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SOME REMARKS ON INFINITE ALGEBRAIC 
LINEAR EQUATIONS 

The purpose of this paper is to prove the existence and some estimations 
of solutions of the infinite system of algebraic linear equations. We choose 
these theorems which will be useful in the theory of solving of linear equa-
tions in Banach algebras, which have some applications to the linear partial 
differential equations and linear integral equations of many variables and 
other. 

1.1. Let k be any natural number and Nfc- the product of k copies of N. 
We introduce in the set N* an order-relation determined in the following 
way: 

If ( ¿1 , . . . , ifc), (h,... ,jk) e Nk and W{k) = { 1 , 2 , . . . , *}, then: 
D . l . l . ( ¿1 , . . . , ik) = ( j ' l , . . . ,jk) if Vp e W(k) ip = jp 

D.1 .2 . ( » ! , . . . , t'fc) < ( j i , . . . , jk) if one of the condition is fulfilled: 

k k 
0) X / i ^ X ^ i " 

p=l p=1 
k k 

(") = € VT(fc) : t'i = j'i,...,tm_i = j'm_i, im < jm) • 
p=l p=i 

D . 1 . 3 . ( t ' i , . . . , ik) < (ji,...,jk) if one of the following conditions is 
fulfilled: 

(i) (*i.•••,»*) < ( i i ,•••• ,3k) , 
(«) (*i, . . . ,**) = (j'i, ...,j 'fc)-

Under the above definitions of the order-relation we can uniquely ex-
press the set Nfc in the form of the one-dimension sequence {ar}r=i,2,...) 
where a r = (¿1, ¿2, - - - , ik)- If it is necessary, the position of the element 
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(»1, ¿2, . . . ,ik) in the above sequence {ar}r=i,2,... will be denoted by r = 
r«'i—**• 

It is easy to prove the following lemmas. 

LEMMA 1.1. Let k,p € N, p > k be arbitrary fixed elements. Then the 

number of elements (ii,..., ik) € N* such that 

k 

im = p is equal to 
m = l 

LEMMA 1.2. If G N fc, then the number of the elements 
, ik fc 

( j i , • • • ,jk) G Nfc such that £m=1 jm < 25 determined by the 
formula 

LEMMA 1.3. If (h,...,ik) G then the number of the elements 
(ju"-,jk) G Nfc less than (h,...,ik) such that £ m = i im = E L i i m ™ 
determined by the formula: 

(1-2) E E ( T-nl™l ) 
n = l p=0 v 7 

w/iere u>e assumed the convention: ifn<k, then Y!m=k am — 0. 

Next we will prove 

THEOREM 1.1. For every k e N 

<"> - _1)+EE ^T?:^*)+1 
x ' n = l p=0 x 7 

under the convention: ifn<k, then am = 0. 

P r o o f . According to the order-relation, the set T of the elements 
( j i f - i j k ) G Nfc less than («i, , «*) 6 Nfc is the union of the set T\ of 

the elements ( j i , . . - , j k ) € Nfe such that S m = i 3m. < E l = i lm and the set 
, it )b 

T2 of the elements ( j i , . . . , j k ) € N* such that £ m = i jm = E m = i a n d 

O'l, • • • ,jk) < («1, • • •, »*)• 0 f course, T1nT2= 0. 

Thus by use of Lemma 1.2 and Lemma 1.3 we obtain 

cardT = cardTi + cardT2 

what complete the proof. 

2. Let F be any number field (i.e. F = R, C or Zp) and i £ N — an 
arbitrary number. 

i=i • 

• 
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D.1.4. Every function mapping Nfc into F we call a k-dimensional infinite 
matrix denoted by A or [ f l i j . w h e r e is = 1,2, . . . ; for s = 1,2 , . . . , * . The 
number is (s = 1 , 2 , . . . , k) is called the index of the matrix A. 

Let Lk(F) be the set of all dimensional infinite matrices over F. In the 
set Lk(F) we introduce addition of elements and multiplication of elements 
by scalars in the standard way, so that Lk(F) becomes a vector space. 

D.1.5. The section of the matrix 
A = [ail...ip...iq...ik]<ELk(F), (ia = 1 ,2 , . . . , 3 ; 3 = 1 ,2 , . . . , * ) 

with respect to indices (p,..., q) (1 < p < q < k) for the fix set ( j p , . . . , jq) 
we shall call the matrix 

T P'l A 
3 p f'tjq 

where 
"il...»,,_l i ï + l...U "U—«y-l Jp — J« tq + l—tk 

for is = 1,2,... ; s = 1,... ,p — 1, q + 1,..., k. From the above definition we 
obtain a matrix A • p'q . from k-dimensional matrix A if we leave elements Jp f'ijq 

of A which have fixed indices jp,... ,jq in positions p,p + 1,..., q. 
E X A M P L E S . If Â= [a,j] ç L2(F), then 

"Oil a12 Û13 a14 . . . 
0-21 0-22 «23 Û24 • • • 
Û31 O32 Û33 O34 . . . 

