a horizontal sum of so many logics, 
how many equivalence classes of the transitive closure of c-compatibility (all 
different from the centre) are contained in L. 

1. Definitions and known results 
In this part, we introduce some basic definitions and known results about 

orthomodular posets. These results can be found in [1], [2], [16], [18], [21], 
[22]. We follow [22] as concerns definitions and notations. 

By a (quantum) logic we will mean a <r-orthomodular poset (Def. 1.1. 
in [22]). That is, L is a partially ordered set with a unary operation ' such 
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that the following conditions are satisfied (the symbols A and V denote the 
lattice operations of meet and join induced by <): 

(i) L possesses a least and a greatest elements, 0 and 1, respectively, and 

(ii) (a') ' = a; 
(iii) a<b=> a' >b'; 
(iv) calling a, b in L orthogonal (written a ± b) if a < 6', V t€N a«' exists 

in L for every subset ( a ^ g u of pairwise orthogonal elements of L; 
(v) a < b implies b = a V (a' A b). 

We note that (i)-(v) imply that aVa' = 1 for any a € £ (dually aAa' = 0). 
Property (v) is the orthomodular law. In dual form (v) is 

(v') b < a =>• b = a A (a' V 6). 

If L is a lattice (i.e., if it is closed under formation of finite suprema and 
infima), then (iv) implies that £ is a a-lattice (i.e., countable suprema and 
infima exist in L, see [22], 1.3.9). 

Two important examples of logics are Boolean <7-algebra and the lattice 
L(H) of all closed linear subspaces of a (real or complex) Hilbert space H. 
Another example, which is not necessarily a lattice, is a concrete logic, that 
is, a subset of the power set 2X of a nonempty set X , closed under formation 
of set-theoretical complements and countable suprema of mutually disjoint 
elements (see [22]). 

In what follows, the symbol L is reserved for a logic. A subset M of L is 
called a sublogic of L if M is closed under formation of orthocomplements 
and countable suprema of mutually orthogonal elements. If M is a sublogic 
of L and M is a Boolean cr-algebra with the operations ', V, A inherited 
from L, we call M a Boolean sublogic of L. A maximal Boolean sublogic of 
L is called a block of L. 

A pair (c, 6), a, 6 € L, is called a compatible pair (or the elements a, b 
are called compatible) if there exist three mutually orthogonal elements a i , 
i»i, c in L such that a = a j V c, b = bi V c. We write a «-»• b if (a, 6) is a 
compatible pair. We collect some important properties of the relation in 
the following proposition. 

P R O P O S I T I O N 1.1. (i) If a and a = ai V c, b = 6X V c with o i , £>i, c 
mutually orthogonal then ai = a A 6', ¿>i = a' A 6, c = a Aft, aV6 = a\ Vi>i Vc. 

(ii) o < b =>• a «-»• b. 
(iii) a <-> b & a' b. 
(iv) Assume that b <-> for all i € / , where I is any set. If the suprema 

V i g j a « » V j e / ( a ' ^ ^ e n b V i e / 0 « ' a n ^ ( V t e / a « ' ) A 6 = 
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V » e / ( a » A b). Dually, if the infima hi£iai and A ¿ e / ( a « V 6) ex i s i in L, then 
b ~ A i e / °< a r i d ( A i e / a <) v 6 = A i e / K V &)• 

(v) a = (a A 6) V (a A 6') =» a «-• b. 

P r o o f . Proofs of (i), (ii) and (iii) can be found in [22], 1.3.2, 1.3.4 and 
1.3.5. (iv) can be proved in the same way as 1.3.8 in [22] (where the set I 
is supposed to be countable), (v) Put c = a A b, ai = a A b'. From c < b and 
orthomodularity we have 6 = c V (c; A b). Hence with b\ = c' A 6, ai, i>i, c 
are pairwise orthogonal and a = ai V c, b = bi V c. 

For a subset A of L we write 

Ac = {b G L : b a for all a e A} . 

Clearly, A C Acc (where Acc = (Ac)c), A C B =» Bc C Ac, Accc = Ac 

for any A, B C L. The set Lc is the centre of L. The centre Lc of L is 
a Boolean sublogic of L (it is equal to the intersection of all blocks, [22], 
1.3.17). Moreover, L — Lc if and only if L is a Boolean tr-algebra. 

