DEMONSTRATIO MATHEMATICA
Vol. XXVI No 2 1993

Henryk Debinski, Izydor Dziubinski

SOME REMARKS ON INFINITE ALGEBRAIC
LINEAR EQUATIONS

The purpose of this paper is to prove the existence and some estimations
of solutions of the infinite system of algebraic linear equations. We choose
these theorems which will be useful in the theory of solving of linear equa-
tions in Banach algebras, which have some applications to the linear partial
differential equations and linear integral equations of many variables and
other.

I.1. Let k be any natural number and N*- the product of k copies of N.
We introduce in the set N* an order-relation determined in the following
way:

If (41,.--5%k), (J1,-..,7k) € NF and W(k) = {1,2,...,k}, then:

D.1.1. (41,...,1) = (j1,...,Jk) if Vp € W(k) 1, = 5,

D.1.2. (41,...,%) < (J1,.- -, Jk) if one of the condition is fulfilled:

k k
(i) Z ip < ij ]
p=1 =1

k k
@) (Yo=Y ip)&(3m € W(K) 11 = 1,y imet = imots im < m)-
p=1 =1

p_
D.1.3. (41,...,%) < (J1y.-.,Jk) if one of the following conditions is
fulfilled:
(1) (i1a°°°)ik)< (jl,“-,jk)’
(ii) (i1 os8k) = (s - G)-
Under the above definitions of the order-relation we can uniquely ex-

press the set N* in the form of the one-dimension sequence {a,}r=1.,..,
where a, = (i1,%,...,1k). If it is necessary, the position of the element
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(%1,%2,...,%%) in the above sequence {a;},=1,2,.. will be denoted by r =

LETR
It is easy to prove the following lemmas.

LEMMA 1.1. Let k,p € N, p > k be arbitrary fized elements. Then the
number of elements (i1,...,ix) € N¥ such that

k p—1
Zimzp is equal to ( _ ) .
— k-1

LEMMA 1.2. If (iy,...,ix) € N¥, then the number of the elements
(j1,---,Jk) € N* such that 2;:1 Jm < Efn:l im is determined by the
formula

(1.1) (an=1kim - 1) .

LEMMA 1.3. If (i1,...,ix) € N*, then the number of the elements
(j1s---»dk) € N* less than (iy,...,ix) such that Y5 _ i = ¥F _ i is
determined by the formula:

(1.2 S5 (Shenint?)
n=1 p=0
where we assumed the convention: if n < k, then 37 _, am = 0.
Next we will prove

THEOREM 1.1. For every k € N

k k=11i,~2
(1.3) ripis = (Z"‘_l tm ) +y3 ( ’"‘"': zm1+ p) +1
n=1 p=0
under the convention: if n < k, then 37—, am = 0.

Proof. According to the order-relation, the set T of the elements
(J1s---,Jk) € NF less than (4y,...,ix) € N¥ is the union of the set Ty of
the elements (j,...,Jji) € N¥ such that % _ j < 3% __ i,, and the set
T, of the elements (j1,...,7k) € N¥ such that an=l Jm = 2fn=1 im and
(Jas---Jk) < (%1,...,%). Of course, T) N T = .

Thus by use of Lemma 1.2 and Lemma 1.3 we obtain

cardT = card T} + card T
what complete the proof.

2. Let F be any number field (i.e. F = R, Cor Z,) and k € N— an
arbitrary number.
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D.1.4. Every function mapping N¥ into F we call a k-dimensional infinite
matrix denoted by A or [a;,..;, ], where i, = 1,2,...; for s = 1,2,...,k. The
number i, (s = 1,2,...,k) is called the index of the matrix A.

Let L¥(F) be the set of all k-dimensional infinite matrices over F'. In the
set L*(F) we introduce addition of elements and multiplication of elements
by scalars in the standard way, so that L¥(F) becomes a vector space.

D.1.5. The section of the matrix

A= [ail---i,---iq---ik] € Lk(F), (3s=1,2,...,8 s=1,2,...,k)

with respect to indices (p,...,q) (1 < p < ¢ < k) for the fix set (jp,...,Jq)
we shall call the matrix

v .9 — —

A. .= [bi1~~~ip—1i'q+1---ik] € Lk e I(F) 1

Jpireenrlg

where
Bis.ipon iqaremin = Qigevip_y Gpeeiq igeroik
fori,=1,2,...;8=1,...,p—1,q+1,...,k. From the above definition we
obtain a matrix Ajpf :?j, from k-dimensional matrix A if we leave elements

of A which have fixed indices j,,...,J, in positions p,p+1,...,q.
ExaMmpPLES. If A = [a;j] € L?(F), then
aip a12 @13 Q14
A= az1 Gz 423 Q24
@31 a32 433 Q34

a14
1,1 _ 2,2 _ | @24
and A \.; = [a31a32a33 ], A ‘i =1la
34
Y 3
If A[a,-l,'2,-3] €L (F), then
2141 a311 G312 4313
—2,3 a —1,1 a a a
A = 241 , A - 321 322 323
4,1 a341 3 a331 G332 @333

......................