A = 

and A Y = [a31032033 ...], A2 '2 = 

If A[a i l<ais] G L3(F), then 

4,1 

a141 
Û241 
0341 

d 4 
a24 

Û34 

Â 1 4 = 

0311 «312 «313 
«321 «322 «323 
«331 Û332 «333 

D.1.6. Let p,q 6 W(k) and p < q. The order of the matrix A — 
[a»i...«p...«,...«*] G Lk(F), where i„ = 1 ,2 , . . . ; s = 1 ,2 , . . . , * ; with respect 
to index (p , . . . , q) will be called the maximum number Ra(p> q) of the lin-
early independent sections A. p 'q • with respect to indices (jp,-.-,jq) € 

If p = 1 or q = k the above denotation means here matrices ^ j ^ j q — [^«j+i •••»!&] 

jp-jk 1 'l-'p-i-1 
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N , - p + 1 in the space LK~Q+P~1(F) if it is finite; if it is infinite we assume 
RA(p, q) = +00. Of course, the sections of the matrix A belong to 
the linear space Lk~^p~l(F) for (jp, G 

D.1.7 . Let (jp,.. .,jq) G N g - P + 1 . We call asection of the matrix 

A the null section with respect to indices ( j p , . . . ,jq), if 

V ( n . . . t p - i , ig+i • • • ik) e N"-"*»-1 ai1...jp...j9...jk = o • 

It means that the matrix A • p,q • is the zero vector as an element of the 

space LK~Q+P~1(F). " _ 
D.1.8. Let p,q G W(k) (p < q). We call a matrix A = [ai1...tl>...t4...u] € 

LK(F) the ( p , . . . , g)-finite index matrix, if 
V ( j p , . . . , j g ) e N « - " + 1 3 ( i i , . . . , ; P - 1 , jq+1,...,jk) e N 

V(n, . . . , ¿p_l, l'g+l, . . . , ik) > (jl, . . . , jp-l, jq+l,.. • , jk) 
a«i...jp_i jr...jq t,+i...«t = o. 

D.1.9. Let p, q G W(A;), (p < q) and let a matrix A = [ a i ! . . . * , . . . « , € 
LK(F) be (p,..., g)-finite index, then we call (p,..., g)-finite index of the 
order r if each section A • p'9 . for (jv,..., ja) € N ? _ p + 1 of A with respect Jpf'iJq y * 
to ( j p , . . . , j q ) has at least r elements different from zero and there exists at 
least one section which has exactly r elements different from zero. 

3. Let F = R, (C) and k £ N be an arbitrary number. 
D.1.10. Let A = [a,-j...,-J € LK(F), B = [ ^ . . . ¿ J G LK(F). If the series 

oo 
AoB := ^ °fi...<* '^i -u 

is absolutely convergent,then A o B is said to be the inner product of the 
matrices A and B. In the other case the inner product A o B is not defined. 
In the linear space Lk(F) we introduce the norm. If the inner product A o A 
exists, then the number 

|]A||2 := V Ao A we call the norm of A. 
In other case we assume ||>1||2 = oo. 

Further on, we denote by LK(F) the linear space for which the norm ||.||2 
is defined. 

D . l . l l . We denote by L%(F) the set: 

LK(F):={AELK(F):\\A\|2 < oo}. 

Of course LK(F) is a linear subspace of LK(F). 
D.1.12. The symbol Lq(F) will denote the set of all matrices A G LK(F) 

such that for any A G Lq(F) there exists a number M > 0 such that 
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V(i ' i , . . . , ik) G Nfe |ajj.,.tJt | < M. We introduce a norm in the space 
If A = K . . . . J € L%(F), then \\A\\I := suP i i <lkeN* |. 

Further on by LQ(F) we understand the space determined in D.1.12. 
with the norm ||.||i. 

It is easy to show 

THEOREM 1.2. There take place the following inclusions: 

LK2(F)CLKQ(F)CLK(F). 

4. Let F be an arbitrary number field and let n, m € N be arbitrary 
natural numbers. 

D.1.13. If A = [ a i l . .A m h . . . j n ] G LM+»(F) and B = [ ^ . . . J G L»(F), 

where ¿1 , . . . , im, j i , . . . , jn = 1 , 2 , . . . ; then we call a right-sided product of 
the matrices A and B the matrix A - B = [c,-!„.«„,], where 

00 

c«i...tm = ^ ^ aii...«m ii— i n ' b j i . . . j „ i ¿« = 1 , 2 , . . . ; s = l , . . . , m ; 
¿1—J» = 1 

under the assumption that the above series are unconditionally convergent. 
If at least one series is not convergent, the right-sided product A and B is 
not defined. 

D.1.14. If A = [a,-j...t|n] G LM(F) and B = \BH..,^JL...JN] G 
then we call a left-sided product of the matrices A and B the matrix A-B = 
[cii—j»]> w h e r e 

00 

C j l — j n = a i l...»m ' ^ i l - i m j l — j n ' l Js = . . . ; S = l , . . . , 7 i ; 
»1—»m=l 

under the assumption that the above series are unconditionally convergent. 
If at least one series is not convergent, the left-sided product A and B is not 
defined. 