If L is a lattice, then every pairwise compatible subset of L can be 
embedded into a Boolean sublogic of L. If L is not a lattice, the following 
definition determines those subsets of L which can be enlarged to Boolean 
sublogics of L: 

D e f i n i t i o n 1 .2 . A subset A of L is called compatible (or the elements 
of A are called compatible) if for any finite subset F of A, F = { a i , . . . , on}, 
there is a finite subset G = {o i , . . . , om} of pairwise orthogonal elements of 
L such that every element in F is the supremum of some elements of G. The 
set G is called an orthogonal covering of F. 

It can be shown that if F = {01,02}, then F is compatible in the sense 
of Definition 1.2 if and only if ax <-> a2 ([22], 1.3.19). 

For any a € L, a ^ 0, the interval £[o,a] = {b £ L : b < a} with 
partial order inherited from L and with the relative orthocomplementation 
b —> b'a = b' A a is a logic ([22], 1.3.12). It is easy to see that the following 
statements hold. 

P r o p o s i t i o n 1 .3 . Let a e L, a / 0 . A finite subset F = { ¿ > 1 , . . . , bn} of 
L, where bi < a, i < n, is compatible in L if and only if F is compatible in 
L[0,a]-

For a € L, let us write a1 = a, a - 1 = a'. Put D = {—1,1}. Let F = 
{ a i , . . . , a n } be a finite subset of L. If for any d € Dn, d = {<¿1,..., dn}, the 
infimum 
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exists in L, we call the element \JdeDn F(d) the commutator of F and write 

PROPOSITION 1 . 4 . Let F be a finite subset of L. Then F is compatible if 
and only if all the elements F(d), d G Dn exist in L and VdeD» = ^ 
(i.e., comF = 1). If F is compatible then {F(d) : d 6 Dn} is the coarsest 
covering of the set F U F', where F' = {a' : a € F}. 

P r o o f . See [22], 1.3.22. 

PROPOSITION 1 . 5 . Let A be a compatible subset of L. Then there is a 
Boolean sublogic LQ of L such that A C Lq • 

P r o o f . See [22], 1.3.23. 

Clearly, in a Boolean logic every finite subset is compatible, hence the 
converse of Proposition 1.5 also holds. 

A logic L is called regular if for every pairwise compatible elements a, b, 
c in L we have a b V c. By Proposition 1.1 (iv), every lattice logic is reg-
ular. The following proposition characterizes those logics in which pairwise 
compatibility coincides with compatibility. 

PROPOSITION 1 . 6 . A logic L is regular if and only if every pairwise com-
patible subset of L can be embedded into a Boolean sublogic of L. 

P r o o f . See [22], 1.3.29. 

2. Partial compatibility and commutators 
In this section, we will introduce the notion of partial compatibility and 

prove some basic statements. Then we will introduce the notion of a commu-
tator of a logic L with complete centre and prove a decomposition theorem. 

DEFINITION 2.1. We say that a subset M of L is partially compatible 
with respect to an element a of L if 

(i) M <r+ a (i.e., m a for all m £ M), 
and 

(ii) M A a = {m A a : m € M} is a compatible set. 

We will write m is p.c. a if M is partially compatible with respect to a. 

PROPOSITION 2 . 2 . Let F = { A I , . . . , a n } be a finite subset of L. Then F 
is p.c. a (a € L) if and only if all elements F(d) A a = a^1 A . . . A a£n A a 
(de Dn) exist and 

com F = \/ af1 A • • • A adn". 
deD» 

deD" 



Commutators in orthomodular posets 449 

A subset M of L is p.c. a if and only if every finite subset F of M is 
p.c. a. 