D.1.6. Let p,q € W(k) and p < ¢. The order of the matrix A =
[@iy..ip..0..08) € L¥(F), where i, = 1,2,...; s = 1,2,...,k; with respect
to index (p,...,q) will be called the maximum number R,4(p,q) of the lin-
early independent sections A J'pf f?,j, with respect to indices (jp,...,7q) €

1/ If p=1 or ¢ = k the above denotation means here matrices Zjll.j_qjq = [b‘q+1~'~‘k]

A9k .
or Ajp.f.jk - [bllmip_l]
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N2-P+1 in the space L*~9*P~1(F) if it is finite; if it is infinite we assume
R4(p, q) = +00. Of course, the sections AJ., P ’f’, i of the matrix A belong to

the linear space L¥~9+P=1(F) for (jp,...,J,) € NI7P*1,
D.1.7.Let (jp,...,J,) € N77P¥1 We call a section A, ’fqu of the matrix

A the null section with respect to indices (jp, - --,Jq), if
V(i1 .. ip—1,igs1...1k) € NFTIFP7L g, o ienir = 0.

It means that the matrix Zj,ff,j, is the zero vector as an element of the
space Lk—atP-1(F), _

D.1.8. Let p,q € W(k) (p < q). We call a matrix A = [ai;..i,..i,...is ] €
L¥(F) the (p,...,q)-finite index matrix, if

Y(jps--+rdq) € NTP¥13(G1, . dpmt, Jat1y - -+ » Jk) € NET9HP1
V(il, ...,ip_l,’l:q+1,. ..,‘ik) > (jl,...,jp_l,jq+1,.. .,jk)
Qiyoipoy Gperdq fqa1erie = 0+
D.1.9. Let p,q € W(k), (p < ¢) and let a matrix A = (@i, ..i,..4q...00] €

L¥(F) be (p,... ,q)-finite index, then we call (p,...,q)-finite index of the
order r if each section 4 ; ,’fqu for (Jp,...,7q) € N97P+1 of A with respect

P
to (Jp,-..,Jq) has at least r elements different from zero and there exists at
least one section which has exactly r elements different from zero.

3. Let F =R, (C) and k € N be an arbitrary number.
D.1.10. Let A = {a;,. ;,] € L¥(F), B = [b,...;,] € L*(F). If the series

o0
AoB:= Y ai.i b
£1...8=1
is absolutely convergent,then A o B is said to be the inner product of the
matrices A and B. In the other case the inner product A o B is not defined.
In the linear space L*(F) we introduce the norm. If the inner product Ao 4
exists, then the number

|Allz := VAo A we call the norm of A.

In other case we assume ||A||; = oco.

Further on, we denote by L¥(F) the linear space for which the norm ||.||;
is defined.

D.1.11. We denote by L(F) the set:

LY(F) := {A € L*(F) : ||A]|z < 00}.

Of course LX(F) is a linear subspace of L¥(F). .
D.1.12. The symbol LE(F) will denote the set of all matrices A € L*(F)
such that for any A € L§(F) there exists a number M > 0 such that
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Y(i1,...,i%) € N¥ |a;,. ;.| < M. We introduce a norm in the space L§(F).
If A =[a;,..i,] € L§(F), then |[A]| := sup;, . ent iy i, |-

Further on by L§(F) we understand the space determined in D.1.12.
with the norm ||.||;.

It is easy to show

THEOREM 1.2. There take place the following inclusions:
LE(F) C LE(F) c L¥(F).

4. Let F be an arbitrary number field and let n,m € N be arbitrary
natural numbers.

D.1.13. If 4 = [a,'l,,_,'m jl---jn] € Lm+"(F) and B = [bjl---jn] € L"(F),
where 41,...,%m,515--+,Jn = 1,2,...; then we call a right-sided product of
the matrices A and B the matrix A- B = [eiy...i,. ], where

[ o]
Cironim = E @iy freein “Odroins s =1,2,..05 8=1,...,m;
JieeJn=1
under the assumption that the above series are unconditionally convergent.
If at least one series is not convergent, the right-sided product A and B is
not defined.

D.1.14.If A = [a,-l,_,,-m] € L™(F) and B =lbi1---im_j1---jn] € Lm_i"_(_F),
then we call a left-sided product of the matrices A and B the matrix A-B =
(¢),...i. ], where

Cjyvin = Z Qiyim " Oiyim G1odny Js = 1,2,0005 8= 1,00,
f1..dm=1
under the assumption that the above series are unconditionally convergent.
If at least one series is not convergent, the left-sided product A and B is not
defined.

Let us denote S3(m,n):= {A € L™*"(F):VB € L"(F) the right-sided
product A - B exists}, §i(m,n) := {B € L™*(F) : YA € L™(F) the
left-sided product A - B exists}.

THEOREM 1.3. The matriz A € L™™(F) is (1,...,m)-finite indez if
and only if A € §2(m,n).