Let us denote Sl(m,n) := {A G LM+N(F) : V5 G LN(F) the right-sided 
product A B exists}^ 5 ? ( m , n ) := {B G LM+N{F) : VA G LM(F) the 
left-sided product A • B exists}. 

THEOREM 1.3. The matrix A G LM+N(F) is ( 1 . , m ) - f i n i t e index if 
and only if A £ Sp(m,n). 

Proof . Let A = [atl...»m ji...j„] G LM+N(F) and let us suppose that A 
is (1 , . . .,m)-finite index. Let B = [&,*!...j„] G LN(F) be an arbitrary fixed 
matrix. Then for each ( » i , . . . , t m ) G Nm the series 

OO (fcl,...,fc„) 

£ £ « . w . 
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is convergent, so A G Sp(m,n). Next we assume that A € Sp(m,n) and 
let us suppose that A is not (1 , . . . , ro)-finite index. Then there exists a 
set of indices (¿5, G and a sequence ( i f , . . . ,i£), s = 1 ,2 , . . . 
such that a,:o ¿o ,-a ^ 0, for s = 1,2, . . . let 6,- = 1/a.o .-o ,•» 1 * m Jl"-Jn ' ' ' ' Jl—Jn I lj...Jm ]1—Jn 

for ( i i , . . .,jn) = ( i f , . . and bh_jn = 0 for (j'x, ( i f , . . . 
s = 1 ,2 , . . . ; The series E~,...,in=i aii-£m ii-in ' 6ji...j„ is not convergent, 
which contradicts the assumption that A 6 Sp(m,n). 

T H E O R E M 1.4. The matrix B 6 Lm+n(F) is (m + 1 ,...,m + n) finite 
index if and only if B £ S\(m,n). 

The proof is analogous to the proof of Theorem 1.3. 

II . 1. Let F be an arbitrary number field and m, n € N are fixed. Let us 
consider the matrix equation 

(2.1) A-x = B, 

where A = [ a , ^ . . . j j € 5^(m,n), i? e Lm(F) and x € Ln(F) is un-
known. 

From Theorem 1.3 it follows, that A is (l , . . . ,m)-finite index, D.1.8 
gives us that for every system of indices (¿ i , . . . , im) there exists the system 
of indices ..., kn) such that 

V(il, . . . ,in) > (*1, .-.,kn) aii...im h-U = 0 • 

Let ( t j , . . . , «^ ) € Nm be an arbitrary fixed system of indices and B = 
[̂ «i—«'m]> where is = 1 ,2 , . . . for s = 1 ,2 , . . . , m. We will consider two cases: 

0) V( i i , . . . , i „ ) 6 Nn a,o..,omil...in = 0 . 

If £>¿0 ^ / 0, then the equation (2.1) is contradictory and if ¿¿o t-0 = 0, 
then the system of indices (*?, can be omitted without the loss of 
generality. 

(ii) 3(*i, • • •, kn) € NnV(ii , . . . , i n ) > (* i , . . . , kn) 
ail-i°m h-jn = 0 and fci...fc. # 

In this case each (»J, . . . ,»^) corresponds explicitly to the element (A>i,... 
. . . , fcn) € Nn which we denote by Pq.. .^ or . •. , i^)- Hence, it follows 
that the sequence (-Fti,...,«m) of indices explicitly corresponds to the matrix 
A. We denote this sequence by PA, the set of elements of PA by PA- Of 
course, for each (iu..., im) 6 Nm Ph ¿m € Nn. 
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The above assumption implies that the equation (2.1) is equivalent to 
the system of equations of the form 

•P(«'l. — .«m) 

(2-2) jl—jn 'Xjl—jn — ^il -im 
(ill — ,Jo) = (l,-.-,l) 

where is = 1 ,2 , . . . ; s = 1 , 2 , . . . , m; 

THEOREM 2 . 1 . The equation ( 2 . 1 ) (the system ( 2 . 2 ) ) has a solution be-
longing to Ln(F), if and only if one from the following conditions hold 

(a) for any system of indices (k\,..., km) £ Nm the system of equations 

P(»l,-,«'m) 

( 2 - 3 ) ^ ^ a«'l...«'m jl—jn ' Xjl—jn = ^»1 —«'m ' 
(ill—.i») = (l. •••,!) 

(¿i5 * • • 9 t m ) < (ki,..., fcm) /ias a solution in Ln(F), 
(b) every finite subsystem of (2.2) has a solution in Ln(F). 

Proof . It is enough to observe that we can replace the equation (2.1) 
/S A. /S >"S 

by the equation of the form: A • x = B, where A G L2(F), x £ 5 , B € 5, 
5-the space of all one-index sequences, whose elements belong to F. Next 
we may use the theorem from [1]. 