P r o o f . Let F be p.c. a. Then F A a is compatible in the logic i/[o,a] 
(see Proposition 1.3). Hence, by Proposition 1.4, com[0ia](ir'A a) = a (where 
com[oj0] denotes the commutator computed in £[o,a])- An easy computation, 
using F <-• a, shows that com[oia](F A a) = \/deDn F(d) A a. Conversely, 
assume that af1 A.. .A a£" A a (d G Dn) exist and (*) holds. (We note that the 
existence of the element F{d) A a = a^ A . . . A a£n A a does not mean that the 
element F(d) = a*1 A.. .Aa£n exists). By Proposition 1.1, a^1 A.. .A a£n A a <-»• 
a3j for all i < n and j 6 {—1,1}. Using Proposition 1.1 (iv), we get from (*) 
that aj Aa = \fd€Dn F(d)AaAa3{ = VideD-^^j} «i1 A.. .A a*" A a, and again 
by (*), (a,-Aa) V(a(-Aa) = \/{deDn:d.=l} af1 A.. .Aa^» A a V V { d e D * : d i = - 1 } 41 A 
. . . A A a) = Vder>" -̂ X )̂ A a = a. Hence by Proposition 1.1 (v), a; *-»• a 
(i < n). 

This gives 
com (F Aa) = \J F(d) A a 

and (*) implies that com^oji^Aa) = a. By Proposition 1.4, FA a is compat-
ible in £[o,a]> a n d by Proposition 1.3 this is equivalent to the compatibility 
in L. Consequently, F is p.c. a. The remaining part of the proof follows 
directly by the definition of partial campatibility. 

If L is a lattice then com F exists for every finite set F (F C L). By [22] 
5.1.8, com F in a lattice logic is the greatest element with respect to which F 
is partially compatible. If L is not a lattice, then the commutator of a finite 
subset of L need not exist. As an example, consider the Greechie diagram 

d b 11 e 
0 o 
1 e 11 

a c 
Fig. 1 

(We recall that, in a Greechie diagram, points represent atoms of X, smooth 
lines join atoms belonging to a block of L and angles represent "pasting" 
of two blocks in a common atom, see [12], [14], [22]). Let M = {a , b}. The 
set of all lower bounds of a' and b' is {c, d}, but c and d are noncomparable 
(because they are not contained in the same block). Therefore a' A b' does 
not exist, and hence also com(a, b) does not exist. 
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In a special case when the commutator exists, it plays a similar role in 
a (7-orthomodular poset as in an OML. This will be shown in the following 
proposition. 

P R O P O S I T I O N 2 . 3 . Let F = { A I , . . . , A N } be a finite subset of L and let 
c o m F exist. Then the following hold: 

( i ) If F is p.c. a (a Ç. L) then a < c o m F. 
(ii) F is p.c. com F. 

( i i i ) If L is regular, then a < c o m F and a «-*• F imply that F is p.c. a. 

P r o o f , (i) If F is p.c. a, then by (*) of Proposition 2.2, 

a > (com F) A a > F(d) A a = a, 
d£D» 

hence a < com F. 
(ii) Since af1 A . . . A a£n <r+ a{ (i < n, d 6 Dn), by Proposition 1.1 (iv) 

we get com F *-> F and 

com F = \f a*1 A . . . A A com F, 
deDn 

hence by Proposition 2.2, F is p.c. comF. 
(iii) Let L be regular and let a «-» F and a < com F. Let b G F, Then 

a, 6, com F are pairwise compatible. By regularity of L, a <-• b A com F, 
a «-> b' A com F. Since {6 A com F : b G FU F'} is a compatible set, regularity 
implies that a «-»• af1 A com F A . . . A A com F = F(d) for any d Ç Dn. 
By Proposition 1.1 (iv), 

a = a A c o m F = \J F(d)Aa, 
d£Dn 

and by Proposition 2.2, F is p.c. a. 

P R O P O S I T I O N 2 . 4 (see also [18]) . Let F be a finite subset of L and let 
a 6 L. Then if F is p.c. a , also Fcc is p.c. a. 

P r o o f . Let F = { a 1 } . . . , a n } be p.c. a. Let b e Fcc (b <£ F). We prove 
that F U {6} is p.c. a. Owing to Proposition 2.2, we have to prove that 

a = \J a^1 A . . . A A 6,<"+1 A a, 

d = ( d i , . . . , dn , d„+i). Since F is p.c. o, we have 
(*) a = \/ af1 A . . . A ad

n» A a = \ / F ( d ) A a . 

d€C + 1 der>» 
As F(d) A a € Fc and b € F c c , we have F(d) A a <-> 6 (d € -Dn). By 
Proposition 1.1. (iv), 
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( y F(d) A a) A bj = y F(d) A a A j G {—1,1}. 
d€Dn d€Dn 

From this, using (*) and the equality a = (a A b) V (a A b') we derive the 
desired result. 