Proof. Let 4 = [a;,..i,, j,...jn] € L™"(F) and let us suppose that A
is (1,...,m)-finite index. Let B = [bj,..;.] € L*(F) be an arbitrary fixed
matrix. Then for each (i3,...,7,,) € N™ the series

) (k1y....ka)

E Qiy.im reein *Djrocin = E Qiy.oim G1eein * Birenin
J1edn=1 (j]_,...,j,.)=(1,...,l)
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is convergent, so A € $2(m,n). Next we assume that A € §2(m,n) and
let us suppose that A is not (1,...,m)-finite index. Then there exists a
set of indices (49,...,1%) € N™ and a sequence (j{,...,73), s = 1,2,...
such 'tha.t a,:g___,-g' TN 76'0, for s = 1,2,... let b.jl‘__j" = l/aig_...ig, 3edt
for (.71, e 7.7’n) = (]i” oo ,.7:;), and bjl...j,. = 0 for (Jla .- 7]71) # (]i,’ LR a]-;’y,))
s =1,2,...; The series E;')f,...,j,,=l @i ..im j1.gn * 0j1...j. 1S DOt convergent,
which contradicts the assumption that A € 52(m,n).

THEOREM 1.4. The matriz B € L™*"(F) is (m + 1,...,m + n) finite
indez if and only if B € S}(m,n).

The proof is analogous to the proof of Theorem 1.3.

II.1. Let F be an arbitrary number field and m,n € N are fixed. Let us
consider the matrix equation

(2.1) A-z =B,

where A = [ai, i, j1..jn] € Si(m,n), B € L™(F) and z € L*(F) is un-
known.
From Theorem 1.3 it follows, that A is (1,...,m)-finite index, D.1.8

gives us that for every system of indices (¢y,...,%n) there exists the system
of indices (ky,...,ks) such that

V(i1s---3dn) > (k1yoooikn)  @ipip jija =0
Let (i9,...,i%) € N™ be an arbitrary fixed system of indices and B =
[biy...i,. ], where i, = 1,2,... for s = 1,2,...,m. We will consider two cases:

(i) V(jl, e ,j'n.) € N'n. a;o i?,.jlmjn = 0 .

by

If bjo..io, # 0, then the equation (2.1) is contradictory and if bjo ;0 = 0,
then the system of indices (J,...,10) can be omitted without the loss of
generality.

(ii) I(k1y .. kn) € N1, ordn) > (k1y .. vy kn)

a0 o, jr.j. = 0and a0 ok, k, #0.

In this case each (43,...,10, ) corresponds explicitly to the element (ki,...
.+-skn) € N® which we denote by Po_ ;o or P(3,...,i,). Hence, it follows
that the sequence (P;,,... i, ) of indices explicitly corresponds to the matrix
A. We denote this sequence by P4, the set of elements of P4 by P4. Of

course, for each (41,...,0m) € N™ P, ; € N"
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The above assumption implies that the equation (2.1) is equivalent to
the system of equations of the form
P(i1yeenrim)
(2.2) Z Qiyoimn jrowim * Tjroegn = Biyoim
(J1s--9dn)=(1,...,1)
where 1, = 1,2,...;8=1,2,...,m;
THEOREM 2.1. The equation (2.1) (the system (2.2)) has a solution be-
longing to L™(F), if and only if one from the following conditions hold
(a) for any system of indices (k1,...,kn) € N™ the system of equations
P(i1yenrim)
(2.3) Z Qisooim G1edn " Tirendn = Oiyecim 3
(J1y-e9dn)=(1,...,1)
(f1ye++ytm) < (k1,y...,km) has a solution in L™(F),
(b) every finite subsystem of (2.2) has a solution in L™(F).

Proof. It is enough to observe that we can replace the equation (2.1)
by the equation of the form: A.7 =B, where A € L}(F),z € S, Bes,
S-the space of all one-index sequences, whose elements belong to F. Next
we may use the theorem from [1].

From the above we immediately obtain:

COROLLARY. If for any set of indices (k1,...,km) € N™, the rank of
the matriz [ai,. i, jr..jnls (i1yeesim) < (K1y...,km) equals rg, . k. with
respect to indices (1,...,m), then the system (2.2) has a solution with respect
to indices (1,...,m) in L™(F) for any B € L™(F).

D.2.1. The symbol -,ST:,(m,n) denotes the set of matrices A € SZ(m,n)
which do not include null section Zill.'."':m for indices (i1,...,%m) € N™ and
for which the sequence Py:N™ e Py (Pa C N") is a one-to-one function.

D.2.2. If A € §%(m,n) and P4 = N*, then A will be called a simple
matrix.

THEOREM 2.2. If A € ?:(m,n), then the equation (2.1) has a solution
in L"(F) for any B € L™(F).