From the above we immediately obtain: 

COROLLARY. If for any set of indices (ki,...,km) £ NTO, the rank of 
the matrix [a^...,-,,, ^ . . . ¿ J , ( ¿ i , . . . , i m ) < (fci, . . . ,A;m) equals rkl,...,km with 
respect to indices ( 1 , . . . , m), then the system (2.2) has a solution with respect 
to indices ( 1 , . . . , m) in Ln(F) for any ~B € Lm(F). 

2 
D.2.1. The symbol Sp(m,n) denotes the set of matrices A € Sp(m,n) 

which do not include null section A{ 1,r™ for indices ( ¿1 , . . . , im) E Nm and 

for which the sequence PA • Nm PA (PA C N") is a one-to-one function. 
D.2.2. If A £ Sp(m,n) and PA = Nn, then A will be called a simple 

matrix. 

THEOREM 2 . 2 . If A £ S2p(m,n), then the equation ( 2 . 1 ) has a solution 
in Ln(F) for any B £ Lm(F). 

2 ^ 
P roof . Let A £ Sp(m,n), so that the map PA : Nm *->• PA is one-to-one 

function and it has no null sections with respect to indices (z'x,..., i'm) £ Nm, 
so elements of the sequence PA are different. Hence, for any set of indices 
(Ail, — > kn) £ Nn the rank of the matrix A = [a^ ¿m ^ ¿ J , ( i ' i , . . . , im) < 

km) with respect to ( 1 , . . . , m) is equal to the number of equations in 
the system (2.3). From Theorem 1.1 it follows that the number of equations 
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in the system (2.3) equals rkll...,km- Next, from the corollary we infer that 
the system (2.2) has a solution in Ln(F) for any ~B € Ln(F). Since (2.2) is 
equivalent to equation (2.1) we obtain the conclusion of the theorem. 

Let Ln(B,A) = {x <E Ln(F) :A-x = B}. 
We can easily prove 

LEMMA 2 .1 . Ln(0,A) is a linear subspace of Ln(F). 

THEOREM 2 .3 . If xO is a solution of the equation ( 2 . 1 ) , then Ln(B,A) = 
xo + Ln(0,A), so Ln(B,A) is a linear variety in Ln(F) or Ln(B,A) is empty 
if the equation (2.1) is contradictory. We omit the easy proof. 

Let L be a linear subspace of the space X. Let us determine dim L in 
Hamel sense. 

' k, if there exists maximally k lineary independent elements 

dim L := < |n 

Ho, if for any k € N we can choose k linearly independent 
elements in L. 

D.2.3. If T is a linear variety in L then 

THEOREM_2.4 . If A e Lm+n(F) and A is a simple matrix, B G Lm(F), 
then dim Ln(B,A) = 0. 

P r o o f . From Theorem 2.2 we infer the existence of a solution xq 6 
Ln(F) of_the equation (2.1). Thus Ln(B,A) # 0 and dim Ln(B,A) = 
dimLn(0, A). Let us suppose that there exist two solutions x and y {x ^ y), 
which belong to Ln{0, A). Let x = [x^...^], y = [y^...,•„], where j3 = 1,2, . . .; 
s = 1,2,..., n. 

In accordance with the order relation defined in (Ch.I, §1) we can find 
a set of indices such that xkl...kn / and V( j i , . . . ,jn) < (ku. ^ kn) 
x h - j » = Vh-in o r (k i , - - - ,k n ) = (1 , . . . , 1 ) and xi...i = since A is a 
simple matrix, thus there exists (ii,...,im) 6 Nn, such that P (» i , . . . , im) = 
(A«i, . . . , kn). 

Let us consider the equation 

From above and Theorem 2.3 we have 

(ki,...,kn) 

( 2 . 4 ) 

(h j»)=(i,—,i) 
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Since xh_jn = Vj1...jn for every ( j i , . . . , j n ) < {ki,...,kn) thus we have 
from (2.4) a,i1...im k1...kn-[xkl...kn+(-ykl...kn)] = 0. Of course P ( i u . . . ,im) = 
( k i , . . . , k n ) so a,j...jm kl...kn ? 0. Hence xkl...kn+(-ykl...k„) = 0 and xkl...kn 

= yk!...kn, which contradicts our assumption. 
Hence we infer that the set ¿"(0, A) includes one solution of the homo-

geneous equation only, and of course it is the element 0, so dim Ln(0, A) = 0 
and it completes the proof. 

Let QA := NN \ PA. 

THEOREM 2.5 . If A G S2
p(m,n) and ~B G Lm(F), then 

dim Ln(B,~A) = c a r d Q ^ . 

P j o o f . It follows from Theorem 2.2 that for any_5 G Lm(F) wehave 
Ln(B,A) ^ 0. From D.2.3. we infer that d i m L n ( B , A ) = d imZ n (0 ,A) for 
any B € Lm(F). Hence it is sufficient to show that d i m i n ( 0 , A ) = cardQ^. 