Now we will proceed by induction. Assume that F U {&i,.. . , bn} is p.c. 
a, where &i, . . . , bn G Fcc. Let 6 n + 1 G Fcc. Since Fcc = (F U {&i,.. . , 6„})cc, 
by the first part of the proof we obtain that F U {&i,.. . , 6„, i>n+i} is p.c. a. 
Consequently, every finite subset of Fcc is p.c. a, and hence Fcc is p.c. a. 

For a subset M of L define 
V{M) = {ae L: M is p.c. a}. 

Clearly, V(M) C Mc and for every a G V(M), M A a is compatible. 

PROPOSITION 2.5. Let (g,),en pairwise orthogonal sequence of ele-
ments of L such that q{ G V{M) (i G N). Then V, e N € V(M). 

P r o o f . Since Mc is a sublogic of L (see [22] 1.3.16), and V(M) C M c , 
we obtain that V»eN 9» ^ Let F = { a i , . . . , a n } C M. Since F is p.c. g,-
(i € N), (*) of Proposition 2.2. holds with a replaced by g, (i € N). From 
F *-+ qi and Proposition 1.1. (iv) we have aj A (VieN 9») = Vjgn(9« ^ aj)-
Using (*) we get 

a i a ( V = V a i A ( V A 9«) 
¿eN ieN deDn 

= V V â 1
 A . . . A o^n.A qi, 

i€N{deDnidj = l} 
where the last equality follows by the fact that F(d) A qi Oj (d G -Dn). 
Hence the set {a^1 A . . . A A gi : d G Dn, i G N} forms an orthogonal 
covering of the set {aj A (VigN • i ^ and hence the latter set is 
compatible. This proves that F is p.c. V,"en 9« f° r every finite subset F of 
M, which concludes the proof. 

Recall that a cr-ideal in a Boolean algebra £ is a subset P of B such that 
(i) a G P and b < a imply 6 G P, and (ii) a{ G P (i G N) => \ / i & a, G P. 

T H E O R E M 2 . 6 . For any logic L, the set V(L) is a cr-ideal in Lc. In 
addition, if a G V(L) and b < a, b G L, then b G V(L). 

P r o o f . We have V(L) C Lc. Let a G V(L) and 6 < a, b G L. Since L A a 
is compatible and b A a = b, we have b c A a for any c £ L. Since a G Lc, 
we have c = (c A o) V (c A a'). Now c A a' < a' < b' imply that c A o ' «-» i . 
Therefore by Proposition 1.1 (iv), b c for every c G L, i.e. b G Lc. Since 
LAb = LAbAa C LAa, and a G V(L), LAb is compatible. Hence b G V(L). 
Now let (a,) i e N C V(L). Put 6x = oi, bn+1 = a n + 1 A (Vi<„a«)'- By the 
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first part of the proof, b{ £ V(L) (i £ N). In addition, VieN^« = VieNa»> 
and since are mutually orthogonal, by Proposition 2.5, VieN a» = 

Recall that in an orthomodular lattice L an element a £ L is called 
central abelian if a £ L° and the interval ¿[o,a] is a Boolean algebra. In 
analogy with this, we will call the elements in V(L) central abelian elements 
of the logic L. 

A logic L is separable if every set of pairwise orthogonal elements in 
L is at most countable. A separable logic which is a lattice is a complete 
lattice (see [22] 2.5.2 f) . In what follows we will consider a logic L with a 
complete centre Lc, i.e., Lc is a complete Boolean algebra. For example, if 
L is separable, or if Lc is separable, then Lc is complete. 

T H E O R E M 2 . 7 . Let L be a logic with complete centre L°. Then the supre-
mum V V(L) exists and belongs to V(L). Moreover, L is isomorphic to the 
direct product £[o,c] x ¿[o.c'j where c = V V(L). The logic -£[o,e] ¿s a Boolean 
algebra, and £[o,c'] has no nonzero central abelian element. 