Proof. Let A € 3’:(m, n), so that the map P4 :N™ > P, is one-to-one
function and it has no null sections with respect to indices (¢1,...,i,) € N™,
so elements of the sequence ﬁA are different. Hence, for any set of indices
(k1y...,kn) € N* the rank of the matrix A = [ai,...ip, jr...juls (F1y---rim) <
(k1,...,km) with respect to (1,...,m)is equal to the number of equations in
the system (2.3). From Theorem 1.1 it follows that the number of equations
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in the system (2.3) equals rg, . ,. . Next, from the corollary we infer that
the system (2.2) has a solution in L™(F) for any B € L™(F). Since (2.2) is
equivalent to equation (2.1) we obtain the conclusion of the theorem.

Let L"(B,A) = {z € L*(F):A-z = B}.

We can easily prove

LEMMA 2.1. L™(0, A) is a linear subspace of L™(F).

THEOREM 2.3. If z¢ is a solution of the equation (2.1), then £"(—§, A) =
zo+L"(0,A), so L*(B, A) is a linear variety in L™(F) or L™(B, A) is empty
if the equation (2.1) is contradictory. We omit the easy proof.

Let L be a linear subspace of the space X. Let us determine dim L in
Hamel sense.

k, if there exists maximally k lineary independent elements
in L.

Ro, if for any k € N we can choose k linearly independent
elements in L.

D.2.3.If T is a linear variety in L then

dimL, fT=z0+ L,

-1, ifT =40.

From above and Theorem 2.3 we have
dim L"(B, 7) = { dim L™(0,4), if L"(B,A) # 9,

dim L :=

dim7T := {

-1, if L™(B,A) = 0.

THEOREM 2.4. If A€ L™"(F) and A is a simple matriz, B € L™(F),
then dim L™(B, A) = 0.

Proof. From Theorem 2.2 we infer the existence of a solution zo €
L*(F) of the equation (2.1). Thus L*(B,A) # ® and dim L*(B,A) =
dim L™(0, A). Let us suppose that there exist two solutions z and y (z # y),
which belong to L"(0, A). Let z = [z;,..;.), ¥ = [¥j,...;. ], Where j, = 1,2,..;
s=1,2,...,n. '

In accordance with the order relation defined in (Ch.I, §1) we can find
a set of indices such that zy, .k, # Yk,..k, and V(j1,...,7n) < (k1,...,kn)
Tjy.dn = Yisga OF (k1,...,kn) =(1,...,1) and 21,1 = y1...1 since Ais a
simple matrix, thus there exists (¢y,...,%,) € N®, such that P(¢,...,i,) =
(k1y---skn)-

Let us consider the equation

(k1yeeerkn)
(2.4) > iy ciim Gredn " [Tiredn T (¥irgn)] = 0.
(1yeendn)=(14.001)
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Since zj,..j, = Yj..j. for every (ji,...,jn) < (K1,...,ksn) thus we have
from (2.4) ai,..i,, kyookn *[Thoooky H(=Yky...k, )] = 0. Of course P(ix, ..., in) =
(k1y... kn)s0 @iy i, ky...k, #0.Hence zi .k, +(=Yk,..k,) =0and 25 &,
= Yk,...k, , Wwhich contradicts our assumption.

Hence we infer that the set L™(0, A) includes one solution of the homo-
geneous equation only, and of course it is the element 0, so dim L™(0, A) = 0
and it completes the proof.

Let QA = Nn\PA.

THEOREM 2.5. IfA € ?i(m,n) and B € L™(F), then
dim L™(B,A) = card Q4 .

Proof. It follows from Theorem 2.2 that for any . B € L™(F) we have
L™(B,A) # 0. From D.2.3. we infer that dim L*(B, A) = dim L"(0, A) for
any B € L™(F). Hence it is sufficient to show that dim L*(0,A4) = card @ 4.

Let us consider three cases:

a) Q4 = 0. In this case A is a simple matrix and from Theorem 2.4 we
obtain the conclusion.

b) ca‘rdQA = RNo aIl_(l QA = {qh q2a"'}’ where ¢ < g2 < ... ¢s € N%,
for s = 1,2,...; L™(0, A) is the set of solutions of the system of equations
given by

P(ilv'--vim)
(2.5) E Qiy i G1oegn * Tjredn = 0,
(31,--3n)=(1,...,1)
wherei, =1,...;8=1,...,m;

Let us assume that z,, = 1 for fixed ¥ € N and z,, = 0 for s # &,

s =1,2,...; Then the system (2.5) we can rewrite in the form

P(ily'--tjm)
(2.6) Y Ghiin redn  Titeda = G
(jly---yjn)=PA

where i, = 1,2,...; s = 1,2,...,m. The matrix [a;,. i, j,...j,] is a simple
matrix.

From Theorem 2.4 it follows that the system (2.6) has exactly one solu-
tion, which we denote by Z = [Z;,..;.], (41,...,Jn) € Pa.