Let us consider three cases: 
a) QA = 0- In this case A is a simple matrix and from Theorem 2.4 we 

obtain the conclusion. 
b) cardQA = N0 and QA = {gi, • • •}, where qi < q2 < ...; q3 G N n , 

for s = 1 ,2 , . . . ; Ln(0, A) is the set of solutions of the system of equations 
given by 

^(»li — .f'm) 
(2-5) ah...im 31-3» 'X3l-~3. =0» 

(¿1.—.J«) = (l,—.1) 
where is = 1 , . . . ; s = 1 , . . . , m; 

Let us assume that xqk = 1 for fixed k G N and xq> = 0 for s ^ k, 
s = 1 ,2 , . . . ; Then the system (2.5) we can rewrite in the form 

P(h,-,jm) 
(^•6) ^^ ah-im jl—jn 'Xjl—in = •••»m >î* > 

(h, — ,jn) = PA 

where is = 1 ,2 , . . . ; s = 1 , 2 , . . . , m . The matrix [a^...»^ ji...jn] is a simple 
matrix. 

From Theorem 2.4 it follows that the system (2.6) has exactly one solu-
tion, which we denote by x = [x^...^], ( j i , ...,jn) G PA-

Let us denote 

- i » ' W h e i e G 

(2-7) xh...j„ := h where ( j i , . . . , j n ) = Çk, 
, 0, where (J l t . . . , j n ) G QA \ {?*:}• 
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From the above considerations we infer that xk = [®jj.„jn] G Ln(F), 
(ji,... ,jn) € N" is a solution of the system (2.5). The solutions xk (k = 
1 ,2 , . . . ) in Ln(F) are linearly independent and they form a countable set, 
so that dimZ/n(0,A) = No = ca rdQ^. 

c) dim QA = M <H0 and QA = {q where gi < q2 < ... < qM; 
qs G N n for 5 = 1 , 2 , . . . , M. 

Analogously as in b) we obtain solutions of the system (2.5) xk for k = 
1 , 2 , . . . , M; in the form (2.7). Of course, each linear combination of elements 
xk is a solution of (2.5), thus d i m i n ( 0 , A ) > M. Let x = [xj1...jn] for 
( j i , • • •, Jn) G N n and x € Ln(0,A). Then the_element x = x9k • xk € 
Ln{F), so x G l i n ( x : , . . . , xM) and x G Ln{0, A). 

From definition of x it implies that 

M 

= ' = for i = 1 , 2 , . . . , M , 
K=l 

where f)n,m denotes Kronecker's symbol. 
If we fix, as in the case b), the values xqi,..., xqu for x q i x q M we 

get the system of equations with unknowns Xj1...jk, ( j i , . . .,JN) G PA, which 
in view of Theorem 2.4, has the unique solution. Hence x = x and each 
solution of (2.5) belongs to lh^a : 1 , . . . ,xM), so d i m £ n ( 0 , A ) < M, which 
completes the proof. 

Let A G 5 p ( m , n ) . The map P : N m 9 ( i i , . . . , i m ) ^ ( j u . . . , j n ) = 
2 

P(ii,..., im) G PA is onto 5 p ( m , n) and one-to-one and so there exists the 
inverse map P - 1 : PA N m . 

Lemma 2.2. If A is a simple matrix, B € Lm(F) and x = [a;^...^], 
C?i > • • •»in) G N n is a solution of the equation ( 2 . 1 ) , then for any fix 
( f c i , . . . , k n ) G N n the numbers for (ji,...,jn) < (ki,...,kn) are 
uniquely determined by the system of equations 

(91. —.9»)<(ili — .J») 

for(ji,...,jn) < (ki,...,kn). 

P r o o f . From Theorem 2.4 we infer that the equation (2.1), equivalent to 
(2.2), has exactly one solution. Let us consider the systems ( ¿ i , . . . , im) G N m 

for which P(ii,..., im) < ( f c i , . . . , kn) and take the system of equations of 
the form (2.2) for P(h,..., im) < ( A i , . . . , kn). 
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Since the matrix A is simple, so there are only equations of the form 

/op-i(i,...,1)1.,.i -xi...i = bp-i(i,...,i) 

(2 .9) 

The number of equations and unknowns in (2.9) is equal and the rank of 
fundamental matrix is equal to the number of equations. Treating (2.9) as 
the system of equations with respect to Xj1...jn for ( j i , . . . , jm) < {k\,..., kn) 
we get that unknown are explicitly determined by (2 .9) . This completes the 
proof. 

2. Let F be the number field R or C and TO, n € N are fixed numbers. 

THEOREM 2.6. If A e Lm+n(F) is a simple matrix, < 
for any n-index ( j i , . . . , jn) € N n and if the product 

is convergent, then for any B € L™(F) the equation (2 .1) has exactly one 
solution x = [£ji...jn] in the space Ln(F) and 

(2.11) | * , W m | < y / n 2 - \ \ B \ \ 2 / \ \ A ^ ^ n \ \ 2 for ( i l , . . . , i n ) e N n . 