P r o o f . As Lc is complete, the supremum c = \JV(L) exists and belongs 
to Lc. Let a £ L be fixed. We have a «-»• d for all d £ V(L). Moreover, 
aAd<d, and hence a A d £ V(L) C Lc by Theorem 2.6. As Lc is complete, 
we have Vde7>(L) a ^ ^ e x ^ s belongs to Lc. By Proposition 1.1 (iv), 
a Ac = VdeT>(L)a A d £ L°. Hence L Ac C Lc, which entails that c £ V{L). 
From c £ Lc it follows that L is isomorphic to 0,c] X-£[o,c']. Now ¿Ac = £[o,c] 
is compatible in ¿[o,c] ? hence it is a Boolean algebra. Assume that 0 ^ ci is a 
central abelian element in £[o,c']- We show that c\ £ V(L) and since ci J_ c, 
we have a contradiction. As ci < c' and c\ d for any d £ Z[0)C<], it follows 
that ci £ Lc. As ci is central abelian in £[o,c']> the set L A ci = L A c' A ci 
is compatible. This implies that ci £ V(L). 

If L is a logic with complete centre Lc, we will define the commutator of 
L by com L = V V(L). This definition is a generalization of the commutator 
in an orthomodular lattice. We note that if M is a proper subset of a logic L, 
then the supremum of V(L) need not exist even if L is finite. Let us consider 
again the logic L with the Greechie diagram on Fig. 1. We can easily see 
that V({a,b})•= { c f b u t c V d does not exist in L. By Proposition 2.3, if 
the commutator of a finite set F in L exists, then com F = \J V(F). 

3. Transitive compatibility and horizontal sums of logics 
In this section, we will study relations between horizontal sums and 

equivalence classes of the transitive closure of so-called c-compatibility. 
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DEFINITION 3.1. Let L be a logic and let the centre Lc of L be trivial, 
i.e. Lc = { 0 , 1 } . We say that L admits a decomposition into horizontal sum 
(or a horizontal decomposition) if there is a system {Li : » £ / } satisfying 
the following conditions: 

( i ) L = \ J i a L i , 

(ii) LI is a sublogic of L (i G L), 
( i i i ) Li i L c ( i e / ) , 

( i v ) L i n L j = { 0 , l } i ? j ( i j € l ) , 

(v) 0 < a < 1 for any a G L and for any a, b G L \ {0,1} we have a < b 
if and only if there is i0 € I such that a, b G L{0 and a < b in Z/,0. 

If L admits a decomposition {L, : i G 1} into a horizontal sum, we shall 
write L = ffl,e/i,-. 

LE M M A 3.2. Let L = ffljg/I,-. The sets Li \ { 0 , 1 } ( i G I ) form a partition 
of L \ { 0 , 1 } (in the usual set-theoretical sense). 

The proof follows directly from the definition. 

Let {Li : i G 1} and {Mj : j G J} be two horizontal decompositions of 
a logic L. We will say that the decomposition : t £ / } is a refinement 
of the decomposition {Mj : j € J} if the partition {Li \ {0,1} : i € I} is a 
refinement of the partition {Mj \ {0,1} : j G J}. 

Now we introduce a definition of a c-compatibility as follows: the ele-
ments a, 6 of L are c-compatible (written a b) if either (i) a,b € L° or (ii) 
a £ Lc, b £ L° and a b. Clearly, the relation A is reflexive and symmetric. 
Let ~ denote the transitive closure of c-compatibility, i.e., a ~ b if there are 
elements e i , . . . , e n in L such that e\ — a, en — b and ê  A e t + 1 (i < n). 
Then ~ is an equivalence relation. Clearly, one of the equivalence classes is 
the centre L° of L. In what follows we will denote by T the family of all 
equivalence classes of the relation ~ different from Lc. 

PROPOSITION 3.3. Let T U {Lc} be the family of all equivalence classes 
of the relation ~ in L. Then for every subfamily S of T the set L\ = 
U T G 5 T U LC is a sublogic of L. 

P r o o f . We have to prove that (i) a G L\ implies a' G L\, (ii) {a,- : i G 
N} C Li and a,- 1 aj, i ± j (i,j G N) imply VieNa« e 0) If a G 
a £ Lc, then a' ^ Lc, hence a ~ a', and therefore a' G L\. If a G Lc then 
also a' € L°, i.e., a' G L\. 