Let us denote
. 5.’7?1“._7-", where (j15...,Jn) € Pa,
(2'7) Tirein = 1, where (].l, coe s]n) = Gk,

0, where (j1,...,7n) € @a \ {gx}.
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From the above considerations we infer that zF = [z . ] € L*(F),
(J1,---,Jn) € N™ is a solution of the system (2.5). The solutions z* (k =
1,2,...) in L*(F) _are linearly independent and they form a countable set,
so that dim L™(0, A) = Ry = card @ 4.

c)dimQa =M <Roand Q4 = {q1,.-.,qm}, Where ¢y < g2 < ... < qur;
gs € N*fors=1,2,..., M.

Analogously as in b) we obtain solutions of the system (2.5) z* for k =
1,2,...,M;in the form (2.7). Of course, each linear combination of elements
z* is a solution of (2.5), thus dim L*(0,4) > M. Let T = [z;,. ;,] for
(41,+-+,4n) € N* and T € L™(0,4). Then the element = Y0 Tg, -2 €
L"(F), so 7 € lin(z!,...,2M) and 7 € L™(0, A).

From definition of Z it implies that

M
Ty, =) Ty 0g9;, =%, forj=12,..., M,
k=1

where 6, m denotes Kronecker‘s symbol.

If we fix, as in the case b), the values Z,,,...,Zy,, for T,,,...,T,,, we
get the system of equations with unknowns z;, . j,, (j1,...,7n) € Pa, which
in view of Theorem 2.4, has the unique solution. Hence Z = T and each
solution of (2.5) belongs to lin(z?,...,zM), so dim L"(0,A) < M, which
completes the proof.

—_ —2 . . . .
Let A € Sp(m,n). The map P : N™ 35 (i1,...,im) — (J1,-.-yJn) =
P(i1,...,im) € P4 is onto ?:(m, n) and one-to-one and so there exists the
inverse map P~1: P4 — N™,

LEMMA 2.2. If A is a simple matriz, B € L™(F) and z = [z;,..;.],
(J15..-,Jn) € N™ is a solution of the equation (2.1), then for any fiz
(kiy...,kn) € N™ the numbers ;.. ;. for (j1,...,dn) < (k1,...,kn) are
uniquely determined by the system of equations

(2'8) Z aP_l(jlv“ﬂju)‘II'"Qn ’ zQI"'q" = bP—l(jIY""j")
(111,---,¢1n)S(jlv"~’jn)

for (1,1 Jn) < (K1, .. kn)-

Proof. From Theorem 2.4 we infer that the equation (2.1), equivalent to
(2.2), has exactly one solution. Let us consider the systems (¢1,...,%,) € N™
for which P(i1,...,im) < (ki1,...,ky) and take the system of equations of
the form (2.2) for P(i1,...,%m) < (k1,...,kn).
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Since the matrix A is simple, so there are only equations of the form

ap-1(i,..,1)1..1 * T1..1 = bp-1(1,... 1)
ap-1(1,..,2)1...1 * 1.1 + @p-1(1,..2)1..2 - T1...2 = bp-1(1,...2)

@P=1(ky,kn) 1o TL1F oo F@P=1(ky K Yhr.okn Ty ka =OP=1(ky . kn)
(2.9)
The number of equations and unknowns in (2.9) is equal and the rank of
fundamental matrix is equal to the number of equations. Treating (2.9) as

the system of equations with respect to z;,. ;. for (ji,...,Jm) < (k1,...,kn)
we get that unknown are explicitly determined by (2.9). This completes the

proof.

2. Let F be the number field R or C and m,n € N are fixed numbers.

—m+1,m+n

THEOREM 2.6. If A € L™t™(F) is a simple matriz, l4j,. 5. ll2 < oo
for any n-indez (j1,...,jn) € N® and if the product

-—m+1,m+n 2
210 J[:= 1[I 14 I
A

J14e0erdn
2
[/ N .
(1,---1n)EN" | P 1(.71'"'v.7n)]1“'.7n|

- I (+ ¥

(jll"')jn)eN" (ily'-'rim)¢P_l(jl)"',jn)

@iy ipy G1..dn

)

is convergent, then for any B € LT(F) the equation (2.1) has ezactly one
solution z = [z;,. ;.] in the space L™(F) and

= —m+1l,m+n . .
(2.11)  |zjyjul S VH4-|Bll2/1l4;,,.5, ll2 for (J1,...,7n) € N™.

Moreover, if I := inf(;, . i yenn ||Z;’:’+1,’Jm"+n||2 > 0, then z € L§(F) and

lzll < vII4-||Bll2/I.