P r o o f . It follows from Theorem 2.4 that the equation (2.1) has exactly 
one solution i = [ ^ . . . ¿ J , (ji,---,jn) £ N". Let us take a fixed n-indices 
(ki,..., kn) € Nn . From Lemma 2.2 we infer that xj1,,jn for (ji,... ,jn) < 
(ki,...,kn) are determined explicitly by (2.9). The system (2.9) has the 
solution determined by Cramer formulas. Let us put: 

,-jm+l,m+n.|2 
(2.10) 

Moreover, if I := inf ( i l , . . . ) j n ) € N» \\Aj. 
M I < V I U - \ \ B \ \ 2 / I . 

|-T-m + l ,771 + 71 
I Ajl,-,jn ||2 > 0, then x G L$(F) and 

Dkì k = ^-Mi,-^!...! 

aP-H i i)i...i 0 
a P - 1 ( l , . . . , 2 ) 1 . . . 2 

0 
0 

n 
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D{1 i" := Op-i( 1 2)1...1 • • 1,...,2) 
0 
0 

for ( j i , . . . , j n ) < ( k i , . . . , kn). Thus we obtain 

(2.12) 
D k " " ' i n 

K l y . . . y K n for ( j ' i , . . . , Jn) < (Ai , . . . , kn) •"Jl— Jn — n 

Next, applying Hadamard's inequality to -D^' '" '^ we get 

•P -1(kl fcn) 
\ D k ' ; . t k S ^ n ( E 

(ii,...,i»)<(fci fc») («i,...,«m)=P-1(l.-,l) 

x -
' ( i l , . . .1 im) = P - 1 ( l 1) K...U 

From the above and from (2.12), we have 

r vP~ l ( fc i fc„) | _ ,2 
I ,2 ^ TT ^M»l,-,»m) = P-1( l , - . l ) l°'l-«m J l - J . l 
l X r i - - r » l ^ 1 1 Û2 j 

( i l , - J n ) < ( k u ...,kn) 1 P~Hil...in)jl...jJ 

X- '(«!,-,tm^P-Ml 1) 

EP M l̂ >•••,*..) I 12 ' 
(«'l im) = P-1( 1 1) I0'!-*"* 

for ( r i , . . . , r n ) < . . . , k n ) . 
For any ( j i , . . . , j n ) < ( k \ , . . . , kn) the above inequality and the following 

relations 
P -1(*i k„) 

Y , la i l . .-«m j l - j n l - E la<l-»m ¿ l - i » l 
(i !,..., ¿m)=p-i(l,...,l) («1 ¿m)6N"» 

= \\Ah,-,ù 112 < + 

P_1(fci kn) 

E E I*L.<J = M < 0 0 , 
(«1 «m) = P-1( 1 1) (¿1 «m)eNm 

yield for any ( j i , . . . , jn) < ( k i , . . . , kn) 

. . I2 < TT 11 r i 112 

\X3l-]»\ ^ 1 1 I 2 I 
(ri rB)<(fci,...,fc,) 1 P-1(r1...rn)r1...rn\ 
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v P i 
V P _ 1 ( f c l k n ) In • • • |2 ' 

Hence, if rk lt...,kn +oo we have 

c o i n U I2 <r TT H ^ n . - l r , Ila v libila ( ¿ . id i \X3i-Jn\ ^ 1 1 |„2 I * ..-fm+l.m+n.., 
(ri r„)eN» ' ° i > - 1 ( n . . . r . ) r i . . . r j 11^ , . . . ,^ II! 

for ( j i , . . . , j n ) € N n . This completes the proof of the first part of the theo-
rem. 

If 1 = inf(j1,...,j„)€Nn I I A h ^ . 7 * n \ \ l > then by (2.13) , the inequality 

\xh...jj2 < nA • mi/\\^V2+n\\i < nA • i m i / i 2 

holds. It means that x G L$(F) and ||x||i < y/TTJ • ||5||2//. 

THEOREM 2.7. If At Lm+n(F) is a simple matrix and for every index 
( t i , . . . , i m ) € N m 

(2 .14) ( l + £ la«i...tm i x - ^ l ) / ! « , P ( ù , . . . , , m ) l < 1 
(il,—,jn)?P(il, — ,»m) 

then for any B € L™(F) the equation (2 .1) has exactly one solution x = 
[* j i . . . i„] andxeLZ(F), IMU < p||i . 

P r o o f . Theorem 2.4 implies that the equation (2.1) has exactly one 
solution x = [x j j . . .^] , ( i i , . . . , j n ) € N n , so we have to show that ||x||i < 
||2?||i. It is sufficient to prove that |xj,...j„| < p||i for ( j i , . . . , j n ) £ N n . 
We use the induction here. From Lemma 2.2 we conclude that the system 
(2 .8) uniquely determines Xj1...jn for arbitrary (j\,..., jn) € N n . Hence, we 
get 

(2-15) xh...ju 

_ b P - 1 h , - , j n ~ X)(r1,...,rn)<Q1 jn) a P~ 1 Ui in)r i - r„ 1 ^r^ .T . 