(ii) Let {a,- : i G N} be a sequence of pairwise orthogonal elements in 
L\. Two cases can occur: (a) Vigu a i € Lc and (b) V»eija« In case 
(a) there is nothing to prove. In case (b) there must be at least one j G N 
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such that aj Lc. Since aj < VieN a«> w e obtain that aj A VigN aii s o that 

PROPOSITION 3 .4 . Let L be a logic with complete centre Lc. Let there be 
3\,T2 G T, Ti jé T2. Then for any a G Ti, b G T2 the elements aVb and 
a Ab exist in L and belong to L°. 

P r o o f . Let d be an upper bound of a and b. Assume that d £ Lc. Then 
d > a, d > b imply that d A a, d A b, which contradics the supposition 
a G Ti, b G T2. Hence all upper bounds of a and b are in Lc. Since Lc is a 
complete Boolean sublogic of L, the infimum of all upper bounds exists and 
belongs to L°. The proof for a A 6 is dual. 

COROLLARY 3 .5 . If the centre Lc of L is complete and a G T I , b G T 2 , 
where Ti andT2 are distinct elements ofT, then com{a, b} exists and belongs 
to Lc. 

PROPOSITION 3 .6 . Let the centre L° of L be complete and let T I , T 2 G T, 
T\ ^ T2. Then comL = com{ai,a2}, where ai G Ti (i = 1,2) are arbitrary 
elements. 

P r o o f . If ai G Ti, i = 1,2, then {ai,a2}c = Lc. By Proposition 2.3 (ii), 
{ai ,a2} is p.c. com{ai,a2} and by Proposition 2.4, L = {ai,a2}c c is p.c. 
com{ai,a2}. Hence com{ai,a2} G V(L). Now if d G V(L), then d G 
V({ai,a2}), and by Proposition 2.3 (i), d < com{ai,a2}. Hence com{ai,a2} 
= \JV{L) = com L. 

PROPOSITION 3 .7 . Let L be a logic and let TI,T2 G T , Ti / T2. If for 
any a G Ti, b G T2 a V 6 = 1 (or, dually, a A b = 0) then L° = {0,1}. 

P r o o f . Let there be a c G Lc, c ^ 0, c ^ 1. Let aV6 = 1 for any a G Ti, 
b G T2. We have, by Proposition 3.3, a V c G Ti U Lc, b V c G T2 U Lc. The 
following cases occur: 

(a) a A c G 6 A c G £ c . Then a A c' G Tx, b A c' G T2. Indeed, if 
a A c G then a = (a A c) V (a A c') S Xe, a contradiction. The equality 
(a A c') V (6 A c') = 1 implies that c' — 1, which contradicts the supposition. 

(b) o A c Ç Ti, i A c g Xe (or, symmetrically, a A c G b A c G T2). 
Then fc A c' G T2 and therefore (a A c) V (6 A c') = 1. This implies that that 
c = c A ((a A c) V (6 A c')) = a A c G Ti, which contradicts c G Xe. 

(c) a A c G Ti, 6 A c G T2. Then 1 = (a A c) V (6 A c) < c, a contradiction. 
The case when a A b = 0 for any a G Ti, 6 G T2 can be proved dually. 

THEOREM 3.8. Let L (L 7Î {0,1}) be a logic with L° = {0,1}. Let { I e } U 
{Ti : i G / } be the partition of L induced by the relation ~ of transitive 
closure of c-compatibility. Put Li = Lc U T{ (i G / ) . Then {Li : i G / } is a 
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horizontal decomposition of L. Moreover, for any horizontal decomposition 
{Mj : j € J} of L, {Li : i € 1} is a refinement of {Mj : j £ J}. 

P r o o f . First we prove that L = EB¿e/Z/¿. Evidently, (i), (iii) and (iv) of 
Definition 3.1 hold. Further, Proposition 3.3 implies (ii). To prove (v), let 
a, 6 6 L \ {0,1} and a < b. Then o A b, and therefore there is a i0 € / such 
that a, b € T¿0. The rest of (v) follows by Proposition 3.3. 

Now let {Mj : j € J} be another decomposition of L into a horizontal 
sum. If J = {ii}, the statement is obvious. If there are at least two elements 
j i ) J2 in J, then there are o, b 6 L such that a € i l í^ \{0,1}, b € Mj2 \{0,1}. 
Assume that a ~ b. Then there are c i , . . . , e n in L such that ei = a, en = b 
and e,- A e,-+i (i < n). But e¿ e¿+i (¿ < n) implies, by induction using (v) 
of Definition 3.1, that (e¿)¿<n are all contained in Afj 1 \{0,1} in contradiction 
with be Mh \ {0 ,1} . 