Proof. It follows from Theorem 2.4 that the equation (2.1) has exactly
one solution z = [z, .}, (ji,...,Jn) € N™. Let us take a fixed n-indices
(k1,...,ks) € N*. From Lemma 2.2 we infer that z;,. ;, for (j1,...,7n) <
(k1y...,kn) are determined explicitly by (2.9). The system (2.9) has the
solution determined by Cramer formulas. Let us put:

AP-1(j)...5n)51-+-In

ap-1(1,..,1)1...1 0 cen 0
ap-1(1,...,2)1...1 ap-1(1,..2)1..2 .- 0

AP-1(ky,ikn)led  CP=1(ky,.kn)l..2  co OP=1(ky ... kn)ky..kp

= H aP—l(jl»--'yjn)jlvnrjn # 0’
(jl""?jh)s(klv'”)kn)

Dy,.,.k, =
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ap-i(1,.,1)1..1 - bP—l(l,...,l) vee 0
Dirreenrin - ap-1(1,..,2)1...1 -« -bP-l(l,...,2) ce 0

kl""’k" .........................................................
Ap-1(ky,kn)led - OP=1(ky k) cr OP=1(ky,.. kn)k1e ke
for (j1,---5Jn) < (K1,...,kn). Thus we obtain

(212) Tirjn = kl,—,k” for (]1) ’]n) < (kl’ ,k )

Next, applying Hadamard‘s inequality to Di‘l’,’i'; we get

P~ Y(ky,eunkn)

1oy 2 2 ’
IDilt Jyuul H ( z Ia’il...im j]...j,,')

(jl""’j")S(kl""’k") (1.1, ﬂ.m)-P—l(ly -,1)
kiyeskn
Z:(111 (l:m) P)l(l,...,l) lbil-"iml2
“k1yeerrkn .
2('11 (1:m) P)l(l,...,l) Iail---im k]...k“IZ
From the above and from (2.12), we have
P—I(k v'-‘vkn)
|z 12 < H (E(in-.-.ilm):P-1(1,...,1) |@sy..imm gaegn I
T1yeeyTn Pl 3
(F1reenrdin) S(k1yeenskn) |aP—l("1min)j1-..J'n|
“1(k1seenrkn)
2(11, 1‘1m) P—l(l,...,l) lbil---iml2

=1(ky,yeenrkn
2(11. (’:m) P)l(l"__'l) Iail...i,,. 'rl...r,.l2

for (r1,...,7n) < (k1y- .., kn)-
For any (71,...,7n) < (k1,...,kn) the above inequality and the following
relations

P~ Y(ky,eunska)
2 2
E : a3, . i grodal S Z a3, . i G2
(i1yeemrim)=P=1(1,...,1) (i11erim) ENT

—m+1l,m+n 9

= IIAjlv'“;jn ”2 < +m’

P~ Y(k1,eerkn)

> 7,0 < D 1 =Bl < o,

(il,...,im)=P_1(1,..., ) (i],...,im)ENm

yield for any (ji, ..., a) < (k1. kn)

A7 ™ 3

2 T1yeenyT

|Ij1.--j,.l S H |a2 1 n I
(P1yeeeiTn) S(K1yernkn) | - Hr1era)ryrn
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% B3
P=1(K1,orkn) —
z(il,...,il,,'.);}g—l(l,..,,l) @iy i 1ndnl?
Hence, if r4,,....k, — +00 we have
—m+lm+n o _

213)  leinal< ]I 14r e 18 1IBIS
- ]1---Jn — |a2 I Z’"+1,m+n 2
(T1ye.yTn) ENP P=1(r1..10)T1...7 " F1yeeerdn “2

for (j1,...,Jn) € N™. This completes the proof of the first part of the theo-

rem. +lmet
. —m+1,m4n
1= mf(jlym,j”)eNn ||Aj1,...,j,.

- —m+1m+ _
|2j1...5.1° < I - ||BII3/|I 4] "5 < 4 -||BlI3/ 1

J1 v--'yjn

holds. It means that z € L}(F) and ||z||; < v 4 - ||Bl|2/I.

THEOREM 2.7. If A € L™*"(F) is a simple matriz and for every indezx
(il,...,im) € N™

(2‘14) (1 + E |ai1---im jl---j,.l)/|‘1i1...i,,. P(il,...,i,,.)l <1
(J11e-2dn )EP(i1ye00rim)

then for any B € LJ*(F) the equation (2.1) has ezactly one solution z =
(5:...72] and z € L§(F), ||z|ls < || B|1-

Proof. Theorem 2.4 implies that the equation (2.1) has exactly one
solution z = [zj. ;. ], (J1,..-,Jn) € N, so we have to show that ||z||; <
|Bl|1. It is sufficient to prove that |z;,. ;.| < || B||1 for (ji,...,4n) € N™
We use the induction here. From Lemma 2.2 we conclude that the system
(2.8) uniquely determines zj, .. ;. for arbitrary (ji,...,Js) € N™. Hence, we
get

(2.15) 2.0

_ bP_ljly"-rjn - E(T],...,T,.)((jl y---vjn) aP_l(jly'“yjn)rl--'rn ' zrl-'-rn

|| > 0, then by (2.13), the inequality

aP-l(jl v--',jn)jl -«-jn

for (j1,...,Jn) € N™.
I. For (j1,...,Jn) = (1,...,1) by (2.15) and (2.14) we have

lz1..a] < [bp-101,...1yl/lap-2(1,...y1..0 < IIBlhr -
II. Let us suppose that for two arbitrary sequences of indices
(rla---’rn) < (jlv- "jn)
the following inequality holds
|Zry..cra| < B2 -
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Hence by (2.15) we get

lz . . I — IbP—l(jlv"yjn)I + 2(1‘1,...,7',,)<(j1,...,j") 'aP_l(jl,...,j,,)rl...r,.I ° ”B”l
J1eednl —