for(j'i,...,i»)€NB. 
I . For ( j i , . . . , jn) = ( 1 , . . . , 1) by (2.15) and (2.14) we have 

|»i...i| < |6p-i(i i)|/l°p-i(i,. . . ,i)i.. .i < Umili-

li. Let us suppose that for two arbitrary sequences of indices 

( r i , . . . , r „ ) < ( j i , . . . , j „ ) 

the following inequality holds 

< P H i . 
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Hence by (2.15) we get 

. I _ \bP-Hh I + £(r1,...,r„)<(j1,...,jn) l ^ - H i i j,)ri...r.l • P | | l 
\Xh—in\— I I 

s |.-jS|| 1 + ^ ( r i rnWh,. . .Jn) l ^ - M i i i»)ri-r . l 
- H^ll1 U 1 • 

From the above inequality and (2.14) we get («^...j-J < ||-6||i- Thus we 
obtain by induction that ^^.. .¿J < ||-B||i for every ( j i , . . • ,jn) € N™. Con-
sequently x € L°n(F) and ||x||i < | |5 | | i . 

THEOREM 2.8. Let Z be a subset of the set N M . Let us assume that 
A 6 Lm+n(F) is a simple 

matrix, B G LQ'(F) and the condition (2.14) is 
satisfied for any sequence of indices (¿1 , . . . , im) 6 N m \ Z. If there exists a 
constant M > 0 such that |xp(, l i... ijm)| < M • | |5 | | i for every ( ¿ i , . . . , i ) e 
Z, then the equation (2.1) has exactly one solution x in the space L°N(F). 
Moreover x € L$(F), and ||x||i < | |5 | | i - m a x ( l , M ) . 

P r o o f . We observe that if the condition (2.14) is fulfilled for the system 
(¿1 , . . . , im) € N m , then for any constant K > 0 the following inequality 

(2.16) 1 + < m a x ( 1 ? R ) 
\ail—imP(h—im)\ 

holds, as the result of the inequality 

1 + K - ^ K i» ¿i...i.l 

+ S K - ' m i i . - i „ i ) - m a x ( l , A ' ) . 

Theorem 2.4 implies that the equation (2.1) has exactly one solution x = 
[xj1...jn] 6 Ln(F). From Lemma 2.2 we get that Xj1...jn are determined 
uniquely for ( j i , . . . , j n ) € N n by the system (2.8). So we get the formula 
(2.15). 

Next, using the induction with respect to ( j i , • • • ,jn) £ we prove 
that x E LQ(F). 

I. Let (Ji,• • • , j n ) = ( 1 , . . . , 1 ) . If P _ 1 ( 1 , . . . , 1 ) 6 Z, then from our 
assumption we have 

If P - 1 ( l , . . . , 1) € Z, then in view of (2J5) and (2.14) we get |a?x...xI < 
l^p-1(i,...,i)l/lap-1(i,...,i)i...il < ll^lli < ll^lli - m a x ( l , M ) . 
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I I . Let us suppose that there is the estimation for each ( r i , . . . , r n ) < 
( j i i • • • > jn) of the form |xn...rn I < ||-S||i • max( l , M ) , we will prove that 

If . . . , jn) G Z, then from the assumption we obtain the above 
inequality. 

If P - 1 ( j i , . . •, jn) # then in view of (2.14), (2.15) and (2.16), we get 

• , ^ P l l ( l + M • E(r1,...,rn)<(j1,...,Jn) \aP~Hh j n M - r J ) 

WP-Hh ¿„)jl...jj 

< ||^|l(l + ' E ( r i rn)^(ji,...,jn) l aP- » ( j 1 , - , in ) r 1 - rJ - M ) 

\aP-Hji i„)ii...i„l 

< ||5||i - m a x ( l , M ) . 

Hence we infer by the induction that for every ( j i , . . .,jn) € N n \xj1...jn | < 

||2?||i - m a x ( l , M ) , thus x e L$(F) and ||x||i < ||5||i - m a x ( l , M ) , which 
completes the proof. 

T H E O R E M 2 . 9 . I f A e L m + n ( F ) is a simple matrix and 3 ( g x , . . . , qm) 6 

N m V ( i ' i , . . . , im) > (qi,... ,qm) such that the condition ( 2 . 1 4 ) is fulfilled, 

then for any B € L™(F) the equation ( 2 . 1 ) has exactly one solution x = 

[xh—u\ ^ L n ( F ) . Moreover x € LQ(F) and there exists a constant M > 1 
such that ||x||i < M • ||2?||i. 

P r o o f . Let us consider the set { P ( l , . . . , 1 ) , P ( l , . . . , 2 ) , . . . , P(qi,... 

• • • > 9m)} C N m and let . . . , k„) be the maximum element of this set, 
e.i. 

( 2 . 1 7 ) V ( t i , . . . , i ' r o ) < (qi,...,qm) P { i u ..., im) < (*?,..., k°n) . 

Theorem 2.1 implies that the equation (2.1) has exactly one solution x — 

lxji—jn] ^ Ln(F). Let us consider a fixed n-indices ( fci , . . . , kn) £ N n which 
is larger than . . . , From Lemma 2.2 we infer that Xj1„jn are deter-
mined explicitly for ( j i , . . . , j n ) < (ki,...,kn) by the system (2.8). Hence 
we get the formula (2.15). 