L E M M A 3 . 9 . Let L = B X Lo, where B is a Boolean algebra. Then the 
following hold: 

(i) (a, 6) -L (c, d) ((a, 6), (c, d) e L) O a J. c and 6 J. d. 
(ii) (a,6) « ( c , ¿ ) o Í H d. 

(iii) (a,b) e Lc & b e 
(iv) (a, b) (c, d) b d in Lq. 
(v) (a, 6) ~ (c, d) b ~ d in Lq. 

P r o o f , (i), (ii) and (iii) follow directly from the definition of direct 
product and compatibility of all elements in B. (iv) If (a, b) e Lc, (c, d) € Lc, 
the statements follows from (iii). If (a, 6) £ Lc, (c, d) Lc, we use (ii) and 
(iii). (v) follows from (iv). 

T H E O R E M 3 . 1 0 . Let L be a logic with complete centre Lc. Then L = 
L[o,c] X Ij[o,c<]i where c is the commutator of L. The factor Z[0)C] is a Boolean 
a-algebra and the factor 2/[o,c'] admits a horizontal decomposition {Li : i € 
/ } , where L¡ = (Lc U T.) A c', and {T¿ : i £ 1} U Lc is the family of all 
equivalence classes of the transitive closure of c-compatibility in L. 

P r o o f . By Theorem 2.7, L = ¿[o,c] X £[o,c']> a n ¿ ¿[o,c] is a Boolean 
(7-algebra. By Lemma 3.9, the system {T¿ A c' : i £ 1} U {Lc A c'} is the 
family of all equivalence classes of the relation ~ in Z[o,c']-

If I contains only one element, the statement of the theorem holds. Let 
there be at least two elements a, b G ¿[o.c1] such that o ~ b does not hold. 
Then com[0)C<](£[0,c']) = com[0|C<j{a, 6} = 0, since by Theorem 2.7, £[o,c'] has 
no nontrivial central abelian element. Therefore for any a, b G £[o,c'] such 
that a ~ b does not hold, we have aAb = 0. By Proposition 3.7, the centre of 
L[ oiC>] is Lc Ac' = {0,c'}, and by Theorem 3.8, ¿[o,c'] admits the horizontal 
decomposition {Li : i G / } . 
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EXAMPLES . Let H be a Hilbert space and let L(H) denote the OML 
of all closed subspaces of H. Let X be a finite set with even cardinality 
and denote by Leven(X) the concrete logic of all subsets of X with even 
cardinality. 

1. Let L = L(H), dim H = 2. Then Lc = {0,1} and a ~ b implies 6 = a'. 
Hence L is the horizontal sum of an infinite number of 4-element Boolean 
algebras {0,1, a, a'}. 

2. Let L = L(H), dim H > 3. Then Lc = {0,1} and a ~ 6 holds for any 
a, b e L(H). Indeed, assume that a,b G L \ Lc and let x, y be vectors in 
H such that x € a, y 6 b. Let c be the subspace of H generated by x and 
y. Then c £ Lc, c A a / 0, c A & ^ O and a H a A c, a A c H c, c A 6 A c, 
b A c A 6. 

3. Let L = Leven(X). Then a «-* b(a,b € L) if and only if aC\b e L e y e n ( X ) 

(see [22]). If card X > 4, then Lc = {0,1}. If card X = 4, then it is easy to 
see that a ~ 6 if and only if a <-• b for a, 6 0 i,c. From this we conclude that 
i/ is the horizontal sum of three 4-element Boolean algebras. 

4. Let L = ¿even(X), card X > 6. Then L° = {0,1} and a ~ 6 for any 
a,b £ L \ L°. Indeed, if a fl 6 consits of two elements, then a 6, hence 
a ~ 6. If a n 6 contains only one element, say x, then we take y € a \ (a fl b), 
z € b \ (all b) and v € X \ ( aUf t ) . Then c = { x , y , z , v } 6 L, and a ~ b via c. 
If a fl b contains at least three elements, a ~ b through a two-element subset 
of a n b. 
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