' laP-l(jlu-'-yjn)jl-"jnl
1 + Z(T],...,T,.)#(jl,...'j") IaP_l(jla"'rjn)Tl---rnI

|aP_1(jlyu-vjn)jlu~jn |

<|IBl -

From the above inequality and (2.14) we get |z;,..;,| < |[Bll1. Thus we
obtain by induction that |z;,. ;.| < || B||1 for every (j1,...,Jn) € N". Con-
sequently z € L%(F) and ||z||; < ||B|1-

THEOREM 2.8. Let Z be a subset of the set N™. Let us assume that
A € L™"(F) is a simple matriz, B € LTY(F) and the condition (2.14) is
satisfied for any sequence of indices (i1,...,im) € N™\ Z. If there ezists a
constant M > 0 such that |zpg,,... i) < M - |B|lx for every (i1,...,1) €
Z, then the equation (2.1) has ezactly one solution z in the space LO(F).
Moreover z € L}(F), and ||z||, < ||B|)1 - max(1, M).

Proof. We observe that if the condition (2.14) is fulfilled for the system
(?15-+-,%m) € N™ then for any constant K > 0 the following inequality

1+ K- E(jl,...,j,.):,éP(il,...,i,,.) |@iy,eip 1o

(2.16) < max(1, K)
|@i,...im P(iy..im)|
holds, as the result of the inequality
1 + K : E Iailv"'yim jl---jul
(jly-"yjn)eN"
< (1 + E lai,...i, jl...j,.i) -max(1,K).

(jl ""’jn)eN"

Theorem 2.4 implies that the equation (2.1) has exactly one solution z =
(j,...;,] € L™(F). From Lemma 2.2 we get that z; ; are determined
uniquely for (j1,...,j.) € N™ by the system (2.8). So we get the formula
(2.15).

Next, using the induction with respect to (j1,...,j,) € N™, we prove
that z € L§(F).

I. Let (51,..-,7n) = (1,...,1). If P71(1,...,1) € Z, then from our
assumption we have

|z1..1] < M - {[Blx < || B}z - max(1, M).

If P~1(1,...,1) € Z, then in view of (2.15) and (2.14) we get |z;.1| <
lbp-1(1,... )t/ lap-1(1,...)1..1] < ||Bllx < || B||x - max(1, M).
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II. Let us suppose that there is the estimation for each (ry,...,7n) <
(J1y---,Jn) of the form |z, . | < |[Blj1 - max(1, M), we will prove that

|253...ial < |Bll1 - max(1, M).

If P71(j1,...,7n) € Z, then from the assumption we obtain the above
inequality.
If P71(j1,...,7n) € Z, then in view of (2.14), (2.15) and (2.16), we get
”-Bll(l + M : E(T},...,T,.)<(j1 ,...,j,.) IaP—l(jly---yjn)rl'urn |)
l€P=1(31,.cin)is dn
< “Bll(l + : Z(Tl,...,r,,)¢(]‘1,...,j,,) IaP_l(jlv--yjn)rlﬂ'rnI : M)
B |ep-13j3,.0rin) i nrin

< |[Bllx - max(1, M).

|Z5,...0 1 <

Hence we infer by the induction that for every (ji,...,5n) € N* |z}, ;.| <
|Bllx - max(1, M), thus ¢ € L§(F) and ||z|}y < ||B|x - max(1, M), which
completes the proof.

THEOREM 2.9. If A € L™t"(F) is a simple matriz and I(q1,...,qm) €
N™V(i1,...,%m) > (q1,---,qm) such that the condition (2.14) is fulfilled,
then for any B € L(F) the equation (2.1) has ezactly one solution z =
(%},...;.] € L™(F). Moreover z € L}(F) and there ezists a constant M > 1
such that ||z|[y < M - ||B]|x-

Proof. Let us consider the set {P(1,...,1),P(1,...,2),..., P(q,...
..vsgm)} C N™ and let (k?,...,k2) be the maximum element of this set,
eld.

(2.17) V(its--esim) S (q1yeeer@m) Plityeeyim) < (KD, ..., kD).
Theorem 2.1 implies that the equation (2.1) has exactly one solution z =
[j,...;.] € L™(F). Let us consider a fixed n-indices (ki,...,k,) € N® which
is larger than (£9,...,%k2). From Lemma 2.2 we infer that z;,_;_ are deter-
mined explicitly for (j1,...,4n) < (k1,...,kn) by the system (2.8). Hence
we get the formula (2.15).