First we prove that there exists a constant M > 1 such that l®^...^! < 
M • p H x , for any set of ( j u . . . ,jn) < (fc?,..., k°n). We get, in view of (2."l5), 
that 

|*i...i| < l&p-i(i,...,i)/laP-1(i,-1i)i...il ^ ' ll^lli < 0 0 » 

where Mx...i = llap-i^...,!)!...!! < oo. 
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Similarly in view of (2.15) we have 

• - . (Ifcp-»(i,-,2)l + lap-Hi.—i)!...!!- l®i...il) 
F1...2I < r 1 • 

Hence by the estimate |®i...i| < M1...1 • ||jB||i we infer that 

, P i l l " (1 + M!...! -lap-id,-,2)l...ll) 
F1 . . .2 I < r i • 

l °P- 1 ( l , . . . ,2 )1 . . .2 l 

Denote the by M\,..2 coefficient at ||-B||i in the above estimation, we have: 

|xi. . .2|<Ml . . .2-p||l<+00. 

Similarly, by the same reasoning as above, we obtain 

\xk°...k°\ 

< l6P-l(fc?-.*°)l + jn)<(k\...k%) • \Xh...jn\ 

From the estimate obtained earlier of the form 

which holds for any (ji,... ,jn) < • • •, we infer that 

, , . Pl l lC 1 + jn)<(fc°...fc°) Mh-in • kp-l(*;-fc°) j i- jnl) 
'x*?...fc5i ^ u i 

and which, for brevity, can be writen in the form 

< Mko_ko -ll^lli < 00, 
where Mko ko is the coefficient of ||5||i. 

Let us assume 

M' := max {Mi. ) < 00; M = max{l, M'\ . 

From the above we immediately get 
(2.18) VCh, . . . , ; „ ) < (*?, ...,k°n) \xh...im | < M • p l U , 
where M > 1. Next, we assume: 

Z = { (¿ i , . . . , » m ) G Nm : P(h,...,im) < (Ar?, — , . 
We infer, in view of (2.18), that |xp(i11...,im | < M-||J?||x for any (¿1,. . . , t r o) € 
Z. Now we show out that the condition (2.14) is satisfied for any (¿1, . . . , im) 
€ N m \ Z . 

Let (¿1, . . . , im) £ Z and let us suppose that (h , . . . , im) < (<71,...,qm). 
Hence, in view of (2.17), we have P(ii,...,im) < (k\,..., Thus 
(t'x,..., im) € Z and we get the contradiction. So (¿1, . . . , im) > (qi,..., qm) 



Infinite algebraic linear equations 443 

and we conclude that condition (2.14) is satisfied. Since the index (¿1, . . . , im) 
€ Nm \ Z is arbitrary, so we get that the condition (2.14) is fulfilled for every 
( » i , . . . , t m ) € N m \ Z . 

Hence by Theorem 2.8 we obtain the conclusion of the theorem. 
D.2.4. We call the matrix A the reduced matrix with respect to A = 

[a«'i—»'M ji...j„] G $ (TO, n), if A* is taken from A by deleting the sections 
for (ii,...,j„) € QA- _ _ 

The operation of reduction explicitly determined A and A is a simple 
matrix after a renumeration with respect to indices ( j i , . . . , j n ) . 

2 2 
In the space Sp(m,n) let us define functional S (m,n) 3 A —> IIa € 

F U {00} and 52(m, n)3A-> J2A € F u {°°)> where 

( 2 . i9 ) n x == n ( • + E 
(il in)ePA X (¿1 im)*P-Hjl in) 

a «l-"«m 3\---3n 

(2.20) 
Ul,-,in)ePA ^(iu-Sm^P-Hh,-,]*) 

2 

aP-1(jl,...,jn)h...jn 

LEMMA 2 . 3 . If A € ~S2p(m,n), then = and 77 A = 77A- • The 
proof of the lemma is very easy, if we observe that in formulas ( 2 . 1 9 ) and 
(2.20) we do not take indices (ji,...,j„), which belong to Qa-

LEMMA 2 . 4 . If A is a simple matrix, then < +00 tf am^ tf 
nA < +00. 

Proof . In view of the inequality log(l + x) < x for x > 0 and since 
PA = Nn for any simple matrix A we infer that 

log 77^ = £ log ( l + £ 
/ ; \ /-uj»» * 1 («1.—,'m)^P-1(jl, — ,jn) 

a 'l-'m 3\---3n 

Ì E ( E 
a * i . i c N » v wp-1 

aP~1{h,-,in)h-jn 
2 

• 3\—3n 

) 
) = E , 

0'i.-,i.)eN» v(.-1 «m)#p-10'i--Jn) 

Hence IIa < +00. 
D.2.5. A matrix A — [a^...»^ ji...jn] € SP(m,n) is said to regular, if the 

following conditions are satisfied: 

(i) 

(H) 
E . < + o ° ' 
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