First we prove that there exists a constant M > 1 such that |z;,. ;.| <
M -||B||1, for any set of (ji,...,jn) < (KS,...,k2). We get, in view of (2.15),
that

|21..1] < IbP-l(l,....l)/|‘1P—1(1,...,1)1...1| <My 1 ||§||1 <o,

where M 1 = l|ap-1(1,...1)1..1] < o0.
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Similarly in view of (2.15) we have

(Ibp-1qa,... 25| + lap-1¢1,...291..a1 - [Z1..1])
IaP-l(l,...,z)l...2|

|Z1..2] <

Hence by the estimate |z, 3| < Mi. 1 - ||B||; we infer that
1Bl -+ Mi.a-lap-sq,..21..1l)
|z1..2] < (Lr2) .
|‘1P—1(1,...,2)1...2|
Denote the by M. » coefficient at ||F||1 in the above estimation, we have:
|z1..2] € My..2+||Bll1 < +00.

Similarly, by the same reasoning as above, we obtain

|1'kg...kg|

< bp-1(k9...k0)| + 2201 onin) <(k0...k9) 18P=2(k0.. k)1 i | * [T .ccda

IaP—l(kg...kg)kg...kg|
From the estimate obtained earlier of the form
|Zj1.ccin | £ Mijy...ju + 1Bl < 00
which holds for any (ji,-..,7n) < (k?,...,k) we infer that
IBll(1+ ... 50)<(k9...k0) Miis.in * [0P1k2...49)51..7a )
laP—l(kg...kg)kg...kgl
and which, for brevity, can be writen in the form

|Zko..k0| < My o - [Blls < o0,

|$kg...kg| st

where Mo 4o is the coefficient of I|B1.
Let us assume

M, = (Jl 7 I)n<a(.)’§° ko){MJlJn} < 00, M = max{l,M'} *
yeenrdn ) SRy yeeisky

From the above we immediately get
(2'18) v(jl, oo 1jn) < (k(lja ERE) kg) lzjl'"jnl <M. "lell ’
where M > 1. Next, we assume:

Z ={(31,...,im) E N : P(iy,...,in) < (K3,...,k2)}.

We infer, in view of (2.18), that |z p(i,,....i. | < M-||B||; for any (43,...,im) €
Z. Now we show out that the condition (2.14) is satisfied for any (¢1,...,%m)
€ N™\ Z.

Let (#1,...,%m) & Z and let us suppose that (41,...,%m) < (@15 qm)-
Hence, in view of (2.17), we have P(i1,...,im) < (K%,...,%8). Thus
(t1y.-.,%m) € Z and we get the contradiction. So (¢1,...,tm) > (q1,-.-,qm)
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and we conclude that condition (2.14) is satisfied. Since the index (¢1,...,im)
€ N™\ Z is arbitrary, so we get that the condition (2.14) is fulfilled for every
(f15.--,im) € N™\ Z.

Hence by Theorem 2.8 we obtain the conclusion of the theorem.

D.2.4. We call the matrix A" the reduced matrix with respect to A =
laiy..i0 1.5 € ?2(m, n), if A" is taken from A~ by deleting the sections

—m+1,m n

Ajyi for (j1,..-,Jn) € Qa-
The operation of reduction explicitly determined A~ and A" is a simple
matrix after a renumeration with respect to indices (j1,...,7n)-

In the space ?ﬁ;(m,n) let us define functionals §2(m, n)>A— 1€
F U {00} and 5’ (m,n) > 4 — Y4 € FuU {00}, where
2
P—l(jlv"'yjn)jl"'jn )’

219 [T,:== I (1+ >
2)'

(Garerin)€Pa > (itreenim)EP= 21 eerin) |

(2.20) EA =y ( > .
(jlt'"vjn)EPA (il v---yim)¢P—l(j1v"-vjn)

LEMMA 23. IfA € ?;(m,n), then 3., = X 4., and IT4 = Il 4-. The

proof of the lemma is very easy, if we observe that in formulas (2.19) and

(2.20) we do not take indices (ji,...,jn), which belong to Q 4.

Qi F1.edn

Ciy.ipn J1oeGm

P=1(j1yee1dn)dr-e-dn

LEMMA 2.4. If A is a simple matriz, then Y4 < too if and only if
IT4 < 4o00.

Proof. In view of the inequality log(1 +z) < =z for z > 0 and since
P4 = N™ for any simple matrix A we infer that
2
@P=1(j1yrmrin) i1 -ein )

logll4 = Z log (1+
2
)-%.

iy i F1.eGn

(jl)'"vjn)eN" (ilvuyim)¢P_1(jls"'»jn)
< > ( z
(1504030 ) EN™ " (i1400im JEP (G140 0dn)
Hence IT4 < +00.
D.2.5. A matrix 4 = [ai,..i,, j,..j.] € ?;(m, n) is said to regular, if the
following conditions are satisfied:
() T <+oo,

(i) Y(j1s--erin) €EN®  AntiTH e ().

@iy ..im j1.-Gm

aP_l(jl 1"',jn)j1 "'jn
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